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 So far, we ran computer code that produced dynamics 
(time-series).

 We changed parameter values to see how results 
changed.

 We often want to explore how results (as defined by us) 
vary with some inputs.

 Often those inputs are parameter values, corresponding 
to different biological conditions. 

 We’ll briefly try ourselves, 
then look at such model 
uses for Malaria and TB.
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 Assume we have a simple model for a bacterial 
infection
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 Let’s assume our question is: How does the peak of 
bacteria load change as the rate of the immune 
response activation is changed?

 How do we answer this question?
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 Vary rate of the immune response activation (i.e. 
parameter r in our model).

 For each value of r, run model, record bacteria peak 
load Bpeak. 

 Plot Bpeak as function of r.
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 Open SISMID-U6-model1.r

 Read the comments in the code to make sure you 
understand what goes on.

 Run the code, take look at the result. Make sure you 
understand it.

 Change the value of some other parameter, run 
again.
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 Most of the existing models for malaria and TB are 
rather large and complex. 

 We don’t have enough time to go through them in a 
lot of detail – it would take the rest of this module.

 I will show a few results illustrating how one can use 
variation of parameters to study a model/system.

 I will also give you a very brief glimpse of some of 
these models to illustrate an issue we’ll then address 
in detail in this session.
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IPK = peak parasite load
IINT = total parasite load
ζ = binding affinity (infection rate)
Ath=antigen threshold at which IR gets activated
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McQueen & McKenzie (2008) PLoS Comp Bio



RBC dynamics

μ= merozoites
ET=total RBC
TD=average length of stage, 
SD=standard deviation of stage
ζ=binding affinity
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ζ=binding affinity, V=density of vulnerable RBC, κ=1/(TD * SD), 

Att = immune response clearance, L(t) influx from liver, 

p=number of merozoites produced by an infected RBC
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Act=actuator level 
Att=attacker level
A=parasite density

Act
Att
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IL-10 depletion “experiments”. A) Effects on IFN- when IL-10 only (solid 
line), IL-10 and IL-4 (dashed line), and IL-10 and IL-12 (dotted line) are 
each depleted; B) effects on the activated macrophage population; C) 
effects on the total T lymphocytes; D) Total bacterial population. 
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Three populations of macrophages are included in the model: resting, 
activated and chronically infected macrophages, denoted, respectively, by 
MR(t), MA(t), and MI(t). 

Wigginton and Kirschner (2001), Journal of Immunology
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Three differential equations for resting, activated and chronically infected 
macrophages, denoted, respectively, by MR(t), MA(t), and MI(t). 

Wigginton and Kirschner (2001), Journal of Immunology
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Four cytokines are tracked in the model: IL-12, IL-10, IL-4, and IFN-. 

Wigginton and Kirschner (2001), Journal of Immunology
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Four differential equations for the four cytokines: IFN-, IL-4, IL-10, IL-12.

Wigginton and Kirschner (2001), Journal of Immunology
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Three T cell populations are modeled: T0, T1, and T2 cells. 

Wigginton and Kirschner (2001), Journal of Immunology
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Wigginton and Kirschner (2001), Journal of Immunology
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Two bacterial populations are modeled: intracellular bacteria (BI) and 
extracellular bacteria (BE). 

Wigginton and Kirschner (2001), Journal of Immunology
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Wigginton and Kirschner (2001), Journal of Immunology
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Name Range Reference Definition Units

