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What are we doing?

I Alcohol

I Illegal drugs

I Violent crimes

I Regression

I Breaking the rules
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What do we want to do?

I Quantify associations between outcomes and covariates as
observed in data.

I What if strength of association varies across space?

6 / 1



Motivating example

I Outcome: Number of violent crime reports by census tract

I Covariates: Alcohol sales, illegal drug arrests (also by census
tract).

I Interaction of people and place (social disorganization, routine
activities, crime potential)

I Q: What if the association depends on location?
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What analytic tools do we have?

Linear regression:

Yi = X′iβ + εi

εi
ind∼ N(0, σ2)

(alternately, Yi
ind∼ N(X′iβ, σ

2))

I Assumptions: independence, Gaussian errors, constant
variance, linear association, constant β.

I We will break all but one of these.
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How do you measure association?

I β̂ = (X′X)−1X′Y from OLS (= MLE if Gaussian)

I What if an assumption doesn’t hold?
I Two common strategies:

* Fix it (adjustments to LS)
* Model it (adjustments to ML)
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“Fix it” approach

I Not Gaussian? Transformation (log, Box-Cox, . . .).

I σ2 not constant? WLS: β̂WLS = (X′WX)−1X′WY

I εi (Yi ) not independent? GLS: β̂GLS = (X′ΣX)−1X′ΣY

I Fixing multiple problems?
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Fixing multiple problems one at a time
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“Model it” approach

I Random effects (mixed models).

I Modeling non-independence hierarchically:

Yij |bj
ind∼ N(X′β + bj , σ

2),

bj ∼ N(0, τ2),

where bj = random intercept for elements of jth subgroup.
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Example of subgroup random intercepts
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Impact of random effects

I Impact: Adds extra noise, adds (positive) correlation within
subgroups.

I Borrow information across subgroups.

I Allows modeler to specify variance-covariance structure.

I Fit with SAS PROC MIXED or R.

I What about a random intercept for each census tract with
spatial correlation?

b ∼ MVN(0,Σ).
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Inference for hierarchical models

[Y|β, σ2,b][b|τ2][β][τ2] = A× B × C × D.

I Bayesian: A = (conditionally independent) likelihood, B,C =
priors, D = hyperprior, inference based on
[β, σ2,b|Y] ∝ A× B × C × D.

I Classical: A× B = (correlated) likelihood, C ,D N/A,
inference based on likelihood.

I Both computationally intensive.
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What about spatially varying associations?

I Fix it: Geographically weighted regression (GWR)
I Fotheringham et al. (2002)

I Model it: Spatially varying coefficient (SVC) models
I Leyland et al. (2000), Assuncao et al. (2003), Gelfand et al.

(2003), Gamerman et al. (2003), Congdon (2003, 2006)
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Geographically weighted regression

I OLS: β̂ = (X′X)−1X′Y.

I WLS: β̂WLS = (X′WX)−1X′WY.

I GWR: β̂GWR(s) = (X′W(s)X)−1X′W(s)Y.

I s represents any spatial location in the study area.

I W(s) = diagonal matrix of weights for each observation (Yi )
with higher weights given to observations closer to s.
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GWR

I GWR: β̂GWR(s) = (X′W(s)X)−1X′W(s)Y.

I Similar to local regression smoothing (e.g., loess), but here
“local” means in geographic space, not covariate space.

I W(s) typically defined by a distance-decay kernel function
such as the Gaussian kernel

W(s)i = exp

(
−1

2

(
s− si
bw

)2
)
,

where si = location of observation Yi and bw = “bandwidth”
(smoothing parameter).

I Larger bw , smoother β̂GWR(s) surface.
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Example of Gaussian kernel
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Notes

I Fotheringham et al. (2002) (and their software) suggest using
bw which minimizes the AIC.

I GWR a descriptive technique. Inference is complicated.

I Observation Yi receives different weight for each s.

I Provides a smooth estimate of the β̂GWR(s) surface, but not
a probability model of Y as a function of β(s).

I Testing (e.g., β(s) = 0 at particular locations) difficult due to
correlation induced by kernel function.

I Most testing approaches based on ad hoc adjustments.
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Spatially varying coefficient models

I How could we do this with random effects?

I Consider a single covariate model

Yi |b0,i
ind∼ N(β0 + x1,iβ1 + b0,i , σ

2)

b ∼ MVN(0,Σ)

and Σ defines a spatial correlation matrix.
I β0 + b0,i sort of like β0(s) in GWR, but...

I GWR: β0(s) is a smooth surface in GWR with smoothness
defined by bw .

I SVC: Estimate β0 and elements of Σ from data. These
parameters induce spatial correlation between intercept
associated with Yi and that of its neighbors.
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SVC

I Now, let’s add spatial variation to β1.

Yi |b0,i , b1,i
ind∼ N(β0 + x1,iβ1 + b0,i + x1,ib1,i , σ

2)

b0 ∼ MVN(0,Σb0)

b1 ∼ MVN(0,Σb1)
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Notes

I Good news: [b1|Y] gives inference we want (but at a
computational cost).

