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Why space-time modeling?

We will concentrate on infectious diseases in humans.

Infectious diseases are disorders caused by organisms, such as bacteria,
viruses, fungi or parasites.

With comprehensive data (e.g. contact information for communicable
diseases), spatial information would be (largely) unneeded.

But without such information, space is acting as a surrogate, or summary
of sources of transmission that are geographically close to a susceptible.
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Infectious vs. chronic diseases

Table 1 : Comparison of analysis and modeling issues for cancer and infectious
diseases, with respect to space-time modeling.

Cancer Infectious

Incidence Rare Can be non-rare

Associations Carcinogens Transmission

Time scale Long Often short

Space-time interactions Difficult to detect Default

Age Mostly increasing with age Often in children

Objectives Description Description

Etiology Etiology
Interventions Interventions
(e.g. screening) (e.g. vaccination)

Understand dynamics

4 / 54



Overview

Keeling and Rohan (2008, Chapter 7) give an overview of spatial
modeling.

For directly transmitted diseases, individuals have to be in the same
geographical location, and spread will occur when individuals move in
space.

The type of model used will depend on the host organism (human,
animal, plant), what is known about the organism’s behavior, and the
geographical scale that is considered.

A big distinction concerns the form of the data we receive; do we see
individuals, with point locations, or aggregated counts with respect to
some administrative regions?

If infection can only be passed to a small number of individuals (as is the
case for sexually transmitted diseases) then network models are
advantageous.
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Infectious Disease Data

The aims of infectious disease modeling include:

I understanding the mechanisms of spread,

I estimating the durations of the latent and infectious periods, and

I the size of the epidemic, often with the aim of determining
strategies for disease control.

The modeling of infectious disease data has a huge literature, though
relatively little has been written on spatial analysis; analyzing as a
function of time is the norm.
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Infectious Disease Data

A starting dichotomy is in terms of deterministic versus stochastic
models.

References:

I The classic text on deterministic models is Anderson and May
(1991).

I Books that consider both include Daley and Gani (1999) and Bailey
(1975).

I Books on stochastic modeling include Becker (1989), Andersson and
Britton (2000) and Halloran et al. (2010).
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Deterministic Models

The law of mass action is central to deterministic modeling.

In a population context, if the individuals in a population mix
homogenously, the rate of interaction between two different subsets of
the population is proportional to the product of the numbers in each of
the subsets concerned.

Groups of individuals defined by their disease status are described in
continuous time (usually) via differential equations and there is no
randomness — may be thought of as producing the mean of a random
process.

Let Xt represent the number of susceptibles at time t, Yt the number of
infectives and Zt the number of immune individuals with
Xt + Yt + Zt = N.
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Deterministic Models

Kermack and McKendrick (1927) proposed the following classic
equations to describe the dynamics of the general epidemic (where we
assume frequency dependent transmission):

dX

dt
= −βY

N
X ,

dY

dt
=

βY

N
X − γY ,

dZ

dt
= γY ,

subject to initial conditions (X0,Y0,Z0) with Z0 = 0.

β is the infection parameter and γ the removal parameter.

Deterministic models can be embedded within a statistical framework for
inference, or a stochastic approach can be taken from the onset.
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A meta-population model

There is not a great deal of cross-referencing between the infectious
disease and statistical research communities.

Meta-population models are discussed in depth in Keeling and Rohan
(2008, Chapter 7).

The idea is to divide the population into distinct subpopulations each of
which has its own dynamics, but which may depend on interactions
between the subpopulations.
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A meta-population model

In anticipation of spatial modeling we shall refer to the subpopulations as
areas.

Recall the simple deterministic SIR model within a single area:

dX

dt
= −λX

dY

dt
= λX − γY .

With frequency dependent transmission the force of infection
λ = βY /N1.