5 (0.02, 0.066) 50, 51, 56 IFN- by T1 pg/T1 day
7 (0.02, 0.066) 50, 51, 56 IFN- by T0 pg/T0 day
8 8.0x 10-5 60, 79, 111 IL-12 by MA pg/MA day
22 8.0x 10-5 60, 79, 111 IL-12 by MI pg/MI day
11 (2.8x 10-3, 9.12x 10-3) 16 IL-4 by T0 pg/T0 day
12 (2.18x 10-2, 9.12x 10-2) 16 IL-4 by T2 pg/T2 day
16 (2.0x 10-4, 1.0x 10-3) 53, 55 IL-10 by T1 pg/T1 day
17 (2.0x 10-4, 6.0x 10-3) 53, 55 IL-10 by T2 pg/T2 day
10 (2.75x 10-5, 2.75x 10-4) 56, 56, 60, 111 Max1 IL-12 from MR pg/MR day
18 (2.0x 10-3, 6x 10-3) 53, 55 Max IL-10 by T0 pg/T0 day
13 (1.1x 10-3, 1.25x 10-3) 51, 56, 59 Max IL-10 from MR pg/MR day
14 (1.1x 10-3, 1.25x 10-3) 51, 56, 59 Max IL-10 from MA pg/MA day
sg (360, 730) 16, 51, 129 Max IFN from CD8+ and NK pg/ml day
s1 (50, 110) Estimated Half-sat, IFN- on T0 to T1 pg/ml
s2 (1, 2) Estimated Half-sat, IL-4 on T0 to T2 pg/ml
s3 (50, 110) Estimated Half-sat, IFN-g on M activation pg/ml
s4 (50, 100) 64, 112 Half-sat, IL-12 on IFN-g pg/ml
s5 (100, 500) 60 Half-sat, IFN-g on IL-12 pg/ml
s6 (51, 58) 130, estimated Half-sat, IL-10, IFN- on IL-10 pg/ml
s7 (5, 100) 64 Half-sat, IL-12 on NK, CD8+ IFN-g pg/ml
s8 (100, 500) 20 Half-sat, IL-10 on MA deactivation pg/ml
s9 100 53, 54 Half-sat, IL-12 on IL-10 pg/ml
f1 (2.9, 410) 79 Adjustment, IL-4/IFN-g on T0 to T1 Scalar
f2 (0.0012, 0.16) 79 Adjustment, IFN-g/IL-4 on T0 to T2 Scalar
f4 (0.76, 3.2) 52, 79 Adjustment, IL-10/IL-12 on IFN-g Scalar
f5 (4.8, 65) 59, 60, 79, 112 Adjustment, IL-10/IFN-g on IL-12 Scalar
f6 (0.025, 0.053) 59, 79, 130 Adjustment, IFN-g, IL-10 on IL-10 Scalar

Wigginton and Kirschner (2001), Journal of Immunology
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Name Range Reference Definition Units

1 0.05 116, estimated Max1 T0 cell recruitment T0/M day

2 (1.4, 2.8) 42 Max growth rate for T0 1/day

3 0.0528 116, estimated Max T1/T2 recruitment T/M day

4 (0.03, 0.05) Estimated MR recruitment by MA, MI 1/day
21 (0.01, 0.07) 131, estimated Max MR recruitment by MR 1/day

sM (330, 430) 67–70, 117 MR source M/ml day

µa 0.011 132 Death rate, MA 1/day

µr 0.011 132 Death rate, MR 1/day

µI 0.011 132 Death rate, MI 1/day

µda (0.3, 2.0) Estimated Deactivation rate, MA 1/day

µT0 0.3333 114 Death rate, T0 1/day

µT1 0.3333 114 Death rate, T1 1/day

µT2 0.3333 114 Death rate, T2 1/day

k6 (2.9x 10-4, 1.0x 10-3) 8, 62 Max T0 to T1 rate ml/pg day

k7 (0.02, 0.7) 8, 62 Max T0 to T2 rate 1/day

k2 (0.2, 0.4) Estimated Chronic infection rate 1/day

k3 (0.2, 0.4) Estimated MR activation rate 1/day

k4 (0.36, 0.4) 20 MA deactivation by IL-10 1/day

Wigginton and Kirschner (2001), Journal of Immunology
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 Malaria: Mideo et al. “Modeling malaria 
pathogenesis” (2008) Cellular Microbiology and 
references therein.

 TB: The models by Denise Kirschner’s group are a 
good starting point.
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 Models are (should be!) built based on known 
biology.

 Every model is an approximation of the real system. 
The trick is to capture the salient features of what’s 
going on in the system without the model becoming 
unwieldy.

 If one wants to include a lot of realism, the models 
will inevitably become rather large.

 Large models tend to contain lots of parameters.
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 Sometimes one can obtain estimates for parameter 
values needed for the model from direct fitting to 
data.

 Data is often not available and fitting only works for 
simple models. 

 Parameters are usually obtained from the literature.

