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How to use models

4

So far, we ran computer code that produced dynamics
(time-series).

We changed parameter values to see how results
changed.

We often want to explore how results (as defined by us)
vary with some inputs.

Often those inputs are parameter values, corresponding
to different biological conditions.

We'll briefly try ourselves,
then look at such model
uses for Malaria and TB.

Handel et al (2014) Proc
Royal Soc Interface '




How to model - example

» Assume we have a simple model for a bacterial
infection

B=gB (1— Bij —kBX  (bacteria)

max

X =rBX —dX (immune response)

mgB(l-B/Bmax)

(Earlier notation)
B

B=gB(l- - )—dB —kBI

max

| =Bl =51




How to model - example

» Let’s assume our question is: How does the peak of
bacteria load change as the rate of the immune
response activation is changed?

» How do we answer this question?

B=gB (1— Bi] —kBX  (bacteria)

max

X =rBX —dX (Immune response)




How to model - example

» Vary rate of the immune response activation (i.e.
parameter r in our model).

» For each value of r, run model, record bacteria peak

load B, -

» Plot B, as function of r.

B=gB (1— Bi] —kBX  (bacteria)

max

X =rBX —dX (Immune response)




How to model — R example
» Open SISMID-U6-modell.r

» Read the comments in the code to make sure you
understand what goes on.

» Run the code, take look at the result. Make sure you
understand it.

» Change the value of some other parameter, run
again.




Malaria and TB models

» Most of the existing models for malaria and TB are
rather large and complex.

» We don’t have enough time to go through them in a
lot of detail — it would take the rest of this module.

» | will show a few results illustrating how one can use
variation of parameters to study a model/system.

» | will also give you a very brief glimpse of some of
these models to illustrate an issue we’ll then address
in detail in this session.




Malaria 1
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Kochin et al (2010) PLoS One



Malaria 2
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I, = peak parasite load

|,y7 = total parasite load

€ = binding affinity (infection rate)

A,,=antigen threshold at which IR gets activated

McQueen & McKenzie (2008) PLoS Comp Bio
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Malaria ZA— under the hood

J |

Feedback to marrow source

Marrow Reticulocyte Mature RBC senescent RBC - culled by
ES source TD = 36hr % T = 116.5 days, 9 I = 48hr macrophages
RSD = 6hr SD = 7 days S SD = 12hr in spleen and
. liver
RBC dynamics N I M i I N \l,
_ . Attacked by Attacked by Attacked by
l“l'_ mEFOZOItES P vivax and P _falfcjparum P fa.‘c.‘par’um
Ethotal RBC P falciparum
Tp=average length of stage, dR;/dt=ES(t)—xkrR; — {uR;

SD=standard deviation of stage

{=binding affinity dRy/dt=kR (Rn—1 = Ry) =CuRy, 1 <n<Ner+1

For mature RBCs:

dES/dt=/ps(®—ES()), ESpn <® <ESymx
= Aps(ESmx — ES(7)), @ > ESyx
= /ps (ESyn —ES(7)), ® <ESyn

dET For senescent RBCs:

dt
dS]/df=KmM‘ﬁ,r¢_.\,f—KSS]—c:,u:S]

dS,/dt=xs(S,—1—8,) —{uS,, l <n< N+ lo

dM;/dt =xr Rycg—rmM)—(uM,
dMHfdf=Km{Mﬂ_] —M”:l—ii’_uMm l<n< N+ 1




Modeling Malaria — Pathogen dynamics

Vulnerable RBC

B / Popul/aii\on p

Asexual stage n Merozoites If no RBC

in infected RBC free in blood infected,
Ty = 48hr % T, = 0.1hr death

5D=12 24, 5D = 0.1hr

4.8 or 9.6hr
N Possible attack Possible attack

from immune from immune
response response

I-1 =oV — K1, — I1ZmAttm§m,1
I.n = K, In—1 — K In o IanAttmgm,n
fo=pic g —u(@V -1ITy )— ), Att & +L(t)

Tp=average length of stage, SD=standard deviation of stage,
C=binding affinity, V=density of vulnerable RBC, x=1/(T, * SD),
Att = immune response clearance, L(t) influx from liver,
p=number of merozoites produced by an infected RBC
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Modeling Malaria — innate IR

