Heterogeneity in Contacts

Behaviour \& Age

Realism Vs Transparency

Sources of Heterogeneity in Contacts

Individual exposure and infection hazard may be heterogeneous for a number reasons:
I. Risk structure

- Determined by behavioural patterns
- Or related to occupation

2. Age-determined contacts

Childhood diseases
3. Seasonality

Time-dependent contact rates result in sustained oscillations

Simple contact heterogeneities

* Contact tracing to examine HIV transmission network in Colorado Springs:

More Generally

High risk group

Low risk group

Modeling Risk Structure

Introduce a model consisting of individuals whose behaviour/work places them in one of two kinds of groups: Low risk and High risk

Use an extension of simple SIS model

$$
\begin{aligned}
\frac{d S_{L}}{d t} & =\gamma_{L} I_{L}-\beta_{L L} S_{L} I_{L}-\beta_{L H} S_{L} I_{H} \\
\frac{d I_{L}}{d t} & =-\gamma_{L} I_{L}+\beta_{L L} S_{L} I_{L}+\beta_{L H} S_{L} I_{H} \\
\frac{d S_{H}}{d t} & =\gamma_{H} I_{H}-\beta_{H H} S_{H} I_{H}-\beta_{H L} S_{H} I_{L} \\
\frac{d I_{H}}{d t} & =-\gamma_{H} I_{H}+\beta_{H H} S_{H} I_{H}+\beta_{H L} S_{H} I_{L}
\end{aligned}
$$

What's R_{0} ?

糍 Instead of a single transmission rate (β), we now have a matrix of transmission parameters (β)

$$
\beta=\left(\begin{array}{ll}
\beta_{H H} & \left.\beta_{H L}\right) \\
\beta_{L H} & \beta_{L L}
\end{array}\right)
$$

- This is called WAIFW (Who Acquires Infection From Whom) matrix
- Typically, it's assumed $\beta_{\mathrm{LH}}=\beta_{\mathrm{HL}}$
- And high assortativity, such that $\beta_{\mathrm{HH}}>\beta_{\mathrm{LL}}>\beta_{\mathrm{HL}}$

What's R_{0} ?

粈 At disease-free equilibrium

$$
\left(S_{H}^{*}, I_{H}^{*}, S_{L}^{*}, I_{L}^{*}\right)=(1,0,1,0)
$$

- $\mathcal{F}=$ new infections
- $\mathcal{V}=$ pathogen progression
- $\mathcal{F}_{\mathrm{H}}=\beta_{\mathrm{HH}} \mathrm{S}_{\mathrm{H}} \mathrm{H}_{\mathrm{H}}+\beta_{\mathrm{HL}} \mathrm{S}_{\mathrm{H}} \mathrm{IL}_{\mathrm{L}}$
- $V_{H}=\gamma_{H} H_{H}$
- $\mathcal{F}_{\mathrm{L}}=\beta_{\mathrm{LL}} \mathrm{S}_{\mathrm{L}} \mathrm{IL}_{\mathrm{L}}+\beta_{\mathrm{LH}} \mathrm{SLI}_{\mathrm{L}}$
- $\mathcal{V}_{\mathrm{L}}=\gamma_{\mathrm{L}} \mathrm{L}_{\mathrm{L}}$
$F=\left(\begin{array}{cc}\beta_{H H} S_{1}^{*} & \beta_{H L} S_{1}^{*} \\ \beta_{H L} S_{2}^{*} & \beta_{L L} S_{2}^{*}\end{array}\right) \quad V=\left(\begin{array}{cc}\gamma_{H} & 0 \\ 0 & \gamma_{L}\end{array}\right)$

What's R_{0} ?

溸 Next generation operator, K, given by

$$
\begin{aligned}
& F V^{-1}=\left(\begin{array}{ll}
\beta_{H H} & \beta_{H L} \\
\beta_{H L} & \beta_{L L}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\gamma_{H}} & 0 \\
0 & \frac{1}{\gamma_{L}}
\end{array}\right) \\
& K=F V^{-1}=\left(\begin{array}{ll}
\frac{\beta_{H H} S_{1}^{*}}{\gamma_{H}} & \frac{\beta_{H L} S_{1}^{*}}{\beta_{L H} S_{2}^{*}} \\
\frac{\beta_{L L}^{\gamma_{L}}}{\gamma_{H}} & \frac{\beta_{2}^{*}}{\gamma_{L}}
\end{array}\right) \\
& \operatorname{det}(K-\Lambda I)=\left|\begin{array}{cc}
\frac{\beta_{H H}}{\gamma_{H}}-\Lambda & \frac{\beta_{H L}}{\gamma_{L}} \\
\frac{\beta_{L H}}{\gamma_{H}} & \frac{\beta_{L L}}{\gamma_{L}}-\Lambda
\end{array}\right|=0
\end{aligned}
$$

