Heterogeneity in Contacts

Behaviour & Age

Realism Vs Transparency

Sources of Heterogeneity in Contacts

Individual exposure and infection hazard may be heterogeneous for a number reasons:

- Risk structure
 - Determined by behavioural patterns
 - Or related to occupation
- 2. Age-determined contacts
 - Childhood diseases
- 3. Seasonality
 - Time-dependent contact rates result in sustained oscillations

Simple contact heterogeneities

Contact tracing to examine HIV transmission network in Colorado Springs:

More Generally

High risk group

Low risk group

Modeling Risk Structure

Introduce a model consisting of individuals whose behaviour/work places them in one of two kinds of groups: Low risk and High risk

Use an extension of simple SIS model

$$\frac{dS_L}{dt} = \gamma_L I_L - \beta_{LL} S_L I_L - \beta_{LH} S_L I_H$$

$$\frac{dI_L}{dt} = -\gamma_L I_L + \beta_{LL} S_L I_L + \beta_{LH} S_L I_H$$

$$\frac{dS_H}{dt} = \gamma_H I_H - \beta_{HH} S_H I_H - \beta_{HL} S_H I_L$$

$$\frac{dI_H}{dt} = -\gamma_H I_H + \beta_{HH} S_H I_H + \beta_{HL} S_H I_L$$

What's R_0 ?

Instead of a single transmission rate (β), we now have a matrix of transmission parameters (β)

$$\beta = \begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{LH} & \beta_{LL} \end{pmatrix}$$

- This is called WAIFW (Who Acquires Infection From Whom) matrix
- Typically, it's assumed $\beta_{LH} = \beta_{HL}$
- And high assortativity, such that $\beta_{HH} > \beta_{LL} > \beta_{HL}$

What's R_0 ?

At disease-free equilibrium

$$(S_H^*, I_H^*, S_L^*, I_L^*) = (1, 0, 1, 0)$$

- T = new infections
- $\mathcal{F}_H = \beta_{HH} S_H I_H + \beta_{HI} S_H I_L$
- $\mathcal{F}_L = \beta_{11} S_L I_{L+} \beta_{1H} S_L I_{H}$

- V = pathogen progression
- $V_H = \gamma_H I_H$
- $V_L = \gamma_L I_L$

$$F = \begin{pmatrix} \beta_{HH} S_1^* & \beta_{HL} S_1^* \\ \beta_{HL} S_2^* & \beta_{LL} S_2^* \end{pmatrix} \qquad V = \begin{pmatrix} \gamma_H & 0 \\ 0 & \gamma_L \end{pmatrix}$$

$$V = \left(egin{array}{cc} \gamma_H & 0 \ 0 & \gamma_L \end{array}
ight)$$

What's R_0 ?

Next generation operator, K, given by

$$FV^{-1} = \begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{HL} & \beta_{LL} \end{pmatrix} \begin{pmatrix} \frac{1}{\gamma_H} & 0 \\ 0 & \frac{1}{\gamma_L} \end{pmatrix}$$

$$K = FV^{-1} = \begin{pmatrix} \frac{\beta_{HH}S_1^*}{\gamma_H} & \frac{\beta_{HL}S_1^*}{\gamma_L} \\ \frac{\beta_{LH}S_2^*}{\gamma_H} & \frac{\beta_{LL}S_2^*}{\gamma_L} \end{pmatrix}$$

$$\det(K - \Lambda I) = \begin{vmatrix} \frac{\beta_{HH}}{\gamma_H} - \Lambda & \frac{\beta_{HL}}{\gamma_L} \\ \frac{\beta_{LH}}{\gamma_H} & \frac{\beta_{LL}}{\gamma_L} - \Lambda \end{vmatrix} = \mathbf{0}$$

* Solve for largest Λ

Worked example

- Let $\gamma_H = \gamma_L = 50$,
- with WAIFW matrix give by $\beta = \left(\begin{array}{cc} 45 & 20 \\ 20 & 35 \end{array} \right)$

$$K = FV^{-1} = \begin{pmatrix} 45 & 20 \\ 20 & 35 \end{pmatrix} \begin{pmatrix} \frac{1}{50} & 0 \\ 0 & \frac{1}{50} \end{pmatrix}$$
$$= \begin{pmatrix} .9 & .4 \\ .4 & .7 \end{pmatrix}$$

$$\det(K = \Lambda I) = \begin{vmatrix} .9 - \Lambda & .4 \\ .4 & .7 - \Lambda \end{vmatrix} = \Lambda^2 - 1.6\Lambda + 0.47$$

• So $\Lambda = 1.21$ or $.39 \Rightarrow R_0 = 1.21$

Limitations

- R₀ quantifies overall transmission
- Not target specific
- What if interested in focusing on high risk group?

