MODULE 16: Spatial Statistics in Epidemiology and Public Health Lecture 7: Slippery Slopes: Spatially Varying Associations

Jon Wakefield and Lance Waller

- Alcohol
- Illegal drugs
- Violent crimes
- Regression
- Breaking the rules

## Acknowledgements and References

- Collaborators: Paul Gruenewald, Dennis Gorman, Li Zhu, Carol Gotway, and David Wheeler
- References:
  - Waller et al. (2008) Quantifying geographical associations between alcohol distribution and violence... Stoch Environ Res Risk Assess 21: 573-588.
  - Wheeler and Caldor (2009) As assessment of coefficient accuracy...J Geogr Systems 9: 573-588.
  - Wheeler and Waller (2009) Comparing spatially varying coefficient models... J Geogr Systems 11: 1-22.
  - Finley (2011) Comparing spatially-varying coefficient models...*Methods in Ecology and Evolution* 2: 143-154.

- Quantify associations between outcomes and covariates as observed in data.
- What if strength of association varies across space?

- Outcome: Number of violent crime reports by census tract
- Covariates: Alcohol sales, illegal drug arrests (also by census tract).
- Interaction of people and place (social disorganization, routine activities, crime potential)
- Q: What if the association depends on location?

Linear regression:

$$\begin{split} Y_{i} &= \mathbf{X}'_{i}\boldsymbol{\beta} + \epsilon_{i} \\ \epsilon_{i} &\stackrel{ind}{\sim} N(0, \sigma^{2}) \\ (\text{alternately, } Y_{i} \stackrel{ind}{\sim} N(\mathbf{X}'_{i}\boldsymbol{\beta}, \sigma^{2})) \end{split}$$

 Assumptions: independence, Gaussian errors, constant variance, linear association, constant β.

イロン イヨン イヨン イヨン 三日

8/1

We will break all but one of these.

- $\widehat{oldsymbol{eta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$  from OLS (= MLE if Gaussian)
- What if an assumption doesn't hold?
- Two common strategies:
  - \* Fix it (adjustments to LS)
  - \* Model it (adjustments to ML)

- ▶ Not Gaussian? Transformation (log, Box-Cox, ...).
- $\sigma^2$  not constant? WLS:  $\hat{\boldsymbol{\beta}}_{WLS} = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{Y}$
- ►  $\epsilon_i$  ( $Y_i$ ) not independent? GLS:  $\hat{\beta}_{GLS} = (\mathbf{X}' \mathbf{\Sigma} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Sigma} \mathbf{Y}$
- Fixing multiple problems?

# Fixing multiple problems one at a time



- Random effects (mixed models).
- Modeling non-independence hierarchically:

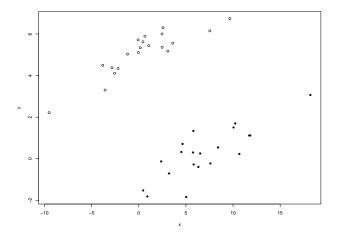
$$Y_{ij}|b_j \stackrel{ind}{\sim} N(\mathbf{X}'\boldsymbol{\beta}+b_j,\sigma^2),$$

$$b_j \sim N(0, \tau^2),$$

where  $b_i$  = random intercept for elements of *j*th subgroup.

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ つ へ で
12/1

## Example of subgroup random intercepts



□ ▶ 《□ ▶ 《 Ē ▶ 《 Ē ▶ 《 Ē ▶ 《 Ē ♪ 《 B ♪ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ 《 □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ▶ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ ( □ ℕ (

- Impact: Adds extra noise, adds (positive) correlation within subgroups.
- Borrow information across subgroups.
- Allows modeler to specify variance-covariance structure.
- ► Fit with SAS PROC MIXED or R.
- What about a random intercept for each census tract with spatial correlation?