粦 Solve for largest Λ

Worked example

- Let $\gamma_{H}=\gamma_{\mathrm{L}}=50$,
- with WAIFW matrix give by $\beta=\left(\begin{array}{cc}45 & 20 \\ 20 & 35\end{array}\right)$

$$
\begin{gathered}
K=F V^{-1}=\left(\begin{array}{cc}
45 & 20 \\
20 & 35
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{50} & 0 \\
0 & \frac{1}{50}
\end{array}\right) \\
=\left(\begin{array}{cc}
.9 & .4 \\
.4 & .7
\end{array}\right) \\
\operatorname{det}(K=\Lambda I)=\left|\begin{array}{cc}
.9-\Lambda & .4 \\
.4 & .7-\Lambda
\end{array}\right|=\Lambda^{2}-1.6 \Lambda+0.47
\end{gathered}
$$

- So $\Lambda=1.2 \mathrm{I}$ or $.39 \Rightarrow R_{0}=1.2 \mathrm{I}$

Limitations

- R_{0} quantifies overall transmission
- Not target specific
- What if interested in focusing on high risk group?

- Control measures could be aimed at, for example, paths leading to High risk group

Target Reproduction Number

- Suppose we target q paths of transmission $\mathrm{j}_{1} \rightarrow \mathrm{i}_{1}, \mathrm{j}_{2} \rightarrow \mathrm{i}_{2}, \ldots, \mathrm{j}_{9} \rightarrow \mathrm{i}_{\mathrm{q}}$
* Let X be set of all targeted paths

: The Target Reproduction Number is
$\left.\mathcal{T}_{X}=\rho\left(P_{x_{1}} K P_{x_{2}}\left(1-K+P_{x_{1}} K P_{x_{2}}\right)^{-1}\right)\right)$, if $\rho\left(K-P_{x_{1}} K P_{x_{2}}\right)<1$
- where P_{xi} is a projection matrix $\left(\mathrm{P}_{\mathrm{k}, \mathrm{k}}=\mathrm{I}\right.$ if $\left.\mathrm{k} \in \mathrm{x}_{\mathrm{i}}\right)$.

Special Case:Type Reproduction Number

- Type reproduction Number, T_{i}
- All paths leading to i targeted

$$
\mathrm{I} \rightarrow \mathrm{i}, 2 \rightarrow \mathrm{i}, \ldots, \mathrm{p} \rightarrow \mathrm{i} .
$$

- Then
* $\mathrm{x}_{1}=\{\mathrm{i}\}, \mathrm{x}_{2}=\{1, \ldots, \mathrm{n}\}$ and $\mathrm{T}_{\mathrm{i}}=\mathcal{T}_{1 \rightarrow \mathrm{i}, 2 \rightarrow \mathrm{i}, \ldots, \mathrm{n} \rightarrow \mathrm{i}}$.
* Basic reproduction Number, Ro: all possible paths are targeted

$$
\because x_{1}=\{1,2, \ldots, n\}, x_{2}=\{1, \ldots, n\}
$$

Targeting S_{H}

Target paths: $\mathrm{H} \rightarrow \mathrm{H}, \mathrm{L} \rightarrow \mathrm{H}$.

* $\mathrm{x}_{1}=\{\mathrm{H}\}, \mathrm{x}_{2}=\{\mathrm{H}, \mathrm{L}\}$
* Target reproduction number:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{H}}=\mathcal{T}_{\mathrm{H} \rightarrow \mathrm{H}, \mathrm{~L} \rightarrow \mathrm{H}} \\
&\left.=\rho\left(P_{x_{1}} K P_{x_{2}}\left(1-K+P_{x_{1}} K P_{x_{2}}\right)^{-1}\right)\right), \text { if } \rho\left(K-P_{x_{1}} K P_{x_{2}}\right)<1 \\
& K=\left(\begin{array}{ll}
0.9 & 0.4 \\
0.4 & 0.7
\end{array}\right) \quad P_{x_{1}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad P_{x_{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Targeting S_{H}

$P_{x_{1}} K P_{x_{2}}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0.9 & 0.4 \\ 0.4 & 0.7\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}0.9 & 0.4 \\ 0 & 0\end{array}\right)$

* Check: $\quad \rho\left(K-P_{x_{1}} K P_{x_{2}}\right)=0.7$

$$
\begin{aligned}
& \left(P_{x_{1}} K P_{x_{2}}\right)\left(I-K+\left(P_{x_{1}} K P_{x_{2}}\right)\right)^{-1} \\
= & \left(\begin{array}{cc}
0.9 & 0.4 \\
0 & 0
\end{array}\right)\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
0.9 & 0.4 \\
0.4 & 0.7
\end{array}\right)+\left(\begin{array}{cc}
0.9 & 0.4 \\
0 & 0
\end{array}\right)\right]^{-1} \\
= & \left(\begin{array}{cc}
1.43 & 1.33 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

