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 So far, our model only describes an acute virus 
infection (e.g. influenza)

 How can we extend the model 
to allow for persistent infections 
(e.g. HCV, HIV)?
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 At a steady state (endemic state, equilibrium), the 
population numbers don’t change.

 What does that mean for our model equations?
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 At a steady state, the populations/variables do not 
change:

 The differential equations now become algebraic 
equations and we can solve for the variables at 
steady state.

 What do we need to do?
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 Finding the value of 3 variables from 3 simple algebraic equations is 
straightforward and can be done analytically.

 Even if things are straightforward, they can sometimes be 
tedious/messy – it would be nice if we didn’t have to do it by hand.

 R can’t do analytical calculations, but other software packages can. 
The “big 2” are Maple and Mathematica. Both can do lots of stuff 
and are relatively expensive.

 A free alternative is Maxima (http://maxima.sourceforge.net/). It’s 
not as powerful as Mathematica/Maple, but if you just need to do a 
few simple analytical calculations, it might be good enough. 

 Other packages seem to exist, see: 
http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_sy
stems - but I don’t have experience with any others.
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 The Maxima code to compute the steady state:
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 For the model without cell birth/death (acute 
infection), there is only the non-infection steady 
state.

 The SS can be a dynamical equilibrium, with ongoing 
virus production, cell birth and death, etc. 

 We could compute stability of steady states.
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 Hepatitis C virus (HCV) causes a persistent infection

 It can be modeled by a set of equations such as the 
ones we just looked at

 We are interested in the effect of drug treatment on 
virus load
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 Before treatment start, the infection is chronic, i.e. at 
steady state:
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 Treatment with interferon (IFN) was found to lead to 
decline in virus load, but mechanism was not known
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 We will use the mechanistic model to test different 
hypotheses:

◦ Hypothesis 1: IFN reduces susceptibility of cells to infection

◦ Hypothesis 2: IFN reduces virus production 

◦ Hypothesis 3: Both H1 and H2

◦ Hypothesis 4: Neither H1 or H2

◦ Hypothesis 5: Either H1 or H2

 How do we use the models to test this?
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 Open and run SISMID-U4-hcv1.r

 Actual data for virus after 
treatment  looks like this:

 Run simulation for different IFN 
mechanisms/hypotheses. 
What do you conclude?
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 Neumann et al. (1998, Science) also used the model 
to estimate parameters, such as the lifespan of an 
infected cell (1/), the lifespan of a virion (1/c) and 
the efficacy, e, of different doses of IFN.

 To do so, they fitted the model to data. We won’t do 
that now, we will be covering data fitting later.
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 In the previous model, the strength of the drug was 
assumed to not change over time

 But drug decays over time

 Especially important if drug is given rarely, as in 
newer versions of IFN treatment for HCV

 A more detailed model will include the kinetics of 
the drug (pharmacokinetics, PK) and will also model 
how drug efficacy depends on drug concentrations 
(pharmacodynamics, PD)
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 A lot of PK/PD modeling exists, it’s a field with its 
own journals 

 For infectious diseases, most PK/PD studies deal with 
bacterial infections and antibiotics

 The “PK/PD guys” rarely interact with 
immunologists/virologists and vice versa 

 Most models either include detailed PK/PD but no 
immune response, or IR but no PK/PD

 An area ripe for future experimental and modeling 
studies  

Some more on that: Handel et al. (2009) 
Journal of Theoretical Biology
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 Simplest model: drug decays at a constant rate and is 
given at concentration C0 is every T days 

 More complicated/realistic models are possible that take 
into account movement of drug from absorption site to 
site of action.
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 One frequently used model is known as the E-max 
model:

 Since C(t) changes with time according to the PK 
equations, drug efficacy also changes with time
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 Load and run SISMID-U4-hcv2.r

 Make sure you understand the code. Some new stuff 
is in there, e.g. a loop that repeatedly calls the ODE 
solver

 Change different PK 
and PD parameters 
and see how it 
affects the results

 This is how some of 
the data look like:

Powers et al. (2003) Seminars in Liver Disease
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 More detailed PK/PD models for IFN treatment in 
HCV can be found in: Powers et al. (2003) Seminars 
in Liver Disease, Talal et al. (2006) Hepatology

 Those PK/PD models were shown to agree better 
with the data compared to models that had constant 
IFN efficacy 
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 In addition to IFN-alpha, patients started to receive 
ribavirin

 Ribavirin alone does not or only transiently reduces 
virus load

 Ribavirin in combination with IFN sometimes leads to 
improved long-term virus decline

 The mechanism of ribavirin action was not well 
known

 We can use a model to study how ribavirin works 
and how to optimize combination treatment

Based on Dixit et al. (2004) Nature

24



 Assumption: Ribavirin leads to the production of 
mutated, non-infectious virions

 We need to keep track of non-infectious virus since 
experiments measure viral RNA levels
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 Simplifying assumption: Over the duration of 
treatment, the number of uninfected cells changes 
little and remains at its steady-state level:

 We also assume that PK/PD does not play an 
important role
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 Load and run SISMID-U4-hcv3.r

 Data show that if IFN is effective (high e), ribavirin
has little effect on virus load, but if IFN is less 
effective, the addition of ribavirin makes a 
difference. Test if the model can reproduce this.

 Dixit et al. (2004, Nature) also fitted the model to 
data and used it to make predictions about long-
term treatment outcomes. 
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 The previous model produces a biphasic decline in 
virus load 

 Some patients show a 
tri-phasic decline

 Something to do
with the immune
response?
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 Claim: allowing for proliferation of uninfected and 
infected cells can explain the data (no IR needed)
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 Harder version: Use SISMID-U4-hcv3.r as starting point. 
Extend the model to the one shown on the previous 
slide. Easier version: Load and run SISMID-U4-hcv4.r

 Observe the tri-phasic decline

 When/why does the tri-phasic decline occur?

 How does the dynamics depend on the efficacy of IFN 
and ribavirin?

 How do other model parameters influence the 
dynamics?

 Hint:  A more detailed discussion of the model (and 
answers to these questions) can be found in Dahari et al. 
(2007) Hepatology
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 Simple models have real value! They can be used to gain 
insights into mechanisms

 Models that do not agree with data can be used to reject 
specific hypotheses

 Models can make predictions which can be tested in further 
experiments

 By fitting models to data one can estimate important 
parameters, such as drug efficacy, rate of virion production, 
etc.

 All these models are very simple and ignore the immune 
response. Nevertheless, they seem to be useful tools to 
obtain novel insights (“Models are always wrong but 
sometimes surprisingly useful”).
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 We just saw how several simple models were able to 
produce useful results and match data

 Similar models have been used extensively for HIV

 Like the HCV models, some HIV models do not 
include an immune response (mainly Alan Perelson
& Co., see e.g. Ho et al. 1995 Nature, Perelson et al. 
(1996) Science, (1997) Nature)
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 The HIV models without immune response were able 
to provide useful insights.

 But: Data show that the immune response, especially 
CTL, are important and influence the infection 
dynamics.

From Davenport et al. (2007) 
Immunological Reviews

Unvaccinated 
monkeys

Vaccinated 
monkeys
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 The data suggest that we should include a CTL response 
in our model

 We start with our previous, simple model that we used 
for HCV

 It’s often not clear how to best model the immune 
response, usually it’s done in a very abstract manner

 We assume that CTL undergo per-capita expansion 
proportional to virus load and die at a fixed rate

 This leads to a predator-prey (Lotka-Volterra) type 
system

 See e.g. Wei et al. 1995 Nature, Nowak & Bangham 1996 
Science for application of such models to HIV
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Virus clearance, c
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Virus clearance, c

 CTL kill infected cells at some fixed rate
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 Open and run SISMID-U4-hiv1.r

 To simulate vaccination, one can set CTL0 to a larger value or 
increase activation rate (a) or killing rate (k) of CTL

 Compare the results with the data. Try to see if you can tweak 
model parameters or the CTL equation to get something that 
looks like the data

From Davenport et al. (2007) 
Immunological Reviews
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 Models lead to oscillations in cells/virus

 Models predict that more CTL lead to more rapid 
virus decline. The data do not show this

From Davenport et al. (2007) 
Immunological Reviews
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 Maybe CTL are not the only important IR component and 
we should build a model that includes the innate 
response, B-cells/antibodies, etc.