Parasite Parasite

Self-amplifying, antigen target

self-limitin

loop ( T
Actuator AttAttacker + Decay of
Tp= 1hr é Tp= 2hr Attacker
ACt S%z 1hr SD = 2hr
Act=actuator level dAct/di=0O(Spe) — AnctAct
Att=attacker level A
A=parasite density dAtt/dt =0O(Say) — LA Att

where O(x) = x if x>0, zero otherwise, and

SAct = (SACL,B +a ACI@(AA))(I —ACZ/ACZMX)
AA=A— Ay

Sau = 2acAct — SALL,Lh
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Modeling Malaria — adaptive/Ab IR

I Parasite Parasite
D Self-amplifying, antigen rarget

self-limiting
i AR
ACt ACLUALOT Intermediate wegp Attacker == Decay of

Ty= 1hr stage T,=7, 30, Attacker
SD = 1hr Tp = 96hr or 365 days

t 5D = 9.6hrE SD =Ty

Self-limiting Feedback
dAct/dt =O(Sact) — AacrAct
dG,/dt =0 (s Act — Sga) — kG G
dG,/dt=xc(Gy-1—Gy), | <n< N+ 1
dAtt/dt=0O(Sg ) — AanAlt

(10)

where

Sact =(Sactp +aActO(AA)) (1 —Act/ Actyy ) (1 — Att | Attyy)
AA=A— Ay,
Sc.att =KG Gnea(1 — Att/ Attyx) 13
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Wigginton and
Kirschner

(2001), Journal
of Immunology.

IL-10 depletion “experiments”. A) Effects on IFN-y when IL-10 only (solid
line), IL-10 and IL-4 (dashed line), and IL-10 and IL-12 (dotted line) are
each depleted; B) effects on the activated macrophage population; C)

effects on the total T lymphocytes; D) Total bacterial population.

15



TB 2 — Under the hood

——————
- -

Macrophage ! death
Component m
TB&IFN-

recruitment ' o4 deactlvatlon' death
; _—
S IL:10 o

'\-l
,l K2 w

TBe*~ 1 - -[TB,] > N[M,] (maximal MOI)
v Kiz burst

¥ @ ~CD4*/CD8" T cells

Three populations of macrophages are included in the model: resting,
activated and chronically infected macrophages, denoted, respectively, by
Mg(t), M4(t), and M,(t).

Wigginton and Kirschner (2001), Journal of Immunology
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Macrophage Equations

dMg
dt

B I
=3M+a4{ﬂrf,q+wﬂ:1‘;]+cxglﬂrfﬂ( T )+k4MA( 10 )
Br+eas

BE I B-]" &3 Cg )
—ko M —ka M X M — .M
. R(Hﬁ-l'f'a) ; R(—r-y+53) (B]'+C’S) Fhtda A(Lﬁsa) (Hr+c:3 Hr 2R

{ﬂ»'f,q I BT Im &g ) ( Cg
=ksM . —ka M —paaM M
it R(L.rﬂfs) (HT+CB) ! A(fm+ﬂs) fida A(f¢,+ag Bytes ) HetA

dM;
dt

Bg Tr/M; ) ( . B;

= ks M —ky7 M kM —L ) (1 — M
* ”(Hg+cﬂ) 7 I(B}“+[N M,}m+£) ki ‘T((TT;M;}m P BrinN JW;-I-E) I

Three differential equations for resting, activated and chronically infected
macrophages, denoted, respectively, by Mg(t), M,(t), and M(t).

Wigginton and Kirschner (2001), Journal of Immunology
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Cytokine Component
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Four cytokines are tracked in the model: IL-12, IL-10, IL-4, and IFN-y.

Wigginton and Kirschner (2001), Journal of Immunology
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Cytokine Equations

— — _‘
dt — *\ Br+ep Io+aq "I\ Maten 7 Lo+ fali0+354 M a+ec14 0" el
dly

EZEHTG-HHETE—#HI.{

(e gr) ren) (o) (mis)
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Four differential equations for the four cytokines: IFN-y, IL-4, IL-10, IL-12.

Wigginton and Kirschner (2001), Journal of Immunology
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T-cell component

recruitment
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Three T cell populations are modeled: T, T,, and T, cells.

Wigginton and Kirschner (2001), Journal of Immunology



T-cell equations

ik, M, +wM) + T, M T
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Wigginton and Kirschner (2001), Journal of Immunology
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Bacteria component

burst/cell destruction (via lysis/apoptosis)
death
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Two bacterial populations are modeled: intracellular bacteria (B,) and
extracellular bacteria (By).