 Problem: Many parameters are not well known, 
which leads to model uncertainty. 
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 Sometimes, we might be mainly interested in how results 
change as we vary one parameter, but we also want to 
know how all the other less important parameters affect 
our outcome. 

 Other times, we might want to use our model to make 
predictions for a given scenario. But usually, we do not 
know the values for all parameters precisely. We need to 
then figure out how uncertainty in knowledge about 
parameters affects our outcome.

 In both cases, we need to study the impact of 
variations/uncertainty in multiple parameters on the 
output/result.
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 Varying multiple inputs/parameters over a usually broad range is 
called a (global) uncertainty & sensitivity analysis.

◦ Uncertainty Analysis: Given uncertainty in the inputs, how much 
uncertainty is there in the outputs/results?

◦ Sensitivity Analysis: How much do individual inputs contribute to 
the uncertainty in outputs/results? 

 Notes:

◦ Varying one input/parameter is sometimes called a local 
sensitivity analysis, since it answers the question: How sensitive 
is the result to changes in one input?

◦ Sometimes, the term “local sensitivity analysis” is also used with 
respect to changing one/multiple parameter(s) a little bit around 
a given value – instead of varying it over a large range.



 We want to vary many parameters over potential 
broad ranges and see how they impact results.

 For large models there are usually many unknown 
parameters. Changing one at a time might take very 
long and we might be missing important interactions 
between parameters.

 We need a systematic & efficient way to assess the 
impact of different parameter values on the results.



 First, we need to specify the distribution/range of 
uncertainty of the parameters. 

Hoare et al. (2008), Theoretical Biology & Medical Modeling
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 We want to run the model for as many different 
parameter values as possible.

 Usually, there are many parameters we don’t know 
exactly. We need to vary them all and see how results 
change.

 If there are many parameters, simple sampling becomes 
too computationally intensive: If we want to fully sample 
66 parameters with 10 samples for each parameter, we 
would need to run 1066 simulations (the universe is <1018

seconds old).

 Smart ways of sampling exist, a commonly used method 
is Latin Hypercube Sampling (LHS).

34



Example: 2 parameters. A) In random sampling, there are regions of the 
parameter space that are not sampled and other regions that are heavily 
sampled; B) in full factorial sampling, a random value is chosen in each interval 
for each parameter and every possible combination of parameter values is 
chosen; C) in Latin Hypercube Sampling, a value is chosen once and only once 
from every interval of every parameter (it is efficient and adequately samples 
the entire parameter space). 

Hoare et al. (2008), Theoretical Biology & Medical Modeling
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 If parameters are uncertain within several orders of 
magnitude, probability sampling in log-space might 
be suitable to ensure full coverage of the whole 
range.

 The minimum number of samples needed for LHS is 
# of parameters + 1. Usually, many more should be 
done. For most situations, it’s not too 
computationally challenging to do 1000s of 
simulations.
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 For each parameter sample, we run the simulation 
and record the result.

 We can then see how uncertainty in inputs affects 
the results.

 A convenient way to represent the results is by using 
boxplots.

Handel et al. (2009), Epidemics
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 Simple model as an example (“TB light”)

 Model has 5 parameters: g, k, r, d, Bmax

◦ If we don’t know the initial conditions (B0 and X0), we can consider them 
model parameters. For this example, we assume we know them.

◦ Assume we know k, Bmax and r exactly, but we only know that g and d are in 
a certain range.

 We want to know how “the result” depends on the values for the 
parameters g and d.

 We need to define “the result”, i.e. the model output that we are 
interested in studying.
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 Let’s decide that we are interested in the peak value 
for the bacteria. This is our output/result.

 Our inputs are the parameters g and d.

 Question: How does uncertainty in the parameters 
affect uncertainty in the result?

 To answer this, we produce samples for the 
parameters, run the model for each parameter 
sample and record Bpeak. We than plot all those 
values. 
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 First, we need to define the ranges for the two 
parameters g and d

◦ For g, assume that we know it’s close to 0.5. We can choose 
a normal distribution with mean 0.5 and SD 0.1 (check 
negative values!)

◦ For d, assume that we know nothing about d other than 
that it is between 0.1 and 0.4. Then we choose a uniform 
distribution.