I Not-so-good news:
I Identifiability
I Often complicated to fit via MCMC (hence the flurry of papers

in 2003).
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So...

I What if the data are non-Gaussian?
I Model it: GLMs

I Y =0/1 or proportions, logistic regression.
I Y = counts or rates, Poisson regression.
I Some additional baggage (mean and variance related)
I Estimate β via iteratively reweighted least squares.

I GWR for Poisson regression (Nakaya et al. 2005).

I GLMM for adding random effects (Agresti et al. 2000).
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My background: Spatial epidemiology

I Poisson regression with spatially correlated random effects.

I Outcomes: Counts of (incident or prevalent) cases of disease
in small areas.

I Covariates: Environmental exposures.

I Potential confounders: Demographics.

I Data often from different sources (health department, EPA,
census), linked by location via geographic information systems
(GISs).

I Spatial components: Adjusting estimation for residual spatial
correlation.
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Our data for today

I Outcome: Rates (number of cases per person per year) of
violent crimes (police/sheriff reports).

I Covariates: Alcohol distribution (licenses and sales), illegal
drug arrests (police/sheriff reports).

I Potential confounders: Sociodemographics (census).

I Linked to common spatial framework (census tracts) via GIS.
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Translation complications

I When are crime data like disease data?
I Counts from small areas.
I Per person “rate” of interest.

I When are crime data not like disease data?
I Outcome not as “rare”.
I Police vs. medical records.
I Residents not only ones at risk.
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Background: Alcohol, drug arrests, and violent crime

I Large body of research showing association between alcohol
distribution and the incidence of violence.

I Usually focuses on characteristics of:
I People (social normative, social disorganization theories)
I Places (routine activities theory)
I Interactions of people and places (crime potential, ecology of

crime)

I Alcohol distribution of interest since it is regulated and we
have data on what and how much is sold where.
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Three questions and who asks them

I What population characteristics are associated with increased
incidence of violence? (Criminologists, Sampson and Lauritsen
1994).

I In what places is violence more likely? (Routine activity
theorists, Felson et al. 1997).

I What spatial interactions link people and place characteristics
to violence? (Environmental criminologists, Brantingham and
Brantingham 1993, 1999).
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Data description

I Spatial support: 439 census tracts (2000 Census).

I Violent crime (murder, robbery, rape, aggravated assault)
“first reports” for year 2000 from City of Houston Police
Department website.

I Gorman et al. (2005, Drug Alcohol Rev) report less than 5%
discrepancy with 2000 Uniform Crime Reports.

I 98% of reports geocoded to the census tract level.

I Alcohol data (locations of active distribution sites in 2000)
from Texas Alcoholic Beverage Commission (6,609 outlets),
99.5% geocoded to the tract level.

I Drug law violations (also from City of Houston police data).
98% geocoded to the tract level.
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Violent Crime reporting rates, Houston, 2000

Violent Crimes per Person, 2000

0.000 - 0.002
0.002 - 0.007
0.007 - 0.011
0.011 - 0.017
0.017 - 13.33

31 / 1



Standarized log(drug arrests), Houston, 2000

Standardized Log(Drug Arrests), 2000

-1.83 - -0.83
-0.83 - -0.20
-0.20 - 0.31
0.31 - 0.79
0.79 - 4.63
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Standarized log(alcohol sales), Houston, 2000

Standardized Log(Alcohol Sales), 2000

Standardized Log(Total Sales)
-2.39 - -0.65
-0.65 - -0.13
-0.13 - 0.21
0.21 - 0.64
0.64 - 6.16
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Data “features”

I 7 of 439 tracts have extremely small population sizes: 1, 3, 4,
16, 34, 116, and 246.

I Tracts typically have 3,000-5,000 residents.

I Local rates for such tracts are extremely unstable (e.g., 40
reports, 3 residents).

I Actually a motivating a reason for including the spatially
varying intercept: borrow information across regions.
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Low population tracts and high rates

Low population size tracts

Per person rate of violent crime reports
0.00 - 1.00
1.00 - 13.33

Tract population less than 250
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Basic Poisson regression

I Let Yi = number of reports in tract i , i = 1, . . . , 439.

I Suppose Yi ∼ Poisson(Ei exp(µi )), where Ei = the
“expected” number of reports under some null model.

I Typically, Ei = niR where all ni individuals in region i are
equally likely to report.

I exp(µi ) = “relative risk” of outcome in region i .

I We add covariates in linear format (within exp(·)):
µi = β0 + β1xalc,i + β2xdrug ,i .

I Same “skeleton” for both GWR and SVC.

36 / 1



Why do we have Ei?

I Ei = niR represents an “offset” in the model and lets us use
Poisson regression to model rates as well as counts.

E [Yi ] = Ei exp(β0 + β1xalc,i + β2xdrug ,i )

= exp(ln(Ei ) + β0 + β1xalc,i + β2xdrug ,i )

= exp(ln(ni ) + ln(R) + β0 + β1xalc,i + β2xdrug ,i )

log(E [Yi ]) = ln(ni ) + ln(R) + β0 + β1xalc,i + β2xdrug ,i

I GWR offset: ln(ni ), SVC offset: ln(ni ) + ln(R).