1Under this form the rate of contact between a susceptible and a member of the
population does not depend on the population size, β is the product of the contact
rate and the per-contact probability of infection, given contact between an infective
and a susceptible, Y /N is the prevalence, i.e. the probability that a random contact is
with an infective
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A meta-population model

We let Xi ,Yi represent the number of susceptibles and infectives in area
i , i = 1, . . . , n.

The deterministic equations for the n areas are:

dXi

dt
= −λiXi

dYi

dt
= λiXi − γiYi .

One form for the force of infection in area i is

λi = βi
∑
j

ρij
Yj

Nj

= βi
Yi

Ni
+ βi

∑
j :j 6=i

ρij
Yj

Nj
(1)

so we have contributions from the area that we are modeling, and
potentially all other areas.

Note: in the above we have set ρii = 1.
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A metapopulation model

With respect to the model

λi = βi
∑
j

ρij
Yj

Nj
,

the ρij parameters are a measure of the strength of interaction between
areas i and j .

More precisely, ρij measures the relative strength of transmission from
area j to area i , so that ρij = 0 means no direct transmission from area j
to area i .

Recall that λ is the product of the rate of contact (= c0 for frequency
dependent), the probability a host is infectious Y /N and the probability
of transmission p.

Hence, the above form shows that in this model transmission takes place
in area j , since the probability a host is infectious is Yj/Nj .
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Transmission kernels

The strength of interaction is referred to the level of coupling between
the areas.

In many cases the level of interaction between two areas will depend on
the distance d between them, and this can be captured by a transmission
kernel, K .

Common examples:

1. Exponential: K ∝ exp(−Ad).

2. Gaussian: K ∝ exp(−Ad2).

3. Power law: K ∝ d−A.

For individual-based models (Keeling and Ross, 2007, p. 268) the rate of
transmission to a susceptible individual i is

λi = β
∑

j∈ infectious

K (dij),

where dij is the distance between susceptible individual i and infective j .
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SIR Models

In the Susceptible-Infected-Removed (SIR) model the deterministic
differential equations are replaced by probabilistic descriptions of the
transitions.

Suppose we have xt susceptibles and yt infectives at time t.

Then consider Markov transitions with the probability of infection during
a time interval [t, t + δt] being

βxtyt + o(δt)

and the probability of removal being

γyt + o(δt).

In these statements, δt is a small time interval and o(δt) is a small term.
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Computation for compartmental models

To address the inference problem, various approaches have been
suggested:

I For small populations, auxiliary variable approaches are tractable
(Gibson and Renshaw, 1998; O’Neill and Roberts, 1999; O’Neill and
Becker, 2001; Neal and Kypraios, 2015).

I Discrete approximations (Lekone and Finkenstädt, 2006).

I Diffusion process approximation (Cauchemez and Ferguson, 2008).

I Particle filtering, for likelihood or Bayesian inference (He et al.,
2010; Koepke et al., 2015).

I Gaussian process approximate Bayesian inference (Jandarov et al.,
2014).

I Approximate Bayesian Computation (ABC) (McKinley et al., 2009;
Toni et al., 2010; Neal, 2012).

The last three require simulation from the model, which is
straightforward.

Disease mapping type models ignore the infectious aspect (Mugglin
et al., 2002; Knorr-Held and Richardson, 2003; Bauer et al., 2015).

16 / 54



Forms of Data

We may have count or point data from a survey (at a single time point),
with the response being infected/not infected. In this case the models we
have used throughout the course may be applied.

Counts from a region may available at regular intervals (e.g. weekly) and
these may have sub-regional information.

We might fit the Type IV space-time interaction disease mapping model
to data of this type though this model has little direct connection with
the underlying biology.

This lecture will concentrate on count data, see Riley (2007) for a review
of four approaches to spatial modeling.
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Motivating example: hand, foot and mouth disease

Hand, Foot and Mouth Disease (HFMD) is caused by an acute
contagious viral infection and there have been large-scale outbreaks in
Asia during the past 20 years (Tong and Bible, 2009).