 Next, we specify the number of LHS samples we 
want to run. Usually, one should choose many 1000s, 
but that slows down the simulation. So we pick 100.

 Now we can implement and run the whole thing.
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 If you haven’t already, install the R packages “lhs” and 
“sensitivity” (the 2nd one we need later)

 Open SISMID-U6-us1.r

 Read the comments in the code to figure out what goes 
on
◦ The script creates 100 LHS for the parameters 
◦ It then simulates the ODEs for each of the parameter samples 

and records the maximum number of bacteria
◦ At the end, it plots all 100 results for Bpeak in a boxplot

 Run the code, make sure you understand what the 
results mean.

 Change the range of d to be between 1 and 4. Rerun the 
code, again make sure you understand the result.
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 The boxplot and CDF plot show the variation in the 
result as the parameters vary.
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 Instead of just recording the amount of uncertainty 
in the result for a given level of uncertainty in the 
inputs, we can go further.

 We can study how much impact each parameter has 
on the result, i.e. how sensitive the result is to 
variations in each parameter/input.
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 Correlation Coefficients (CC) indicate how correlated 
a given output is with a given input.

 CC are between -1 and 1. Large CC means strong 
(negative) correlation, CC ≈ 0 means no correlation.

 CC assume monotonicity between input and output. 
That can be checked with scatterplots.

Source: Wikipedia
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 Input-output relation is often nonlinear, therefore a Rank CC is 
usually more suitable.

 Example (adopted from Wikipedia): 
Consider the following four 
input/output pairs (x, y): 
(0, 1), (10, 100), 
(101, 500), (102, 2000).

For each pair, as x increases, so does y. But the increase is not 
linear. Therefore, a standard (Pearson) CC would be <1.

 If we rank-transform the values, we get (1,1), (2,2), (3,3), (4,4), i.e. a 
perfect correlation and a RCC would return 1.

 We usually don’t know if the input/output relation is linear and we 
are often only interested in knowing if an output changes as 
function of input, but we don’t care if that change is linear or not. 
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 RCC assume one input and one output.

 Usually, we have more than one input. We want to 
know the impact of a given input on the output while 
controlling for the other inputs.

 That can be done with Partial Rank Correlation 
Coefficients (PRCC).

 The package “sensitivity” in R can do PRCC. We will 
compute both “normal” (i.e. Spearman) RCC and 
PRCC.
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 Let’s decide that we are now interested in a different 
result/outcome, namely the steady state of the model
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 Let’s decide that we are interested in the steady state of 
the model
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 Our outputs/results is are the steady state values for 
B and X, Bs and Xs.

 Our inputs are still the parameters g and d.

 Question: How does variation in the parameters 
affect the results?
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 Since we have the equations for the steady state, we 
know immediately how Bs and Xs depend on g and d:

◦ Bs increases linearly with d and is independent of g

◦ Xs decreases with d and increases linearly with g

 For more complicated models/outputs (e.g. peak 
bacteria in the previous example), we usually can’t 
write down equations and therefore need to rely on 
simulations.
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 Let’s see if a sensitivity analysis agrees with our 
analytical results (it has to!)

 Open SISMID-U6-us2.r, read the comments in the 
code to make sure you understand what goes on

 Run the code. Compare your plots with the 
equations.

 Look at the printout produced by the program, try to 
understand it.

 Change d to be between 1 and 4, run the code again.
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 The R script also computes and shows Spearman 
Rank Correlation Coefficients (SRCC) and PRCC, 
which indicate the importance/correlation of a 
parameter and the output:

◦ "SRCC for Bs and d: 1.000000, p-value: 0.000000e+00“
◦ "SRCC for Bs and g: 0.021889, p-value: 4.892352e-01“
◦ "SRCC for Xs and d: -0.877692, p-value: 0.000000e+00“
◦ "SRCC for Xs and g: 0.422837, p-value: 0.000000e+00“
◦ "PRCC for Bs and d: 1.000000“
◦ "PRCC for Bs and g: -0.041859“
◦ "PRCC for Xs and d: -0.978984“
◦ "PRCC for Xs and g: 0.922647"
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 There are more ways to do uncertainty/sensitivity 
analysis and present results

◦ Graphical: Boxplots, scatterplots, …

◦ Numerical: Spearman rank correlation coefficient, Partial 
rank correlation coefficient, regression coefficients, 
variance decomposition… 

 See references for more.
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 Uncertainty/sensitivity analysis helps understand 
how changes in parameter values affect the results.