 $\mathbf{b} \sim \textit{MVN}(\mathbf{0}, \boldsymbol{\Sigma}).$ 

14/1

$$[\mathbf{Y}|\boldsymbol{\beta},\sigma^2,\mathbf{b}][\mathbf{b}|\tau^2][\boldsymbol{\beta}][\tau^2] = \boldsymbol{A}\times\boldsymbol{B}\times\boldsymbol{C}\times\boldsymbol{D}.$$

- Bayesian: A = (conditionally independent) likelihood, B, C = priors, D = hyperprior, inference based on [β, σ<sup>2</sup>, b|Y] ∝ A × B × C × D.
- Classical: A × B = (correlated) likelihood, C, D N/A, inference based on likelihood.
- Both computationally intensive.

- Fix it: Geographically weighted regression (GWR)
  - Fotheringham et al. (2002)
- Model it: Spatially varying coefficient (SVC) models
  - Leyland et al. (2000), Assuncao et al. (2003), Gelfand et al. (2003), Gamerman et al. (2003), Congdon (2003, 2006)

• OLS: 
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$
.

• WLS: 
$$\hat{\boldsymbol{\beta}}_{WLS} = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{Y}$$
.

• GWR: 
$$\hat{\boldsymbol{\beta}}_{GWR}(\mathbf{s}) = (\mathbf{X}'\mathbf{W}(\mathbf{s})\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}(\mathbf{s})\mathbf{Y}$$
.

- **s** represents any spatial location in the study area.
- ► W(s) = diagonal matrix of weights for each observation (Y<sub>i</sub>) with higher weights given to observations closer to s.

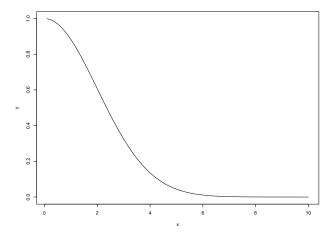
- GWR:  $\hat{\boldsymbol{\beta}}_{GWR}(\mathbf{s}) = (\mathbf{X}'\mathbf{W}(\mathbf{s})\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}(\mathbf{s})\mathbf{Y}$ .
- Similar to local regression smoothing (e.g., loess), but here "local" means in geographic space, not covariate space.
- ► **W**(s) typically defined by a distance-decay kernel function such as the Gaussian kernel

$$\mathbf{W}(\mathbf{s})_i = \exp\left(-\frac{1}{2}\left(\frac{\mathbf{s}-\mathbf{s}_i}{bw}\right)^2\right),$$

where  $\mathbf{s}_i = \text{location of observation } Y_i \text{ and } bw = "bandwidth" (smoothing parameter).$ 

• Larger *bw*, smoother  $\hat{\beta}_{GWR}(\mathbf{s})$  surface.

### Example of Gaussian kernel



(ロ) (部) (書) (書) 書 のQで 19/1

- Fotheringham et al. (2002) (and their software) suggest using bw which minimizes the AIC.
- GWR a descriptive technique. Inference is complicated.
- Observation Y<sub>i</sub> receives different weight for each s.
- Provides a smooth estimate of the β<sub>GWR</sub>(s) surface, but not a probability model of Y as a function of β(s).
- Testing (e.g., β(s) = 0 at particular locations) difficult due to correlation induced by kernel function.
- Most testing approaches based on ad hoc adjustments.

## Spatially varying coefficient models

- How could we do this with random effects?
- Consider a single covariate model

$$Y_i|b_{0,i} \stackrel{ind}{\sim} N(\beta_0 + x_{1,i}\beta_1 + b_{0,i}, \sigma^2)$$

$$\mathbf{b} \sim MVN(0, \mathbf{\Sigma})$$

and  $\pmb{\Sigma}$  defines a spatial correlation matrix.

- $\beta_0 + b_{0,i}$  sort of like  $\beta_0(\mathbf{s})$  in GWR, but...
  - GWR: β<sub>0</sub>(s) is a smooth surface in GWR with smoothness defined by *bw*.
  - SVC: Estimate β<sub>0</sub> and elements of Σ from data. These parameters induce spatial correlation between intercept associated with Y<sub>i</sub> and that of its neighbors.