37 / 1



GWPR (Nakaya et al., 2005)

I β̂GWPR = (X′W(s)A(s)X)−1X′W(s)A(s)Z(s).

I A(s) = diagonal matrix of Fisher scores.

I Z(s) = Taylor-series approximation to transformed outcomes.

I Update A(s), Z(s) and β̂GWPR until convergence.
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Fitting in R

I Waller et al. (2007) use GWR 3.0 software.

I Now can use R.

I maptools will read in ArcGIS-formatted shapefile (files) into
R.

I spgwr fits linear GWR and GLM-type GWR.

I Let’s try it out!
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SVC

I µi = β0 + β1xalc,i + β2xdrug ,i + b1,ixalc,i + b2,ixdrug ,i + φi + θi .

I β0, β1, β2 ∼ Uniform.

I Random intercept has 2 components (Besag et al. 1991):

θi
ind∼ N(0, τ2)

φi |φj ∼ N

(∑
j wijφj∑
j wij

,
1

λ
∑

j wij

)
.

where wij defines neighbors, and λ controls spatial similarity.

I θi allows overdispersion (smoothing to global mean).

I φi follows conditionally autoregressive distribution (smoothing
to local mean), generates MVN but more convenient for
MCMC.
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Defining the SVCs

I b1,b2 also given spatial priors and allowed to be correlated
with one another.

I We use a formulation by Leyland et al. (2000) which defines

(b1,i , b2,i )
′ ∼ MVN((0, 0)′,Σ)

.
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Fitting in WinBUGS

I Define the model in WinBUGS.

I MCMC fit.

I Note: Runs sloooooooowly.
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Implementation

I Waller et al. (2007): GWR3.0 used to fit the GWR Poisson
model.

I Converged to estimate in ∼ 100 iterations.
I Minutes.
I Example code using spgwr library in R.

I WinBUGS 1.4.1 used to fit SVC model.
I Converged to distribution in ∼ 2,000 iterations.
I 8,000 additional iterations used for inference.
I Hours.

I Fit several versions of SVC model and compared fit via
deviance information criterion (Spiegelhalter et al., 2003).

I Best fit included spatial varying coefficients, random intercept,
and correlation between alcohol and drug effects.
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Results: Intercept
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Results: Alcohol sales and drug arrests

 

WinBUGS:  Posterior medians of beta1
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WinBUGS:  Posterior medians of beta2
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GWR:  Smoothed estimates of beta1
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Estimated effects

 

GWR: Local Estimate of Intercept WinBUGS: Local Estimate of Intercept

GWR:  Local Estimate of Beta 1 WinBUGS:  Local Estimate of Beta 1

GWR: Local Estimate of Beta 2 WinBUGS:  Local Estimate of Beta 2

-6.200 - -4.914
-4.914 - -4.805
-4.805 - -4.727
-4.727 - -4.66
-4.66 - -4.554

-6.168 - -5.237
-5.237 - -5.014
-5.014 - -4.862
-4.862 - -4.665
-4.665 - -4.021

-0.186 - 0.076
0.076 - 0.13
0.13 - 0.178
0.178 - 0.235
0.235 - 1.385

-0.273 - 0.069

0.069 - 0.13
0.13 - 0.182

0.182 - 0.234
0.234 - 0.933

0.498 - 0.67
0.67 - 0.723

0.723 - 0.784
0.784 - 0.903

0.903 - 1.69

0.181 - 0.687

0.687 - 0.814

0.814 - 0.923

0.923 - 1.083

1.083 - 2.278
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Similarities

I Alcohol: Increased impact in western, south-central, and
southeastern parts of city.

I Illegal drug: Increased impact on periphery, lower influence in
central and southwestern parts of city.

I Intercept: Increased risk of violence in central area, above and
beyond that predicted by alcohol sales and illegal drug arrests.

I But, associations not too close...
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Results: tract-by-tract
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Differences

I GWR much smoother based on global best fit for bw .

I SVC used adjacency-based smoothing and a different amount
of smoothing for each covariate.

I GWR: collineary between surfaces (Wheeler and Tiefelsdorf,
2005).

I SVC: Model based approach removes (or at least reduces)
collinearity.
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GWR: Collinearity?
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SVC: Collinearity?
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SVC: No prior correlation
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Let’s try it out!

I Houston data on violent crime, alcohol sales, and illegal drug
arrests.

I ArcGIS shapefile.

I Required R libraries: map tools (to read in shape file),
RColorBrewer (to set colors), classInt (to set intervals of
values for mapping), and spgwr (for GWR).
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Conclusions

I GWR and SVC very different approaches to the same problem.

I Qualitatively similar in results, but not directly transformable.

I GWR fixed problems within somewhat of a black box.

I SVC allows probability model-based inference with lots of
flexibility but at a computational cost (both in set-up and
implementation).

I Ongoing work:
I Wheeler and Waller (2009): Attempt to set up SVC model to

more closely mirror amount of smoothing in GWR.
I Collinearity “ribbons”.
I Griffith (2002) eigenvector spatial filtering to adjust

collinearity. Interpretability?
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