Wigginton and Kirschner (2001), Journal of Immunology



Bacteria equations

dBg
W = ayoBr — kysM By — kisMpBr + B,
+ ke N M Br A I 11
17 7 B}n_l_(NMI)m_l_E 2 2 R BE+69 ( )
dB;

Bl 1 Br
dt — PN T BT (NM)" + e

kN M, B (Mg (P
17 7 Bi:;_|_(NMI)m_|_E 2 2 R BE+C9

VA i ] — b — B (12)
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Wigginton and Kirschner (2001), Journal of Immunology
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Table 4 — Cytokine parameters

Name

Range

(0.02, 0.066)
(0.02, 0.066)
8.0x 10~
8.0x 10~
(2.8x 103, 9.12x 103)
(2.18x 102, 9.12x 10?)
(2.0x 104, 1.0x 10?)
(2.0x 104, 6.0x 103)
(2.75x 105, 2.75x 10%)
(2.0x 1073, 6x 103)
(1.1x 103, 1.25x 103)
(1.1x 103, 1.25x 103)

(360, 730)
(50, 110)
(1,2)

(50, 110)
(50, 100)
(100, 500)
(51, 58)

(5, 100)
(100, 500)
100
(2.9, 410)
(0.0012, 0.16)
(0.76, 3.2)
(4.8, 65)
(0.025, 0.053)

Reference

50, 51, 56

50, 51, 56

60, 79, 111
60, 79, 111

16

16

53,55

53,55

56, 56, 60, 111
53,55

51, 56, 59

51, 56, 59

16, 51, 129
Estimated
Estimated
Estimated

64, 112

60

130, estimated
64

20

53,54

79

79

52,79

59, 60, 79, 112
59, 79, 130

Definition

IFN- by T,

IFN- by T,

IL-12 by M,

IL-12 by M,

IL-4 by T,

IL-4byT,

IL-10 by T,

IL-10 by T,

Max? IL-12 from M,

Max IL-10 by T,

Max IL-10 from M,

Max IL-10 from M,

Max IFN from CD8* and NK
Half-sat, IFN-on T, to T,

Half-sat, IL-4on T to T,

Half-sat, IFN-g on M activation
Half-sat, IL-12 on IFN-g

Half-sat, IFN-g on IL-12

Half-sat, IL-10, IFN- on IL-10
Half-sat, IL-12 on NK, CD8* IFN-g
Half-sat, IL-10 on M, deactivation
Half-sat, IL-12 on IL-10
Adjustment, IL-4/IFN-gon T, to T,
Adjustment, IFN-g/IL-4 on Ty to T,
Adjustment, IL-10/1L-12 on IFN-g
Adjustment, IL-10/IFN-g on IL-12
Adjustment, IFN-g, IL-10 on IL-10

Units

pg/T, day
pg/T, day
pg/M, day
pg/M, day
pg/T, day
pg/T, day
pg/T, day
pg/T, day
pg/Mp day
pg/T, day
pg/Mp day
pg/M, day
pg/ml day
pg/ml
pg/ml
pg/ml
pg/ml
pg/ml
pg/ml
pg/ml
pg/ml

pg/ml
Scalar

Scalar
Scalar
Scalar
Scalar

Wigginton and Kirschner (2001), Journal of Immunology
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Table 6 — T-cell parameters

Name

ua
ul’
Hy
Hdq
Mo
Hr1

(o)}

~ x x x
NN

w

ky

Range

0.05
(1.4,2.8)
0.0528

(0.03, 0.05)
(0.01, 0.07)

(330, 430)

0.011
0.011
0.011

(0.3, 2.0)

0.3333
0.3333
0.3333

(2.9x 104, 1.0x 103)

(0.02,0.7)
(0.2, 0.4)
(0.2, 0.4)
(0.36, 0.4)

Reference

116, estimated
42

116, estimated
Estimated

131, estimated

67-70, 117

132
132
132
Estimated
114
114
114

8, 62

8, 62
Estimated
Estimated
20

Definition

Max? T, cell recruitment
Max growth rate for T,
Max T,/T, recruitment

Mg, recruitment by M,, M,
Max M, recruitment by M,

M, source

Death rate, M,
Death rate, M,
Death rate, M,
Deactivation rate, M,
Death rate, T,

Death rate, T,
Deathrate, T,

Max T, to T, rate

Max T, to T, rate
Chronic infection rate
M, activation rate

M, deactivation by IL-10

Units

T,/M day
1/day
T/M day
1/day
1/day

M/ml day

1/day
1/day
1/day
1/day
1/day
1/day
1/day

ml/pg day
1/day
1/day
1/day
1/day

Wigginton and Kirschner (2001), Journal of Immunology
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Further reading

» Malaria: Mideo et al. “Modeling malaria
pathogenesis” (2008) Cellular Microbiology and
references therein.