• Now, let's add spatial variation to  $\beta_1$ .

$$Y_i|b_{0,i}, b_{1,i} \stackrel{ind}{\sim} N(\beta_0 + x_{1,i}\beta_1 + b_{0,i} + x_{1,i}b_{1,i}, \sigma^2)$$

 $\mathbf{b}_0 \sim \textit{MVN}(\mathbf{0}, \mathbf{\Sigma}_{b_0}) \ \mathbf{b}_1 \sim \textit{MVN}(\mathbf{0}, \mathbf{\Sigma}_{b_1})$ 

- ► Good news: [b<sub>1</sub>|Y] gives inference we want (but at a computational cost).
- Not-so-good news:
  - Identifiability
  - Often complicated to fit via MCMC (hence the flurry of papers in 2003).

- What if the data are non-Gaussian?
- Model it: GLMs
  - Y = 0/1 or proportions, logistic regression.
  - Y =counts or rates, Poisson regression.
  - Some additional baggage (mean and variance related)
  - Estimate  $\beta$  via iteratively reweighted least squares.
- ► GWR for Poisson regression (Nakaya et al. 2005).
- ► GLMM for adding random effects (Agresti et al. 2000).

- ▶ Poisson regression with spatially correlated random effects.
- Outcomes: Counts of (incident or prevalent) cases of disease in small areas.
- Covariates: Environmental exposures.
- Potential confounders: Demographics.
- Data often from different sources (health department, EPA, census), linked by location via geographic information systems (GISs).
- Spatial components: Adjusting estimation for residual spatial correlation.

- Outcome: Rates (number of cases per person per year) of violent crimes (police/sheriff reports).
- Covariates: Alcohol distribution (licenses and sales), illegal drug arrests (police/sheriff reports).
- Potential confounders: Sociodemographics (census).
- Linked to common spatial framework (census tracts) via GIS.

- When are crime data like disease data?
  - Counts from small areas.
  - Per person "rate" of interest.
- When are crime data not like disease data?

イロン イヨン イヨン イヨン 三日

27/1

- Outcome not as "rare".
- Police vs. medical records.
- Residents not only ones at risk.

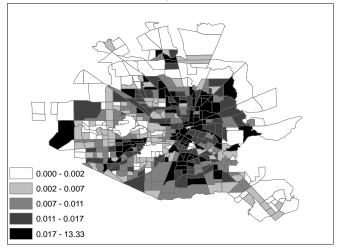
- Large body of research showing association between alcohol distribution and the incidence of violence.
- Usually focuses on characteristics of:
  - People (social normative, social disorganization theories)
  - Places (routine activities theory)
  - Interactions of people and places (crime potential, ecology of crime)
- Alcohol distribution of interest since it is regulated and we have data on what and how much is sold where.

- What population characteristics are associated with increased incidence of violence? (Criminologists, Sampson and Lauritsen 1994).
- In what places is violence more likely? (Routine activity theorists, Felson et al. 1997).
- What spatial interactions link people and place characteristics to violence? (Environmental criminologists, Brantingham and Brantingham 1993, 1999).

- Spatial support: 439 census tracts (2000 Census).
- Violent crime (murder, robbery, rape, aggravated assault) "first reports" for year 2000 from City of Houston Police Department website.
- Gorman et al. (2005, *Drug Alcohol Rev*) report less than 5% discrepancy with 2000 Uniform Crime Reports.
- ▶ 98% of reports geocoded to the census tract level.
- Alcohol data (locations of active distribution sites in 2000) from Texas Alcoholic Beverage Commission (6,609 outlets), 99.5% geocoded to the tract level.
- Drug law violations (also from City of Houston police data).
   98% geocoded to the tract level.

