Parameter Uncertainty

Sensitivity analysis: deterministic epidemic models

- So far, have dealt with reasonably simple models
- Few state variables and, critically, few parameters

Sensitivity analysis: deterministic epidemic models

- So far, have dealt with reasonably simple models
- Few state variables and, critically, few parameters
- Resorted to simple(ish) methods for inferring key quantities of interest

Sensitivity analysis: deterministic epidemic models

- So far, have dealt with reasonably simple models
- Few state variables and, critically, few parameters
- Resorted to simple(ish) methods for inferring key quantities of interest
- Complex models have many parameters about which we have little information

Motivation

- In 2000, ~30\% of gay men in San Francisco were infected with HIV, 50\% of whom were taking combination antiretroviral therapy (ART)
- ART effective at reducing AIDS death rate in San Francisco, but does not completely eliminate infectivity
- unclear whether net effect of increased distribution of ART would be to increase or decrease incidence of HIV
- Blower et al. introduced following model (Blower, S.M., et al. 2000. A tale of two futres: HIV and antiretroviral therapy in San Francisco.Science 287:650-654.)

Blower et al. (2000) model

X -- susceptible $Y_{R} U$-- untreated, infected with drugresistant strain etc

Lots of model parameters

- π-- rate at which gay men join sexually active community
- $1 / \mu$-- average time during which new partners are acquired
- c -- average number of new sex partners per year
- p-- probability of a drug-resistant case (relative to a drug-sensitive case) transmitting drug-sensitive viruses
- $1 / q$-- average time for an untreated drug-resistant infection to revert to a drugsensitive infection
- σ-- per capita effective treatment rate
- e -- relative efficacy of ART in treating drug-resistant infections
- r -- rate of emergence of resistance due to acquired resistance
- g -- proportion of cases that give up ART per year
- v -- average disease progression rate

Model predictions

-ART could prevent ${ }^{\sim 15,000}$ cases of 20 years
-How reliable is this? - Model has 20 parameters -Few (if any) known exactly

Sensitivity analysis: deterministic epidemic models

- To know robustness of model predictions, require a way of exploring output of a family of parameterized models
- If number of unknown parameters is bigger than, say, 2 then systematic grid search would be computationally intractable
- Qualitatively investigate variability in model output that is generated from uncertainty in parameter inputs
- Perform multiple model evaluations using randomly chosen values for parameters

Monte Carlo analysis

- Assume parameters described by specific distribution and split parameter space into equal width intervals
$0<\beta<10$
$1 / 7<\gamma<1$
Uniform distribution
$0<\mu<1 / 2$

Monte Carlo analysis

- Using parameter combinations determined by Monte Carlo simulation, examine scatter plots of output against each parameter

- Problem: for SIR model, if we choose 5 random values for each parameter, need to perform 5^{3} computations

Assume 2 unknown parameters

In random sampling, new sample points are generated without taking into account previously generated sample points
eg, for $i=1: 10$

$$
\begin{aligned}
A(i)= & \operatorname{rand}^{*}\left(A_{\max }-A_{\min }\right)+A_{\min } ; \\
& B(i)=\operatorname{rand}^{*}\left(B_{\max }-B_{\min }\right)+B_{\min i} \\
& \text { end }
\end{aligned}
$$

In Latin Hypercube sampling one must first decide how many sample points to use and for each sample point remember in which row and column sample point was taken

Programs available for use in R \& Matlab

Typically, LHS random numbers in unit interval $(0,1)$ Need to 'stretch': $A=L H S _r a n d *\left(A_{\max }-A_{\min }\right)+A_{\min }$

Results of LHS

Specified ranges of 18 parameters

Box-Whisker plot

Evidently, our best guesses at parameter values are somewhat optimistic

At least ART is not found to be counter-productive in this respect \rightarrow an open question at time of this study

Which parameters important?

- Can explore correlation between vectors of parameters studied and outcome of interest (in this case, \# cases prevented)

Can further use partial rank correlation to establish sensitivity of conclusions to specific parameters

Which parameters important?

- BUT, linear correlation ignores fact that model output for each value of a parameter simultaneously includes changes in other

Can use partial rank correlation to establish sensitivity of conclusions to specific parameters

Summary

- Important to distinguish between two sources of error in model predictions
I. Variability: arises from stochasticity in process and measurement
- solution is to explore many model realizations
II. Uncertainty: results from absence of information on parameters/processes
- solution is (efficient) sensitivity analysis