» TB: The models by Denise Kirschner’s group are a
good starting point.
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Model building

» Models are (should be!) built based on known
biology.

» Every model is an approximation of the real system.
The trick is to capture the salient features of what'’s
going on in the system without the model becoming
unwieldy.

» If one wants to include a lot of realism, the models
will inevitably become rather large.

» Large models tend to contain lots of parameters.

27



Model Parameters

» Sometimes one can obtain estimates for parameter

values needed for the model from direct fitting to
data.

» Data is often not available and fitting only works for
simple models.

» Parameters are usually obtained from the literature.

» Problem: Many parameters are not well known,
which leads to model uncertainty.

28



Model Parameters

» Sometimes, we might be mainly interested in how results
change as we vary one parameter, but we also want to
know how all the other less important parameters affect
our outcome.

» Other times, we might want to use our model to make
predictions for a given scenario. But usually, we do not
know the values for all parameters precisely. We need to
then figure out how uncertainty in knowledge about
parameters affects our outcome.

» In both cases, we need to study the impact of
variations/uncertainty in multiple parameters on the
output/result.




Uncertainty/Sensitivity Analysis




Uncertainty & Sensitivity Analysis

» Varying multiple inputs/parameters over a usually broad range is
called a (global) uncertainty & sensitivity analysis.

o Uncertainty Analysis: Given uncertainty in the inputs, how much
uncertainty is there in the outputs/results?

o Sensitivity Analysis: How much do individual inputs contribute to
the uncertainty in outputs/results?

» Notes:

> Varying one input/parameter is sometimes called a local
sensitivity analysis, since it answers the question: How sensitive
is the result to changes in one input?

o Sometimes, the term “local sensitivity analysis” is also used with
respect to changing one/multiple parameter(s) a little bit around
a given value — instead of varying it over a large range.




Uncertainty & Sensitivity Analysis — How?

» We want to vary many parameters over potential
broad ranges and see how they impact results.

» For large models there are usually many unknown
parameters. Changing one at a time might take very
long and we might be missing important interactions
between parameters.

» We need a systematic & efficient way to assess the
impact of different parameter values on the results.




Sampling parameter values

» First, we need to specify the distribution/range of
uncertainty of the parameters.

>

Probability density function
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Hoare et al. (2008), Theoretical Biology & Medical Modeling
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Sampling parameter values

» We want to run the model for as many different
parameter values as possible.

» Usually, there are many parameters we don’t know
exactly. We need to vary them all and see how results
change.

» If there are many parameters, simple sampling becomes
too computationally intensive: If we want to fully sample
66 parameters with 10 samples for each parameter, we
would need to run 10 simulations (the universe is <1018
seconds old).

» Smart ways of sampling exist, a commonly used method
is Latin Hypercube Sampling (LHS).
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Latin Hypercube Sampling (LHS)

Example: 2 parameters. A) In random sampling, there are regions of the
parameter space that are not sampled and other regions that are heavily
sampled; B) in full factorial sampling, a random value is chosen in each interval
for each parameter and every possible combination of parameter values is
chosen; C) in Latin Hypercube Sampling, a value is chosen once and only once
from every interval of every parameter (it is efficient and adequately samples

the entire parameter space).

Hoare et al. (2008), Theoretical Biology & Medical Modeling
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LHS — a few comments

» If parameters are uncertain within several orders of
magnitude, probability sampling in log-space might
be suitable to ensure full coverage of the whole
range.

» The minimum number of samples needed for LHS is
# of parameters + 1. Usually, many more should be
done. For most situations, it’s not too
computationally challenging to do 1000s of
simulations.
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Uncertainty analysis

» For each parameter sample, we run the simulation
and record the result.

» We can then see how uncertainty in inputs affects
the results.

» A convenient way to represent the results is by using
boxplots.

—
o
o

-ré*é[;
!

(9)]
o

T

% reduction of bacteria cases

0
IS1 1S2 1S3 1S4 IS5
Type of intervention

Handel et al. (2009), Epidemics
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A simple worked example

>

v

v

Simple model as an example (“TB light”)

B= gB[l—Bi]— kBX  (TB bacteria)

max

X =rBX —dX (Immune response)

Model has 5 parameters: g, k, r, d, B

> If we don’t know the initial conditions (B, and X;), we can consider them
model parameters. For this example, we assume we know them.