 Or maybe we have all the important “players” but the 
way we built the model is wrong

 Let’s try to see if we can modify the model to obtain 
results that are in better agreement with data

 For more, see “Understanding the Failure of CD8 T-cell 
Vaccination against HIV”, Rob de Boer (2007), Journal 
of Virology. (Note: We will use notation that differs from 
Rob’s paper)

41



 The rate at which virus infects target cells is bU

 If there are 10x more target cells, infection occurs at 10x 
the rate

 This is only realistic if the “bottleneck” in the infection 
process is finding uninfected cells

 If there is an abundance of uninfected cells, other factors 
become rate-limiting

 The infection rate should approach some maximum value 
for large U
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 The new formulation introduces saturation.

 If U is high, the virus infects at maximum rate b

 If U is low, the infection rate is bU/hb < b

 The constant hb controls the level of U where saturation 
sets in
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 For the virus, we make a quasi-steady state 
assumption: We assume that virus clearance is fast 
and virus load therefore follows almost 
instantaneously the dynamics of the infected cells
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 Mass-action problem again: A CTL kills at rate kI

 10x more infected cells leads to 10x faster killing

 Only realistic if finding infected cells is the rate-
limiting step

 For high infected cell numbers, killing rate should 
saturate at some maximum value 

   (productively infected cells)kII gE I Y  
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 Another mass-action problem: 10x more CTL lead to 
10x faster killing - only realistic up to a point 

 If there are lots of CTL, further increasing their 
number likely won’t increase the rate of 
removal/death of infected cells

 For high CTL numbers, killing rate should again 
saturate at some maximum value 

    (productively infected cells) I gE I IkY  
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 If infected cells (CTL) are abundant, killing depends only 
on the constant  k and CTL (infected cells)

 The constant hk regulates when the different saturation 
regimes set in

 One could have made a model where killing saturates as 
k1Y and k2I and where different constants h1 and h2
regulate the saturation for Y and I

 One could have used a similar term for the infection 
process (but Rob didn’t so I won’t either) 
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 Open and run SISMID-U4-hiv2.r

 Play around with parameters, see how close you can 
get to the data
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 For some parameter combinations, the new model 
can remove the oscillations and reproduce the 
constant virus decline, independent of CTL response.

 The new model does not fully reproduce the data. 
We can’t get increased CTL numbers and less virus 
for the vaccination scenario.

 There are many parameters, some of them have no 
direct biological meaning and their values are not 
known.

 To estimate all the parameters through model fitting, 
one would need a lot of data.
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 The simpler models and this one consider exactly the 
same “players” (virus, target cells, CTL)

 Results change solely based on different choices for 
model implementation! 

 This shows how tricky the business of setting up 
models can be.
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 These models are getting complicated!

 These models are way too simple, the real biology of 
infections is much more complex!

 I agree!
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 Simple models can be quite powerful and have been 
used to produce important insights.

 Obviously, such simple models have limitations and 
can only be used to address certain questions. 

 For instance if one is interested in the effects of the 
immune response, the model obviously needs to 
contain an IR. 
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 If you get a result for a specific model formulation (e.g. 
mass-action, exponential distribution for life-span), it 
doesn’t mean you’ll get the same for a slightly different 
model formulation (unfortunately).

 Similar to the experimental situation: Results for a 
specific mouse strain and a specific pathogen isolate 
might change if you go to a different model system.

 In principle, one would need to try a lot of different 
model formulations (equations or host/pathogen).

 Nobody does that. So for both experimental and 
modeling papers, results should not be over-generalized 
(unless you want to publish in a top tier journal….).
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 The papers mentioned on some of the slides give 
details about the HCV and HIV models

 The references mentioned in the introductory 
lecture

 A main person behind a lot of the HCV and HIV 
models is Alan Perelson. Check some of his most-
cited work for interesting and relatively simple 
models applied to HCV and HIV
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