 Control measures could be aimed at, for example, paths leading to High risk group

Target Reproduction Number

- Suppose we target q paths of transmission $j_1 \rightarrow i_1, j_2 \rightarrow i_2, ..., j_q \rightarrow i_q$
- Let X be set of all targeted paths

'recipient'
$$x_1 = \{i_1, i_2, ..., i_q\}, \qquad x_2 = \{j_1, j_2, ..., j_q\}$$
 'donour' classes

The Target Reproduction Number is

$$\mathcal{T}_X = \rho(P_{x_1}KP_{x_2}(1 - K + P_{x_1}KP_{x_2})^{-1}), \text{ if } \rho(K - P_{x_1}KP_{x_2}) < 1$$

• where P_{xi} is a projection matrix $(P_{k,k} = 1 \text{ if } k \in x_i)$.

Special Case: Type Reproduction Number

- Type reproduction Number, T_i
 - All paths leading to i targeted

$$1 \rightarrow i, 2 \rightarrow i, ..., p \rightarrow i.$$

* Then

*
$$x_1=\{i\}, x_2=\{1, ..., n\} \text{ and } T_i=T_{1\rightarrow i, 2\rightarrow i, ..., n\rightarrow i}.$$

Basic reproduction Number, Ro: all possible paths are targeted

*
$$x_1=\{1,2,...,n\}, x_2=\{1,...,n\}$$

Targeting SH

- Target paths: H → H, L → H.
- $x_1 = \{H\}, x_2 = \{H, L\}$
- Target reproduction number:

$$T_{H} = T_{H \to H, L \to H}$$

$$= \rho(P_{x_1} K P_{x_2} (1 - K + P_{x_1} K P_{x_2})^{-1})), \text{ if } \rho(K - P_{x_1} K P_{x_2}) < 1$$

$$K = \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} \quad P_{x_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad P_{x_2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Targeting SH

$$P_{x_1}KP_{x_2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.9 & 0.4 \\ 0 & 0 \end{pmatrix}$$

* Check:
$$\rho(K - P_{x_1}KP_{x_2}) = 0.7$$

$$(P_{x_1}KP_{x_2}) \left(I - K + (P_{x_1}KP_{x_2}) \right)^{-1}$$

$$= \begin{pmatrix} 0.9 & 0.4 \\ 0 & 0 \end{pmatrix} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} + \begin{pmatrix} 0.9 & 0.4 \\ 0 & 0 \end{pmatrix} \right]^{-1}$$

$$= \begin{pmatrix} 1.43 & 1.33 \\ 0 & 0 \end{pmatrix}$$

- * Hence, $T_H = T_{H\rightarrow H, L\rightarrow H = 1.43}$
- * Need to vaccinate H susceptibles: $1-1/T_H = 1-1/1.43 = 0.3$

Lowering H→H transmission

- * Target paths: $H \rightarrow H$.
- $x_1 = \{H\}, x_2 = \{H\}$
- **⋄** Target reproduction number: $T_H = T'_{H\rightarrow H}$

$$= \rho(P_{x_1}KP_{x_2}(1 - K + P_{x_1}KP_{x_2})^{-1})), \text{ if } \rho(K - P_{x_1}KP_{x_2}) < 1$$

$$K = \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} P_{x_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} P_{x_2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

- Hence, $T_H = T_{H\rightarrow H} = 1.93$
- Need to reduce contact by $1-1/T_{\rm H} = 1-1/1.93 = 0.48$

More Generally

Target Paths	Χı	X 2	Target Reproduction	Reduction	Vaccination
All	H, L	H, L	$R_0 = 1.21$	0.17	17% H 17% L
H → H L → H	Н	H, L	$T_{H} = 1.43$	0.3	30% H 0% L
H → L L → L	L	H, L	$T_L = 2.30$	0.57	0% H 57% L
H≯H	Н	Н	1.93	0.48	-
L → L	L	L	Not Defined	1	-
L→H	Н	L	5.33	0.81	-
H≯L	L	Н	5.33	0.81	-

Reduce targeted transmission by 40%

Reduce targeted transmission by 60%

Summary

- Target reproduction number informative for heterogeneous populations
- Behavioural risk (core groups)
- Vectors & Hosts
- Age structure
- Spatial structure

Modeling Age Structure

- So far, looked at heterogeneity arising in contacts, due to behavioural differences (risk structure)
- Now, we consider changing risk due to age structure, motivated by childhood diseases (ie SIR)
- Initially, assume only two age groups: <u>Low</u> risk (Adults) and <u>High</u> risk (Children)
- Differences from previous model: (i) SIR not SIS, (ii) individuals eventually move from class C to class A in SIR model