> Assume we know k, B, and r exactly, but we only know that g and d are in
a certain range.

We want to know how “the result” depends on the values for the

parameters g and d.

max

max

We need to define “the result”, i.e. the model output that we are
interested in studying.
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A simple worked example

» Let’s decide that we are interested in the peak value
for the bacteria. This is our output/result.

» Our inputs are the parameters g and d.

» Question: How does uncertainty in the parameters
affect uncertainty in the result?

» To answer this, we produce samples for the
parameters, run the model for each parameter
sample and record B,,,. We than plot all those
values.

39



A simple worked example

» First, we need to define the ranges for the two
parameters g and d
> For g, assume that we know it’s close to 0.5. We can choose

a normal distribution with mean 0.5 and SD 0.1 (check
negative values!)

> For d, assume that we know nothing about d other than
that it is between 0.1 and 0.4. Then we choose a uniform
distribution.
» Next, we specify the number of LHS samples we
want to run. Usually, one should choose many 1000s,
but that slows down the simulation. So we pick 100.

» Now we can implement and run the whole thing.
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R example

)

If you haven’t already, install the R packages “lhs” and
“sensitivity” (the 2nd one we need later)

Open SISMID-U6-us1.r

Read the comments in the code to figure out what goes
on

> The script creates 100 LHS for the parameters

° It then simulates the ODEs for each of the parameter samples
and records the maximum number of bacteria

> At the end, it plots all 100 results for Bpeak in a boxplot

Run the code, make sure you understand what the
results mean.

Change the range of d to be between 1 and 4. Rerun the
code, again make sure you understand the result.
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Uncertainty analysis

» The boxplot and CDF plot show the variation in the
result as the parameters vary.

Boxplot of Bpeak Boxplot of Bpeak
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Sensitivity analysis

» Instead of just recording the amount of uncertainty
in the result for a given level of uncertainty in the
inputs, we can go further.

» We can study how much impact each parameter has
on the result, i.e. how sensitive the result is to
variations in each parameter/input.
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Measuring Sensitivity - Correlation Coefficients

» Correlation Coefficients (CC) indicate how correlated
a given output is with a given input.

» CC are between -1 and 1. Large CC means strong
(negative) correlation, CC = 0 means no correlation.

» CC assume monotonicity between input and output.
That can be checked with scatterplots.

1.0 0.8 0.4 0.0 -1.0

N

1.0 1.0 1.0 -1.0 -1.0 -1.0

// T T H-'_""‘“H._ "‘\\_\\ "\_\
0.0 0.0
f’%‘%

Source: Wikipedia
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Rank Correlation Coefficients (RCC)

» Input-output relation is often nonlmear therefore a Rank CC is
usually more suitable. *

2000

1500

» Example (adopted from Wikipedia):
Consider the following four
input/output pairs (x, y):
(0, 1), (10, 100),

(101, 500), (102, 2000).

>

1000

500
¢

L 4

° 1
0 20 60 80 100

For each pair, as x increases, so does y. But the increase is not
linear. Therefore, a standard (Pearson) CC would be <1.

» If we rank-transform the values, we get (1,1), (2,2), (3,3), (4,4), i.e. a
perfect correlation and a RCC would return 1.

» We usually don’t know if the input/output relation is linear and we
are often only interested in knowing if an output changes as
function of input, but we don’t care if that change is linear or not.
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Partial Rank Correlation Coefficients

» RCC assume one input and one output.

» Usually, we have more than one input. We want to
know the impact of a given input on the output while
controlling for the other inputs.

» That can be done with Partial Rank Correlation
Coefficients (PRCC).

» The package “sensitivity” in R can do PRCC. We wiill
compute both “normal” (i.e. Spearman) RCC and
PRCC.
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Back to the example

» Let’s decide that we are now interested in a different
result/outcome, namely the steady state of the model

B:gB(l—Bij—ka, X =rBX —dX

maX

B.=7 X, =7

S S
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Sensitivity Analysis Example

» Let’s decide that we are interested in the steady state of
the model

B:gB[l—Bi)—kBX, X =rBX —dX

max

steady state (X =0, B=0):

BS :9’ XS :g( ) d j
r K B,
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Sensitivity Analysis Example

» Our outputs/results is are the steady state values for
B and X, B, and X..

» Our inputs are still the parameters g and d.