 Especially useful for large models where analytical 
approaches don’t work anymore.

 Potentially numerically challenging (takes long).

 Results (plots, correlation coefficients) need to be 
interpreted properly. 

 For a big model “information overload” can occur.
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 What should one do with all that information?

◦ If a parameter is found to play no role on the result, maybe 
one can reduce/simplify the model? It could suggest that 
this parameter is also biologically not important.

◦ If a parameter is very influential, it suggests that one should 
try to measure/determine it in more detail.

◦ If one wants to affect the results (e.g. implement treatment 
strategies to reduce infection), one should find methods to 
target those influential parameters.

◦ Reporting the whole uncertainty/sensitivity results (or at 
least important aspects) allows the reader to better decide 
how much trust they put into the result.
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 Extensive uncertainty/sensitivity analysis can give a 
false sense of accuracy.

 You specify the range of the parameters. That range 
could be completely wrong.

 Any other external influences (noise, unaccounted 
changes, etc.) are ignored.

 Main problem: Sensitivity analysis does not help if 
your underlying model is structurally wrong!

 All models are wrong. Some are decent 
approximations, but it’s hard to say which ones are.
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 So: If you learn that a model and an extensive 
uncertainty/sensitivity analysis predicts that a 
median of 31,247 people will get the flu and be 
hospitalized this coming flu season, with a 95% 
confidence interval of (12,451 – 43,887) how should 
you react?
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 The correct response (though maybe not good to say 
that out loud): Whatever, that’s BS.

 A bit more professional: Take a close look at the 
model. 

◦ You might decide that it’s a decent model, so you trust the 
ballpark figures, i.e. that the cases will be somewhere 
between 10K and 100K. Forget about that pretty 12,451 –
43,887 CI. 

◦ Or you decide that the model is junk and that you can’t 
trust any of it.
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 Good recent articles: 

◦ Hoare et al. (2008), Theoretical Biology & Medical Modeling
◦ Marino et al. (2008) Journal of Theoretical Biology 

 Application to epidemiological models: Blower and Dowlatabadi (1994) 
International Statistical Review 

 Books: 

◦ W.J. Conover (1999) “Practical Nonparametric statistics”, Wiley
◦ A. Saltelli (2004) “Sensitivity Analysis in Practice: A guide to Assessing Scientific 

Models”, Wiley  

 Original papers on LHS: R.L. Iman & colleagues (see references in the 
above papers).

 More on sensitivity: Work by Saltelli, Helton (see refs in Marino et al.).

 Online tutorial: http://sensitivity-
analysis.jrc.ec.europa.eu/tutorial/index.asp

 Application to an ID model: Handel et al. (2009) Epidemics 
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 Epidemiological model of influenza and bacteria co-
infection and the effects of antiviral and antibacterial 
treatment.

Handel et al. (2009), Epidemics
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 Instead of using CC, another approach is to do 
sensitivity analysis with regression.

 Regression analysis is well developed in statistics.

 Simple linear regression example:

◦ Y is the outcome (every outcome gets its own equation).

◦ Xi  are the parameters/inputs.

◦ bi are the regression coefficients (RC).

 The RC tell us how a change in a parameter Xi affects 
the result Y. 

0 i i

i

Y b b X 
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 Usually we want to do generalized linear regression, 
e.g. by including quadratic terms.

 Note: Even though the model is nonlinear in the Xi

terms, statisticians call this a linear model, because 
the RC (bi) appear only in linear form. This can be 
confusing since mathematicians (or 
physicists/engineers) would call this a nonlinear 
model/equation.

2

0

,

i i ii i ij i j

i i i j

Y b b X b X b X X     
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 The regression model/equation is a surrogate for our real 
(dynamic, ODE) model.

 Only if the regression model “works well”, i.e. can explain 
the data well, can we consider it a good proxy.

 To measure quality of the regression model, we can use 
the (adjusted) coefficient of determination (R2 ).

 R2 is the is the proportion of variability that is accounted 
for by the regression model. Only if this value is close to 
1 can we trust the regression analysis.