Mostly in children, and transmitted primarily via the fecal-oral route.

Cases are most infectious during the first week of acute illness but may
continue to shed virus in the stool for weeks. Incubation period is 3–5
days.

For EV71 HFMD the basic reproduction number2 R0 is estimated as 5.5
and for CoxA16 HFMD R0 is estimated as 2.5 (Ma et al., 2011).

Very little is known about the etiology of the viral strains causing HFMD
or the factors associated with its outbreak and spread.

2the average number of secondary cases arising from an average primary case in an
entirely susceptible population

18 / 54



Motivating example: hand, foot and mouth disease

In 2003, the Chinese Center for Disease Control and Prevention (CCDC)
established a disease surveillance system which regulates the reporting of
39 notifiable infectious diseases including HFMD.

The purpose of the surveillance system is to monitor epidemics of
infectious diseases, identify high case occurrence areas, predict and
control epidemics, and provide information for formulating policy.

Each reported case of HFMD from the CCDC infectious disease
surveillance system consists of the patient’s geographical location, gender
and age and the symptom onset date.

We analyze data from 59 regions in the Central North region of China
over the period 2009–2011.
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Figure 1 : Map of the central north region in relation to China as a whole (on
the left) and map of the 59 prefecture (on the right).
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Figure 2 : Weekly epidemic curves of HFMD cases in the central north region
of China: Top row females (0–1, 1–6, > 6), bottom row males (0–1, 1–6, > 6).
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An epidemic/endemic framework

A statistical framework for analyzing spatio-temporal, aggregated
infectious disease data was proposed by Held et al. (2005).

The framework was extended by Paul et al. (2008), Paul and Held (2011),
Held and Paul (2012), Meyer and Held (2014) and Geilhufe et al. (2014).

These models are implemented within the surveillance package in R

(Meyer et al., 2015) and have been applied to a variety of diseases; see,
for example, Höhle et al. (2011) and Herzog et al. (2011).

Notably the implementation does not provide a straightforward way to
allow age/gender and space to be in the model, though Meyer and Held
(2015) use survey information on contact rates in the epidemic/endemic
model.
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An epidemic/endemic model

We let Yit denote the observed count of HFMD cases in area i and in
week t for a generic age-gender group, i = 1, . . . , n, t = 1, . . . ,T .

The population in area i is denoted Ni , and assumed constant during the
study period.

The estimated incubation period of HFMD is between 3 and 7 days and
individuals are most infectious for one week, and so we take a weekly
time scale.

Under the model of Held et al. (2005) it is assumed that

Yit |µit ∼ Poisson(µit)

with the mean µit being decomposed into three terms, which we refer to
as autoregressive (AR), neighborhood (NE) and endemic (EN).
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An epidemic/endemic model

Specifically,

µit = λAR

it yi,t−1 + λNE

i

n∑
i ′=1

wi ′iyi ′,t−1 + Niλ
EN

it , (2)

where:

I The autoregressive rate λAR

i dictates the contribution to the risk
from the cases in area i in the previous time period.

I The neighborhood rate λNE

i determines the contribution from the
neighboring areas, with the weights taken as wi ′i = 1/|ne(i ′)|, for
i ′ ∈ ne(i), where ne(i) is the set of neighbors of area i , and wi ′i = 0
for i ′ /∈ ne(i) (Paul et al., 2008).

I The endemic component λEN

it is a catch all term for contributions not
catered for by the autoregressive and neighborhood components and,
for example, includes seasonality. Note the Ni population
multipliers3.

3But no populations for the AR and NE components, with what justification?
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An epidemic/endemic model

For the autoregressive self area rate:

log λAR

it = αAR

0 + zT

itβ
AR + bAR

i ,

where

I zit represent a q × 1 vector of area-time specific bases,

I βAR is a q × 1 vector of association parameters, and

I bAR

i ∼iid N(0, σ2
AR) is an area-level autoregressive random effect.