» Question: How does variation in the parameters
affect the results?
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Sensitivity Analysis Example

» Since we have the equations for the steady state, we

know immediately how B, and X, depend on g and d:

° B increases linearly with d and is independent of g
> X, decreases with d and increases linearly with g

» For more complicated models/outputs (e.g. peak
bacteria in the previous example), we usually can’t
write down equations and therefore need to rely on
simulations.

g -4 x 29[ ¢
r k B,
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Sensitivity Analysis Example - R
» Let’s see if a sensitivity analysis agrees with our

analytical results (it has to!)

» Open SISMID-U6-us2.r, read the comments in the
code to make sure you understand what goes on

» Run the code. Compare your plots with the
equations.

» Look at the printout produced by the program, try to
understand it.

» Change d to be between 1 and 4, run the code again.
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Scatterplots
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Correlation Coefficients

» The R script also computes and shows Spearman
Rank Correlation Coefficients (SRCC) and PRCC,
which indicate the importance/correlation of a
parameter and the output:

> "SRCC for Bs and d: 1.000000, p-value: 0.000000e+00“
> "SRCC for Bs and g: 0.021889, p-value: 4.892352e-01"
o "SRCC for Xs and d: -0.877692, p-value: 0.000000e+00“
> "SRCC for Xs and g: 0.422837, p-value: 0.000000e+00“
o "PRCC for Bs and d: 1.000000“

o "PRCC for Bs and g: -0.041859“

o "PRCC for Xs and d: -0.978984“

o "PRCC for Xs and g: 0.922647"
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Sensitivity analysis — further comments

» There are more ways to do uncertainty/sensitivity
analysis and present results

o Graphical: Boxplots, scatterplots, ...

> Numerical: Spearman rank correlation coefficient, Partial
rank correlation coefficient, regression coefficients,
variance decomposition...

» See references for more.
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Discussion

» Uncertainty/sensitivity analysis helps understand
how changes in parameter values affect the results.

» Especially useful for large models where analytical
approaches don’t work anymore.

» Potentially numerically challenging (takes long).

» Results (plots, correlation coefficients) need to be
interpreted properly.

» For a big model “information overload” can occur.
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Discussion

» What should one do with all that information?

° |f a parameter is found to play no role on the result, maybe
one can reduce/simplify the model? It could suggest that
this parameter is also biologically not important.

° If a parameter is very influential, it suggests that one should
try to measure/determine it in more detail.

° If one wants to affect the results (e.g. implement treatment
strategies to reduce infection), one should find methods to
target those influential parameters.

> Reporting the whole uncertainty/sensitivity results (or at

least important aspects) allows the reader to better decide
how much trust they put into the result.
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A word of caution

» Extensive uncertainty/sensitivity analysis can give a
false sense of accuracy.

» You specify the range of the parameters. That range
could be completely wrong.

» Any other external influences (noise, unaccounted
changes, etc.) are ignored.

» Main problem: Sensitivity analysis does not help if
your underlying model is structurally wrong!

» All models are wrong. Some are decent
approximations, but it’s hard to say which ones are.

57



A word of caution

» So: If you learn that a model and an extensive
uncertainty/sensitivity analysis predicts that a
median of 31,247 people will get the flu and be
hospitalized this coming flu season, with a 95%
confidence interval of (12,451 — 43,887) how should

you react?
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A word of caution

» The correct response (though maybe not good to say
that out loud): Whatever, that’s BS.

» A bit more professional: Take a close look at the
model.

> You might decide that it’s a decent model, so you trust the
ballpark figures, i.e. that the cases will be somewhere
between 10K and 100K. Forget about that pretty 12,451 —
43,887 Cl.

> Or you decide that the model is junk and that you can’t
trust any of it.
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Further reading

>

Good recent articles:

o Hoare et al. (2008), Theoretical Biology & Medical Modeling
° Marino et al. (2008) Journal of Theoretical Biology

Application to epidemiological models: Blower and Dowlatabadi (1994)
International Statistical Review

Books:

o W.J. Conover (1999) “Practical Nonparametric statistics”, Wiley

o A. Saltelli (2004) “Sensitivity Analysis in Practice: A guide to Assessing Scientific
Models”, Wiley

Original papers on LHS: R.L. Iman & colleagues (see references in the
above papers).

More on sensitivity: Work by Saltelli, Helton (see refs in Marino et al.).