* Hence, $\mathrm{T}_{\mathrm{H}}=\mathcal{T}_{\mathrm{H} \rightarrow \mathrm{H}, \mathrm{L} \rightarrow \mathrm{H}=1.43}^{\prime}$

Need to vaccinate H susceptibles: $1-1 / \mathrm{T}_{\mathrm{H}}=1-1 / 1.43=0.3$

Lowering $\mathrm{H} \rightarrow \mathrm{H}$ transmission

* Target paths: $\mathrm{H} \rightarrow \mathrm{H}$.
- $\mathrm{x}_{1}=\{\mathrm{H}\}, \mathrm{x}_{2}=\{\mathrm{H}\}$
* Target reproduction number: $\mathrm{T}_{\mathrm{H}}=\mathcal{T}_{\mathrm{H} \rightarrow \mathrm{H}}$

$$
\begin{array}{r}
\left.=\rho\left(P_{x_{1}} K P_{x_{2}}\left(1-K+P_{x_{1}} K P_{x_{2}}\right)^{-1}\right)\right) \text {, if } \rho\left(K-P_{x_{1}} K P_{x_{2}}\right)<1 \\
K=\left(\begin{array}{ll}
0.9 & 0.4 \\
0.4 & 0.7
\end{array}\right) \quad P_{x_{1}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad P_{x_{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{array}
$$

* Hence, $\mathrm{T}_{\mathrm{H}}=\mathcal{T}_{\mathrm{H} \rightarrow \mathrm{H}=1.93}^{\prime}$
* Need to reduce contact by $1-1 / \mathrm{T}_{\mathrm{H}}=1-1 / 1.93=0.48$

More Generally

Target Paths	x_{1}	x_{2}	Targec Repproduction	Reduction	Vaccination
All	H, L	H, L	$\mathrm{R}_{0}=1.2 \mathrm{I}$	0.17	$17 \% \mathrm{H}$ $17 \% \mathrm{~L}$
$\mathrm{H} \rightarrow \mathrm{H}$ $\mathrm{L} \rightarrow \mathrm{H}$	H	H, L	$\mathrm{T}_{\mathrm{H}}=1.43$	0.3	$30 \% \mathrm{H}$ $0 \% \mathrm{~L}$
$\mathrm{H} \rightarrow \mathrm{L}$ $\mathrm{L} \rightarrow \mathrm{L}$	L	H, L	$\mathrm{T}_{\mathrm{L}}=2.30$	0.57	$0 \% \mathrm{H}$ $57 \% \mathrm{~L}$
$\mathrm{H} \rightarrow \mathrm{H}$	H	H	1.93	0.48	-
$\mathrm{L} \rightarrow \mathrm{L}$	L	L	Not Defined	-	-
$\mathrm{L} \rightarrow \mathrm{H}$	H	L	5.33	0.81	-
$\mathrm{H} \rightarrow \mathrm{L}$	L	H	5.33	0.81	-

Reduce targeted

 transmission by 40\%

Reduce targeted

 transmission by 60\%

Summary

- Target reproduction number informative for heterogeneous populations
- Behavioural risk (core groups)
- Vectors \& Hosts
- Age structure
- Spatial structure

Modeling Age Structure

- So far, looked at heterogeneity arising in contacts, due to behavioural differences (risk structure)
- Now, we consider changing risk due to age structure, motivated by childhood diseases (ie SIR)
- Initially, assume only two age groups: Low risk (Adults) and High risk (Children)
- Differences from previous model: (i) SIR not SIS, (ii) individuals eventually move from class C to class A in SIR model

Modeling Risk Structure

$$
\begin{aligned}
\frac{d X_{C}}{d t} & =\nu-\left(\beta_{C C} Y_{C}+\beta_{C A} Y_{A}\right) X_{C}-\mu_{C} X_{C}-\tau_{C} X_{C} \\
\frac{d Y_{C}}{d t} & =\left(\beta_{C C} Y_{C}+\beta_{C A} Y_{A}\right) X_{C}-\gamma Y_{C}-\mu_{C} Y_{C}-\tau_{C} Y_{C} \\
\frac{d X_{A}}{d t} & =\tau_{C} X_{C}-\left(\beta_{A C} Y_{C}+\beta_{A A} Y_{A}\right) X_{A}-\mu_{A} X_{A} \\
\frac{d Y_{A}}{d t} & =\tau_{C} Y_{C}+\left(\beta_{A C} Y_{C}+\beta_{A A} Y_{A}\right) X_{A}-\gamma Y_{A}-\mu_{A} Y_{A}
\end{aligned}
$$

$$
N=N_{C}+N_{A}=\left(X_{C}+Y_{C}+Z_{C}\right)+\left(X_{A}+Y_{A}+Z_{A}\right)
$$