For the neighborhood area rate:

log λNE

i = αNE

0 + bNE

i ,

with

I bNE

i ∼iid N(0, σ2
NE) an area-level neighborhood random effect.
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An epidemic/endemic model

For the endemic component:

log λEN

it = αEN

0 + bEN

i + βsin sin
( t

52
2π
)

+ βcos cos
( t

52
2π
)
,

where

I bEN

i ∼iid N(0, σ2
EN) is the area-level endemic random effect.

I Seasonality is modeled via the sin/cos terms.
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Modeling the weights

More recently (Meyer and Held, 2014) the weights are assumed to follow
a power law,

wi ′i =
o−Ai ′i∑n
k=1 o

−A
ki

where oi ′i is the number of areas that must be crossed when moving
between areas i and i ′, and A is a power which may be estimated.

The limit A→∞ corresponds to first-order dependency, and A = 0 gives
equal weight to all areas.

The normalization ensures that
∑n

k=1 wki = 1 for all rows of the weight
matrix (infecteds are being allocated to neighbors).

The power law allows “contact” between areas that are a large distance
apart since it is “heavy-tailed”.
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Model Comparison

The above model is very flexible and so in practice many models may be
fitted.

In terms of interpretation it is difficult to assess what is “big”

Interval estimates on regression coefficients β may be examined to assess
significance (do the intervals contain zero?).

Seeing if random effects are needed is more difficult.

Using AIC or BIC is not straightforward in a mixed model framework.

Paul and Held (2011) compare models by comparing one-step ahead
predictions (with the point to be predicted removed) with the observed
value.
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Covariate model for HFMD data

We include in the AR model:

I An indicator variable of whether school was in session (z = 1) or not
(z = 0).

I The rest of the covariate vector zit consists of a set of
meteorological variables, specifically temperature, precipitation,
relative humidity and wind speed.

I The meteorological data were obtained from the National Climate
Data Center of the Department of Commerce of the United States,
which includes over 300 weather stations from mainland China.

I We applied a tensor product cubic regression spline model to the
averaged daily weather data from the monitoring stations, to obtain
area-level summaries such as area averages.

I We assumed a change-point model for temperature and linear terms
for the remaining variable,

I The area-level meteorological covariates entered in the model at a
one week lag based on previous epidemiological studies of HFMD.
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Computation

Bayesian inference for the parameters is made using an MCMC algorithm
(not possible with INLA).

The proposed model was implemented using WinBUGS (Spiegelhalter
et al., 1998).

The advantage of a Bayesian framework is that any quantity that is a
function of the model parameters, such as the local effective reproductive
numbers, can be inferred via MCMC with the relevant posterior
distributions, along with the associated uncertainty estimates.
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A General Model

Recall: i , j and t represent area, age-gender stratum and week,
respectively.

We assume
yit |µit ∼ Poisson(µit)

with

µit =
J∑

j=1

Nij

J∑
j′=1

λAR

itjj′
yi,t−1,j′

Nij′︸ ︷︷ ︸
Self-Area Autoregressive

+
n∑

i ′=1

λNE

i wi ′iyi ′,t−1︸ ︷︷ ︸
Neighboring Area

+
J∑

j=1

Nijλ
EN

itj︸ ︷︷ ︸
Endemic

.
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HFMD Model

We assume frequency dependent transmission and self-area infections
from neighbors

log λAR

itjj′ = αAR

0 + αjj′ + zT

itβ
AR + bAR

i ,

log λNE

i = αNE

0 + bNE

i ,

log λEN

itj = αEN

j + bEN

i + βsin sin
( t

52
2π
)

+ βcos cos
( t

52
2π
)
.
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HFMD models

We consider the following models:

I Model 1 has fixed autoregressive and neighborhood components,
i.e., bAR

i = 0 and bNE

i = 0, and the endemic component includes the
random effects, bEN

i ∼iid N(0, σ2
EN).