Online tutorial: http://sensitivity-
analysis.jrc.ec.europa.eu/tutorial/index.asp

Application to an ID model: Handel et al. (2009) Epidemics
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Additional topics



U&S analysis — a “real” example

» Epidemiological model of influenza and bacteria co-
infection and the effects of antiviral and antibacterial

Ni = Bunlun + B u.p up + Benkn + -Br_pjr.
treatment. Ay = 0y By + 0y By + 0 By + (B,
| A = N + Ay
un ‘hbb Yu, uBuu + Yu_rBu_t + 'Yr_uBr_u + "}’“BH
hib = Ky, nIun u_p‘ru_p + H'r_n‘lrr_n + H'r_p‘irr_p
h; = hbb + .’t
S = - E'pr]s
Iu p a Iun (1— gp} — fo(1 _fp}hls — Vunlun = KunMolyn
jru|:: gp (1—fo(1 fp}"\ls - Vu.pjru.p - |t(u.|;1‘:“'L21'u.|:1
Irn gp}ffr fp} + fp“ - Ep}}"\ls — Venlin — KenAolin
I Irp gpfft fp} + fp“ - Ep]}hls - ""r.pIt.p - |t':r.|3‘:"‘h21r.|:
LN Bu_u = (1 —f)(1 — 8)(vunCun + KunA2)lun — 6uuBuy
Bu_r = (1 — f1)8(vunCun + KunMo)lun
+ (1 _fr}(""u_pcu_p + ku.p‘hzuu_p — Oy Byt
It.p a Bru - fr“ - gr}("u.ncu.n + ku.nhz}lu.n

+ (1= 8)(venCen + Kenho)lin — 60uBry
:frgt(vu.ncu.n + ku.n‘:‘-Z}Iu.n + fr(vu.pcu.p + |t':u.|;1‘:»‘L2?}‘Iu.p

+ &t(venCen + kinA2)lin + (VepCep + kr.ph;!}jr.p — O¢¢Brt
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U&S analysis — co-infection

Meaning Vahie range Assumptions] references
Mg Population size Ix10f L5, population
& Efficacy of AV prophylaxis 08 Based on Refs. (Yang et al, 2006; Hallkoran et al., 2007 )
Vyun Clearanee rate (1) mean duration of infection) of 1/48 Based on Refl (Carrat et al, 2008)
influerza infected hosts: AV untreated,
AB non-prophylaxed
Fup AV untreatied, AB prop iy laxed Pun AB prophylaxis does not alter duration af influenza infecton
(Louria et al., 1959; Maeda et al., 1999; Carrat et al., 2004)
Vin AV treated, AB non-prophylaxced 1/3.4 Reduction of infectious period by =30% (Hayden et al, 1999;
Treanor et al, 2000; Whitley et al, 2001 Aoki et al, 2003)
Vep AV treated, AB prophylaxed Vin AB prophylaxis does not alter duration of influenza infecton
By Clearance rate (1,/mean duration of infection) of 1/5-1/15 based on (Brundage and Shanks, 2008; Klugman et al,, 20049)
bacteria infected hosts: AV untreated, AB untreated
[ AV untreated, AB treated [1.5-2) fiyy AB treatment leads to faster recovery (Kaiser et al., 1996; Kaiser et al., 2001)
gy AV treated, AB untreated (1-1.25) &, AV treatiment leads to somewhat faster recovery (MeCullers, 2004 )
e AV treated, AB treated (1.75-2)6uu Combined AB and AV treatment are synergistic
Gun Fraction of influenza infected hosts who become 0.05-0.2 Based on Refs. (Kaser et al, 2000; Kaiser et al., 2003; Brundage, 2006
bacteria infected: AV untreatied, AB non-peophy lxed
Cup AV untreated, AB prophy laxed (025-0.75) Cun AB prophylaxis lowers the probability of bacterial infection
{Madhi et al., 2004; Moberley et al, 2008)
Cin AV treated, AB non-prophylased (075-1) cyp AV treatmeent lowers the probability of bactenal infection [ Kaiser et al, 2000;
Kaiser et al, 2003; Whitley et al, 2001; Cole et al., 2002)
Gp AV treated, AB prophylaxed (01-05) g, Combined AV treatment and AB prophylaxis are synergistic
dyn Fraction of influenza infeded hosts who die: (1-5)=10"3 == 1% —5% deaths for 1918-like, most deaths due to bacterial infections
AV untreated, AB non-prophylaxed (Soper, 1918; Mills et al., 2004; Brundage, 2006; Bonten and Prins, 2006;
Brundage and Shanks, 2008: Morens et al, 2008 ): =0.1% —0.5% deaths
for 2009-like, few deaths due to bacterial infections [ Fraser et al., 2009; for
Disease Control, C, Prevention, 2009, Jamieson et al., 2009; Garske et al, 2009)
dup AV untreatied, AB prop iy laxed dun AB prophylaxis does not affect death due to virus [ Louda et al, 1959;
Maeda et al, 1999; Carrat et al., 2004)
d; AV treated, AB non-prophylaxced (025-0.75) dyp, AV treatment reduces mortality
d, AV treated, AB prophylased dip AB prophylaxis does not affect death due to virus
e Fraction of bacteria infected hosts who die: (1-25) = 10" = 1% —5% deaths for 1918-like, most deaths due to bacterial infections
AV untreated, AB untreated, 1918-like (Soper, 1918; Mills et al, 2004; Brundage, 2006; Bonten and Prins, 2006;
Brundage and Shanks, 2008; Morens et al, 2008 )
2009-like (1-25)=10"3 =0.1% —0.5% deaths for 2009ike, few deaths due to bacterial infections
(Fraser et al., 2009: for Disease Control, C, Préventon, 2000:
Jamieson et al., 2009; Garske et al., 2009)
Eur AV untreated, AB treated (01-05) Ewu AB treatment reduces death due to bacterial infection [ Louria et al., 1959)
Eru AV treated, AB untreated (05-1) euu AV treatment reduces death due to bacterial infedion
(McCullers, 2004; MoCullers and Bartmess, 2003)
Ext AV treated, AB reated (001-02) g, Combined AB and AV treatment are synergistic [McCullers, 2004)
f Fraction of uninfecteds receiving AV prophylaxis 0-1 Varied for different scenarios
k Fraction of influenza infededs receiving AV treatment 0-1 Varied for different scenarios
g Fraction of influenza infeceds receiving AB prophylaxis 0-1 Varied for different scenarios
LA Fraction of co-infecteds receiving AB treatment 0-1 Varied for differsnt scenarios