Modeling Risk Structure

$$\frac{dX_C}{dt} = \nu - (\beta_{CC}Y_C + \beta_{CA}Y_A)X_C - \mu_C X_C - \tau_C X_C$$

$$\frac{dY_C}{dt} = (\beta_{CC}Y_C + \beta_{CA}Y_A)X_C - \gamma Y_C - \mu_C Y_C - \tau_C Y_C$$

$$\frac{dX_A}{dt} = \tau_C X_C - (\beta_{AC}Y_C + \beta_{AA}Y_A)X_A - \mu_A X_A$$

$$N = N_C + N_A = (X_C + Y_C + Z_C) + (X_A + Y_A + Z_A)$$

Initial Dynamics

Again, key thing is WAIFW matrix, which we'll assume to take following form

$$\beta = \left(\begin{array}{cc} 100 & 10\\ 10 & 20 \end{array}\right)$$

- Let's assume $I/\tau_C = 15$ years & $I/\tau_A = 60$ years
 - So, $N_C/N = 0.2$ and $N_A/N = 0.8$
- Using same eigenvalue approach as before, we get $R_0 \sim 2.2$

Paediatric Vaccination

 $P_{c} \sim 0.55$

- Prevalence much higher in C class than A class
- Vaccination threshold same as in unstructured model (!!)
- Low levels of immunization increase fraction of population

Which WAIFW?

- So far, we have used hypothetical WAIFW matrices
- In reality, we may have data on disease prevalence in C and A classes, but our matrix β has 4 entries we need to estimate!
- Pragmatic assumption has been to simplify WAIFW along intuitive/sensible lines, eg

$$\beta = \left(\begin{array}{cc} \beta_1 & \beta_2 \\ \beta_2 & \beta_2 \end{array}\right)$$

Often, reasonably obvious what's not a plausible WAIFW matrix

$$eta_{\mathrm{unlikely}} = \left(egin{array}{ccc} eta_1 & eta_2 \ eta_2 & eta_1 \end{array}
ight), \left(egin{array}{ccc} eta_1 & 0 \ 0 & eta_1 \end{array}
ight), \left(egin{array}{ccc} eta_1 & 0 \ eta_2 & 0 \end{array}
ight), \ldots$$

Application to Childhood Diseases

- Some of earliest discrete age-class (RAS) models developed for measles (Schenzle 1984)
- Make pragmatic assumption: transmission, especially in prevaccine era, primarily driven by school dynamics
- Need four age groups
 - Pre-school (0-4 years)
 - Primary school (5-10 years)
 - Secondary school (11-16 years)
 - Adults (16+)
- We're now faced with old problem of which WAIFW?

Typical age-specific data

Given n age classes, age-specific transmission matrix has n^2 elements ... correcting for reciprocity, we still have n(n-1)/2 term

Often, only have information on age-specific prevalence or serology

Which WAIFW?

Two seemingly sensible WAIFW matrices are

$$\beta = \begin{pmatrix} \beta_2 & \beta_2 & \beta_3 & \beta_4 \\ \beta_2 & \beta_1 & \beta_3 & \beta_4 \\ \beta_3 & \beta_3 & \beta_3 & \beta_4 \\ \beta_4 & \beta_4 & \beta_4 & \beta_4 \end{pmatrix} \beta = \begin{pmatrix} \beta_2 & \beta_4 & \beta_4 & \beta_4 \\ \beta_4 & \beta_1 & \beta_4 & \beta_4 \\ \beta_4 & \beta_4 & \beta_3 & \beta_4 \\ \beta_4 & \beta_4 & \beta_4 & \beta_3 \end{pmatrix}$$

With
$$\beta_1 > \beta_2 > \beta_3 > \beta_4$$

Mossong et al. (2008)

Age-specific contacts

Contacts at home

Contacts at work

Read et al. (2014)

Social mixing data from urban & rural China

Age Structured Dynamics

Age-structured SEIR model

Model, simulated as time varying Markov Chain Updating of age-classes occurs annually 0-19 one-year classes, and 20+

Age-specific transmission rate

Force of infection determine by:

- > Contact structure (c_i) -- from Mossong study
- > Probability that contact is with infectious -- I_i/N_i
- > Transmission probability, given contact -- qi

$$\lambda_i = q_i \sum_j c_{ij} \frac{I_j}{N_j}$$

Can use data to

- > determine transmission probability, given contact -- qi
- > validate model

Model-data comparison