I Model 2 adds an autoregressive random effect, bAR

i ∼iid N(0, σ2
AR), to

M1.

I Model 3 adds a neighborhood random effect, bNE

i ∼iid N(0, σ2
NE), to

M2.

I Model 4 adds an endemic ICAR spatial random effect,
bEN

i,ICAR ∼ ICAR(σICAR
EN ), to M3.

Models can be compared with DIC, but this measure is known to under
penalize complex models (Plummer, 2008).
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Contributions from different components

Recall yit |µit ∼ Poisson(µit) with

µit =
J∑

j=1

Nij

J∑
j′=1

λAR,FD

itjj′
yi,t−1,j′

Nij′︸ ︷︷ ︸
µAR
it

+
n∑

i′=1

λNE,FD

i wi′ iyi′,t−1︸ ︷︷ ︸
µNE
it

+
J∑

j=1

Nijλ
EN
itj︸ ︷︷ ︸

µEN
it

.

To quantify the contribution from various components over time, we can
define

µC

t =
n∑

i=1

µC

it ,

The proportion from component C is then

pC
t =

µC
t

µAR
t + µNE

t + µEN
t

.
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M1: fixed AR, fixed NE M2: iid AR, fixed NE M3: iid AR, iid NE M4: iid AR, iid NE
iid END iid END iid END ICAR + iid END

αAR
0 -4.76 (-4.90, -4.63) -4.69 (-4.83, -4.55) -4.86 (-5.01, -4.73) -4.86 (-5.01, -4.72)

αNE
0 -5.82 (-5.87, -5.767) -5.80 (-5.86, -5.75) -5.30 (-5.52, -5.09) -5.30 (-5.53, -5.08)

αEN
1 -20.77 (-23.73, -18.48) -20.24 (-22.48, -18.52) -19.86 (-22.22, -18.11) -20.02 (-21.84, -18.16)

αEN
2 -21.11 (-22.12, -20.27) -21.35 (-22.65, -20.29) -21.86 (-22.82, -20.8) -22.09 (-23.16, -21.08)

αEN
3 -22.39 (-25.83, -20.39) -23.33 (-27.23, -20.84) -25.18 (-31.41, -21.73) -24.58 (-29.73, -21.37)

αEN
4 -11.63 (-11.89, -11.37) -11.48 (-11.76, -11.2) -11.49 (-11.75, -11.16) -11.53 (-11.73, -11.34)

αEN
5 -20.22 (-20.83, -19.68) -20.05 (-20.81, -19.38) -20.63 (-21.49, -20.01) -20.86 (-21.46, -20.11)

αEN
6 -21.85 (-25.46, -20.22) -22.36 (-25.83, -20.52) -23.37 (-27.33, -21.06) -23.39 (-27.35, -21.12)

βschool 0.066 (0.06, 0.072) 0.073 (0.067, 0.080) 0.072 (0.066, 0.078) 0.072 (0.066, 0.079)
βtempr 0.022 (0.021, 0.023) 0.023 (0.023, 0.024) 0.024 (0.023, 0.024) 0.023 (0.023, 0.024)
βtempr2 -0.0263 (-0.0267, -0.0259) -0.029 (-0.029, -0.028) -0.029 (-0.029, -0.028) -0.029 (-0.029, -0.028)

βhumid -0.0014 (-0.0016, -0.0012) -0.0023 (-0.0025, -0.0020) -0.0023 (-0.0025, -0.0021) -0.0023 (-0.0025, -0.0020)
βwindsp 0.051 (0.049, 0.053) 0.042 (0.039, 0.045) 0.042 (0.040, 0.045) 0.042 (0.040, 0.045)

βprecip 0.010 (-0.01, 0.032) 0.050 (0.029, 0.071) 0.052 (0.031, 0.073) 0.052 (0.031, 0.073)

βsin,1 9.74 (7.5, 12.71) 9.29 (7.555, 11.59) 8.87 (7.22, 11.28) 9.04 (7.08, 10.87)