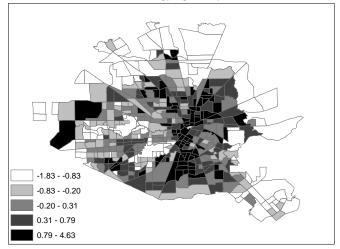
## Violent Crime reporting rates, Houston, 2000

Violent Crimes per Person, 2000



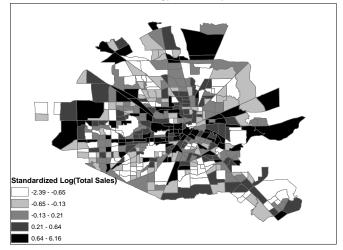
# Standarized log(drug arrests), Houston, 2000

Standardized Log(Drug Arrests), 2000



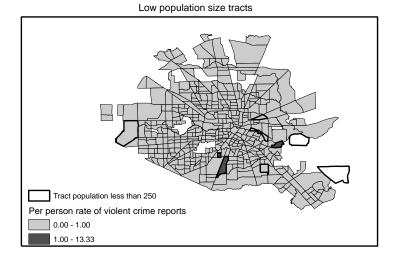
# Standarized log(alcohol sales), Houston, 2000

Standardized Log(Alcohol Sales), 2000



- ▶ 7 of 439 tracts have extremely small population sizes: 1, 3, 4, 16, 34, 116, and 246.
- Tracts typically have 3,000-5,000 residents.
- Local rates for such tracts are extremely unstable (e.g., 40 reports, 3 residents).
- Actually a motivating a reason for including the spatially varying intercept: borrow information across regions.

### Low population tracts and high rates



- Let  $Y_i$  = number of reports in tract i, i = 1, ..., 439.
- Suppose Y<sub>i</sub> ∼ Poisson(E<sub>i</sub> exp(µ<sub>i</sub>)), where E<sub>i</sub> = the "expected" number of reports under some null model.
- Typically, E<sub>i</sub> = n<sub>i</sub>R where all n<sub>i</sub> individuals in region i are equally likely to report.
- $\exp(\mu_i) =$  "relative risk" of outcome in region *i*.
- We add covariates in linear format (within exp(·)): μ<sub>i</sub> = β<sub>0</sub> + β<sub>1</sub>x<sub>alc,i</sub> + β<sub>2</sub>x<sub>drug,i</sub>.
- Same "skeleton" for both GWR and SVC.

*E<sub>i</sub>* = *n<sub>i</sub>R* represents an "offset" in the model and lets us use Poisson regression to model *rates* as well as *counts*.

$$E[Y_i] = E_i \exp(\beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i})$$
  
=  $\exp(\ln(E_i) + \beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i})$   
=  $\exp(\ln(n_i) + \ln(R) + \beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i})$   
 $\exp(E[Y_i]) = \ln(n_i) + \ln(R) + \beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i}$ 

• GWR offset:  $\ln(n_i)$ , SVC offset:  $\ln(n_i) + \ln(R)$ .

- $\widehat{\boldsymbol{\beta}}_{GWPR} = (\mathbf{X}'\mathbf{W}(\mathbf{s})\mathbf{A}(\mathbf{s})\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}(\mathbf{s})\mathbf{A}(\mathbf{s})\mathbf{Z}(\mathbf{s}).$
- ► A(s) = diagonal matrix of Fisher scores.
- ► **Z**(**s**) = Taylor-series approximation to transformed outcomes.
- Update A(s), Z(s) and  $\hat{\beta}_{GWPR}$  until convergence.

- ▶ Waller et al. (2007) use GWR 3.0 software.
- Now can use R.
- maptools will read in ArcGIS-formatted shapefile (files) into R.
- spgwr fits linear GWR and GLM-type GWR.
- Let's try it out!

- $\blacktriangleright \mu_i = \beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i} + b_{1,i} x_{alc,i} + b_{2,i} x_{drug,i} + \phi_i + \theta_i.$
- $\beta_0, \beta_1, \beta_2 \sim \text{Uniform.}$
- Random intercept has 2 components (Besag et al. 1991):

$$egin{aligned} & heta_i \stackrel{\textit{ind}}{\sim} \mathcal{N}(0, au^2) \ &\phi_i | \phi_j \sim \mathcal{N}\left(rac{\sum_j w_{ij} \phi_j}{\sum_i w_{ij}}, rac{1}{\lambda \sum_i w_{ij}}
ight). \end{aligned}$$

where  $w_{ij}$  defines neighbors, and  $\lambda$  controls spatial similarity.