 See “Coefficient of determination” on Wikipedia for 
more.
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 Since the parameters/inputs are of different magnitude, 
so are the RC. It is therefore difficult to compare and 
rank them.

 One can normalize/standardize the coefficients by 
multiplying with SDx/SDy

 The SRC (bi
*) are comparable because they all refer to a 1 

standard deviation change in their respective 
independent variables. A standard deviation change in Xi
results in bi

* standard deviation increase in Y. 

 This standardization doesn’t mean they have to be 
between -1 and 1, though they often are.

0 i i

i

Y b b X 
* iX

i i

Y

SD
b b

SD




 The same issue with regard to linearity between 
input and output that applies to CC also applies to 
RC. 

 Since we often don’t know/care about linearity 
between input and output, we can again use rank 
transformation to obtain standardized rank 
regression coefficients (SRRC).
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 Let’s revisit our familiar model. 

 Our input is the same as before, the parameters d and g.

 We now want to use Bs and Xs as well as Bpeak as output.

 We need to define a regression model. Let’s choose

 The Xi are our inputs/parameters, Y are our outputs (one 
equation for each of the 3 outputs) and the bi are the RC.

1 1 2 2 3 1 2
Y b X b X b X X  
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 Open SISMID-U6-us3.r

 Read the code, make sure you understand it. Run it, 
read/understand the output.

 Run the code to perform regression and compare the 
results from the models.  

 Change d to be between 1 and 4, run the code again.

max

, 1s s

d g d
B X

r k rB

 
   

 
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max

, 1s s

d g d
B X

r k rB

 
   

 
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 Adjusted R-squared for Bs, Xs, Bpeak - first regression model: 1, 1, 0.39035
 Adjusted R-squared for Bs, Xs, Bpeak - simple regression model: 1, 0.9688, 0.3466
 [1] "PRCC for Bs and d: 1.000000"
 [1] "SRRC for Bs and d: 1.000000"
 [1] "SRRC2 for Bs and d: 1.000000“
 [1] "PRCC for Bs and g: -0.093637"
 [1] "SRRC for Bs and g: -0.000000"
 [1] "SRRC2 for Bs and g: -0.000000“
 [1] "PRCC for Xs and d: -0.971894"
 [1] "SRRC for Xs and d: -0.980639"
 [1] "SRRC2 for Xs and d: -0.894087“
 [1] "PRCC for Xs and g: 0.910344"
 [1] "SRRC for Xs and g: 0.430890"
 [1] "SRRC2 for Xs and g: 0.476393“
 [1] "PRCC for Bpeak and d: 0.999078"
 [1] "SRRC for Bpeak and d: 1.034723"
 [1] "SRRC2 for Bpeak and d: 0.997386“
 [1] "PRCC for Bpeak and g: 0.387463"
 [1] "SRRC for Bpeak and g: 0.037640"
 [1] "SRRC2 for Bpeak and g: 0.018011”
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 The equation for the steady state are

 Our regression models are

 With X1=d, X2=g, we get

 Both regression models perfectly describe how Bs depends on the 
parameters (i.e. b1=1/r, b2=b3=0). Therefore, we expect R2=1.

 Regression model 1 can perfectly describe how Xs depends on g, d 
(i.e. b1=0, b2=1/k, b3=-1/krBmax), model 2 can not. Therefore, we 
expect R2=1 for the 1st model, R2<1 for the second.

max

, 1s s

d g d
B X

r k rB

 
   

 

1 1 2 2 3 1 2
Y b X b X b X X   1 1 2 2

Y b X b X 

1 2 3
Y b d b g b gd  

1 2
Y b d b g 
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 Since we don’t have an analytic expression for Bmax, we 
can’t check that one easily.

 We find that the quality of regression differs depending 
on the range of d. Range of 1-4:

◦ Adjusted R-squared for Bpeak - first regression model: 0.390359

◦ Adjusted R-squared for Bpeak - simple regression model: 0.34665

 Range 0.1-0.4:

◦ Adjusted R-squared for Bpeak - first regression model: 0.972277“

◦ Adjusted R-squared for Bpeak - simple regression model: 0.94579

 Why is that?
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