Initial Dynamics

- Again, key thing is WAIFW matrix, which we'll assume to take following form

$$
\beta=\left(\begin{array}{cc}
100 & 10 \\
10 & 20
\end{array}\right)
$$

- Let's assume $\mathrm{I} / \tau_{\mathrm{C}}=15$ years \& $\mathrm{I} / \tau_{\mathrm{A}}=60$ years
- So, $N_{\mathrm{C}} / \mathrm{N}=0.2$ and $\mathrm{N}_{\mathrm{A}} / \mathrm{N}=0.8$
- Using same eigenvalue approach as before, we get $R_{0} \sim 2.2$

Paediatric Vaccination

- \quad Prevalence much higher in C class than A class
- Vaccination threshold same as in unstructured model (!!)
- Low levels of immunization increase fraction of population

Which WAIFW?

- So far, we have used hypothetical WAIFW matrices
- In reality, we may have data on disease prevalence in C and A classes, but our matrix β has 4 entries we need to estimate!
- Pragmatic assumption has been to simplify WAIFW along intuitive/sensible lines, eg

$$
\beta=\left(\begin{array}{ll}
\beta_{1} & \beta_{2} \\
\beta_{2} & \beta_{2}
\end{array}\right)
$$

- Often, reasonably obvious what's not a plausible WAIFW matrix

$$
\beta_{\text {unlikely }}=\left(\begin{array}{cc}
\beta_{1} & \beta_{2} \\
\beta_{2} & \beta_{1}
\end{array}\right),\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{1}
\end{array}\right),\left(\begin{array}{ll}
\beta_{1} & 0 \\
\beta_{2} & 0
\end{array}\right), \ldots
$$

Application to Childhood Diseases

- Some of earliest discrete age-class (RAS) models developed for measles (Schenzle I984)
- Make pragmatic assumption: transmission, especially in prevaccine era, primarily driven by school dynamics
- Need four age groups
- Pre-school (0-4 years)
- Primary school (5-10 years)
- Secondary school (II-I6 years)
- Adults (16+)
- We're now faced with old problem of which WAIFW?

Typical age-specific data

Given n age classes, age-specific transmission matrix has n^{2} elements ... correcting for reciprocity, we still have $n(n-I) / 2$ term

Often, only have information on age-specific prevalence or serology

Which WAIFW?

- Two seemingly sensible WAIFW matrices are

$$
\beta=\left(\begin{array}{llll}
\beta_{2} & \beta_{2} & \beta_{3} & \beta_{4} \\
\beta_{2} & \beta_{1} & \beta_{3} & \beta_{4} \\
\beta_{3} & \beta_{3} & \beta_{3} & \beta_{4} \\
\beta_{4} & \beta_{4} & \beta_{4} & \beta_{4}
\end{array}\right) \beta=\left(\begin{array}{llll}
\beta_{2} & \beta_{4} & \beta_{4} & \beta_{4} \\
\beta_{4} & \beta_{1} & \beta_{4} & \beta_{4} \\
\beta_{4} & \beta_{4} & \beta_{3} & \beta_{4} \\
\beta_{4} & \beta_{4} & \beta_{4} & \beta_{3}
\end{array}\right)
$$

With $\beta_{1}>\beta_{2}>\beta_{3}>\beta_{4}$

Mossong et al. (2008)

 Age of Participant

LU

Age of Participant

NL

GB

PL

Age-specific contacts

Contacts at home

Contacts at work

IT

Age of Participant

DE

Age of Participant

LU

Age of Participant

FI

Age of Participant

NL

GB

Age of Participant

PL

Age of Participant

Read et al. (2014)

Age Structured Dynamics

Rohani, Zhong \& King (2010) Science

Age-structured SEIR model

Model, simulated as time varying Markov Chain Updating of age-classes occurs annually 0-I9 one-year classes, and 20+

Age-specific transmission rate

Force of infection determine by:
$>$ Contact structure (c_{ij}) -- from Mossong study
$>$ Probability that contact is with infectious -- I_{j} / N_{j}
$>$ Transmission probability, given contact -- q_{i}

$$
\lambda_{i}=q_{i} \sum_{j} c_{i j} \frac{I_{j}}{N_{j}}
$$

Can use data to

$>$ determine transmission probability, given contact -- q_{i}
> validate model

Model-data comparison