- $\theta_i$  allows overdispersion (smoothing to global mean).
- ▶ φ<sub>i</sub> follows conditionally autoregressive distribution (smoothing to local mean), generates MVN but more convenient for MCMC.

.

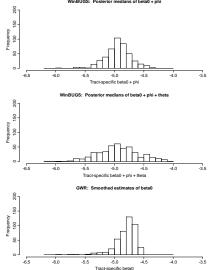
- ▶ **b**<sub>1</sub>, **b**<sub>2</sub> also given spatial priors and allowed to be correlated with one another.
- ▶ We use a formulation by Leyland et al. (2000) which defines

$$(b_{1,i}, b_{2,i})' \sim MVN((0,0)', \boldsymbol{\Sigma})$$

- Define the model in WinBUGS.
- MCMC fit.
- Note: Runs slooooooowly.

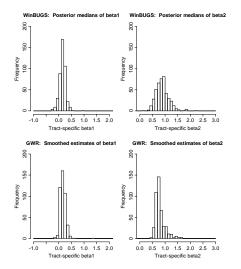
- Waller et al. (2007): GWR3.0 used to fit the GWR Poisson model.
  - Converged to estimate in  $\sim$  100 iterations.
  - Minutes.
  - Example code using spgwr library in R.
- ▶ WinBUGS 1.4.1 used to fit SVC model.
  - Converged to distribution in  $\sim$  2,000 iterations.
  - ▶ 8,000 additional iterations used for inference.
  - Hours.
- Fit several versions of SVC model and compared fit via deviance information criterion (Spiegelhalter et al., 2003).
- Best fit included spatial varying coefficients, random intercept, and correlation between alcohol and drug effects.

## **Results:** Intercept



WinBUGS: Posterior medians of beta0 + phi

## Results: Alcohol sales and drug arrests

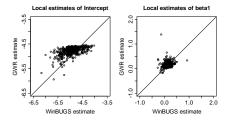


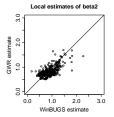
## Estimated effects



- Alcohol: Increased impact in western, south-central, and southeastern parts of city.
- Illegal drug: Increased impact on periphery, lower influence in central and southwestern parts of city.
- Intercept: Increased risk of violence in central area, above and beyond that predicted by alcohol sales and illegal drug arrests.
- But, associations not too close...

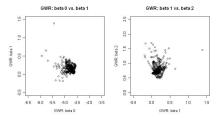
#### Results: tract-by-tract



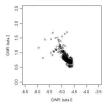


- GWR much smoother based on global best fit for *bw*.
- SVC used adjacency-based smoothing and a different amount of smoothing for each covariate.
- ► GWR: collineary between surfaces (Wheeler and Tiefelsdorf, 2005).
- SVC: Model based approach removes (or at least reduces) collinearity.

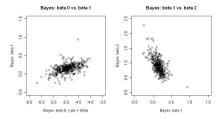
# GWR: Collinearity?



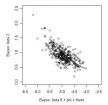
GWR: beta 0 vs. beta 2



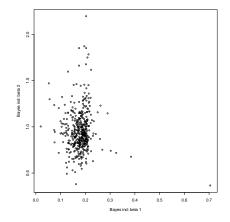
# SVC: Collinearity?







# SVC: No prior correlation



< □ > < @ > < 볼 > < 볼 > 별 의 Q ⊙ 52/1

- Houston data on violent crime, alcohol sales, and illegal drug arrests.
- ArcGIS shapefile.
- Required R libraries: map tools (to read in shape file), RColorBrewer (to set colors), classInt (to set intervals of values for mapping), and spgwr (for GWR).

- ▶ GWR and SVC very different approaches to the same problem.
- Qualitatively similar in results, but not directly transformable.
- GWR fixed problems within somewhat of a black box.
- SVC allows probability model-based inference with lots of flexibility but at a computational cost (both in set-up and implementation).
- Ongoing work:
  - Wheeler and Waller (2009): Attempt to set up SVC model to more closely mirror amount of smoothing in GWR.
  - Collinearity "ribbons".
  - Griffith (2002) eigenvector spatial filtering to adjust collinearity. Interpretability?