βsin,2 10.6 (9.72, 11.55) 10.78 (9.68, 12.02) 11.24 (10.29, 12.14) 11.42 (10.47, 12.47)

βsin,3 4.39 (2.33, 7.73) 5.007 (2.52, 8.44) 5.52 (2.56, 9.92) 5.02 (2.2, 9)

βsin,4 0.71 (0.60, 0.83) 0.682 (0.59, 0.78) 0.67 (0.58, 0.76) 0.67 (0.58, 0.77)

βsin,5 10.24 (9.76, 10.87) 10.09 (9.50, 10.70) 10.6 (10.01, 11.4) 10.8 (10.07, 11.39)

βsin,6 4.12 (2.61, 7.31) 4.483 (2.72, 7.45) 4.74 (2.73, 7.96) 4.69 (2.74, 7.89)

βcos,1 1.07 (0.48, 1.79) 0.945 (0.43, 1.57) 0.83 (0.34, 1.46) 0.85 (0.33, 1.41)

βcos,2 0.98 (0.74, 1.24) 1.105 (0.82, 1.41) 1.23 (0.98, 1.49) 1.27 (1.01, 1.56)

βcos,3 1.89 (0.80, 3.72) 2.437 (1.03, 4.81) 4.17 (1.761, 9.07) 3.81 (1.50, 7.80)

βcos,4 -0.84 (-0.92, -0.75) -0.866 (-0.94, -0.79) -0.85 (-0.925, -0.78) -0.85 (-0.92, -0.78)

βcos,5 0.64 (0.47, 0.81) 0.656 (0.49, 0.83) 0.83 (0.65, 1.03) 0.86 (0.66, 1.05)

βcos,6 2.05 (1.03, 4.07) 2.36 (1.19, 4.51) 3.16 (1.58, 5.86) 3.16 (1.5, 5.88)

σAR - 0.060 (0.050, 0.074) 0.056 (0.047, 0.069) 0.057 (0.047, 0.056)
σNE - - 0.82 (0.69, 1.01) 0.83 (0.69, 1.01)
σEN 0.97 (0.81, 1.20) 1.01 (0.84, 1.23) 1.05 (0.87, 1.29) 0.66 (0.20, 0.91)

σICAR
EN - - - 1.08 (0.58, 1.78)

pD 103.1 162.1 217.9 215.0

DIC (×105) 3.011 2.996 2.980 2.980
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Figure 3 : Estimated proportion of infection risk contributed from AR, NE, EN
components.
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Between strata transmission

Table 2 : The probabilities of a strata j susceptible being infected by a strata
j ′ infective (given the same values of covariates).

Infective Strata
Susc Strata F, 0–1 F, 1–6 F, >6 M, 0–1 M, 1–6 M, > 6

F, 0–1 0.50 0.00 0.00 0.48 0.00 0.00
F, 1–6 0.09 0.33 0.18 0.04 0.23 0.13
F, > 6 0.00 0.02 0.57 0.00 0.00 0.41
M, 0–1 0.42 0.00 0.00 0.58 0.00 0.00
M, 1–6 0.06 0.22 0.01 0.30 0.38 0.01
M, >6 0.00 0.02 0.48 0.00 0.01 0.49
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Figure 6 : Estimated seasonality for age-gender subgroups from Model 4.
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Figure 7 : Fitted number of cases for selected areas, with contribution by
different components.
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Figure 8 : Maps of the estimated random effects from AR, NE and EN
components using model 4.
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Figure 9 : Comparison of fitted and observed counts, and the plot of deviance
residuals from Model 4.
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Spatial TSIR Models

Xia et al. (2004) describe a model for modeling measles infections in time
and space.

Measles epidemics may be characterized into:

1. Type I behavior with endemic cycles in large cities.

2. Type II dynamics predictable epidemics with local extinction during
epidemic troughs in medium-sized communities.

3. Type III dynamics with irregular epidemics interpersed with
prolonged periods of local disease extinction (so-called epidemic
fade-outs) in small communities.

Regional movement of hosts is important.
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Relationship to TSIR Model

For the Xia et al. (2004) TSIR framework with a ‘gravity model’ for
movement between areas:

E[Yit |yi,t−1] = λityi,t−1

λit =
βtSit(yi,t−1 + δit)

α

Ni

δit ∼ Gamma(mit , 1)

E[δit ] = mit

= θNτ1

it

n∑
i ′=1

yi ′,t−1

dρi ′i

So with α = τ1 = τ2 = 1 and Sit ≈ Ni , we could write

λit = λAR

t yi,t−1 + λNENit

n∑
i ′=1

yi ′,t−1

dρi ′i

where λAR
t = βt , λ

NE = θ and we have a distance-based weighting scheme.
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Spatial TSIR Models

Inference is ad-hoc (as self-confessed by the authors!) with some
parameters fixed using previously obtained estimates.

Estimates for the remaining parameters obtained by minimizing
short-term prediction error and matching aspects of the long-term
behavior.

More rigorous approach described in Jandarov et al. (2014).
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Figure 10 : Figure from Xia et al. (2004).
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A model for plantation data

We now turn our attention to the situation in which point data are
available.

Brown et al. (2014) describe a spatial susceptible-infectious (SI) model in
which the intensity at time t and location xi is

λ(xi , t) = µ+
∑
j :τj<t

θf (xi − xj ;σ)

where τj is the infection time of individual j and

θf (xi − xj ;σ)

is the transmission rate from individual j to individual i , and µ is the
environmental contribution.
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A model for plantation data

The data concern plant infections transmitted by aphids and the
Gaussian function is chosen to represent spatial connection:

f (d ;σ) = (2πσ2)−1/2 exp

(
− d2

2σ2

)
.

As usual with models such as these, the likelihood is not straightforward
to calculate, and an auxiliary variable method is used.
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A model for plantation data

Point data:

I A Bayesian approach to inference is taken.

I The likelihood, given known infection times τ1, . . . , τn (total
observation period is [0,T ]), is

L(µ, θ, σ2) =

 ∏
i :τi≤T

exp

{
−
∫ τi

0

λ(xi , t)dt

}
λ(xi , τi )


×

∏
i :τi>T

exp

{
−
∫ τi

0

λ(xi , t)dt

}
I The data are interval censored (plants are surveyed on six occasions)

and so the unobserved times are imputed via an auxiliary variable
scheme.

I Much of Brown et al. (2014) concerns computation.

50 / 54



Figure 11 : Raw data, from Brown et al. (2014).
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Figure 12 : Predictions, from Brown et al. (2014).
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Animal applications

Animal disease epidemics: A number of authors have considered data in
the form of the infectious status of farms.

For example, data on foot and mouth disease (FMD) have been analyzed
by a number of authors including Keeling et al. (2001), Lawson and Zhou
(2005), Diggle (2006) and Jewell et al. (2009).

In the latter, a Susceptible-Infected-Notified-Removed model is assumed.

Likelihood is constructed from a time inhomogenous Poisson point
process with rates that depend on the states of each farm over time.

Spatial transmission is modeled using a Cauchy-type kernel and
computation is via RJMCMC, again with auxiliary variables.
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Conclusions

This lecture has largely concentrated on spatio-temporal models for
aggregated count data (though we touched on point data at the end) –
with such data much fine detail is lost and so biologically motivated
models are difficult to fit.

The full SIR formulation (and its spin offs, such as SEIR) are
computationally hard to fit since the likelihood is analytically intractable.

Spatio-temporal methods may be used to assess the effect of intervention
programs, see for example Azman et al. (2012).

The space-time models within the surveillance package do not
currently allow adjustment for age and gender, i.e. different transmission
dynamics for different stratum, which is problematic.

Much work to be done!!!
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