T~ | -
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U&S analysis — co-infection

% reduction of total cases

% reduction of peak total cases
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U&S analysis — co-infection

Parameter Intervention strategy

IS1 I1S2 1S3 IS4 IS5
Reduction of total cases
e —0.96 (1) —096 (1) —095(1) —=095(1) —093(1)
Coun —0.15 (3) —0.18 (2) —0.01(19) —0.02(15) 0.04 (12)
(o —0.11 (5) —0.16 (3) 0.29 (3) 0.13 (3) 0.28 (2)
Oty ¢ 0.002 (29) —0.006 (18) —033(2) —0.08(10) —023(3)
Ot.u 0.22 (2) 0.15 (4) 0.06 (11) 0.11 (4) 0.02 (17)
Kip —0.007 (19) —0.001(29) —0.02(15) 0.27 (2) 0.18 (4)
Reduction of bacteria cases
Bun —0.65(1) —0.73(1) —064(1) —058(1) —056(1)
Cup —0.01(13) -—0.02(14) —0.02(19) —-0.51(2) —048(2)
Ctn —042 (2) —033(2) —-037(2) —-030(3) —027(3)
Kun 0.16 (3) 0.14 (3) 0.16 (4) 0.13 (6) 0.12 (8)
Yuu 0.15 (4) 0.11 (7) 0.16 (3) 0.12 (7) 0.13 (7)
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Sensitivity analysis - regression

» Instead of using CC, another approach is to do
sensitivity analysis with regression.

» Regression analysis is well developed in statistics.

» Simple linear regression example: Y =b,+2 bX;

> Y is the outcome (every outcome gets its own equation).
° X, are the parameters/inputs.
° b, are the regression coefficients (RC).

» The RC tell us how a change in a parameter X; affects
the result Y.
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Sensitivity analysis - regression

» Usually we want to do generalized linear regression,
e.g. by including quadratic terms.

Y = b+ZbIX,+ZbII I+ZbIJ X

» Note: Even though the model is nonlinear in the X;
terms, statisticians call this a linear model, because
the RC (b;) appear only in linear form. This can be
confusing since mathematicians (or
physicists/engineers) would call this a nonlinear

model/equation.
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Sensitivity analysis - regression

» The regression model/equation is a surrogate for our real
(dynamic, ODE) model.

» Only if the regression model “works well”, i.e. can explain
the data well, can we consider it a good proxy.

» To measure quality of the regression model, we can use
the (adjusted) coefficient of determination (R?).

» R?is the is the proportion of variability that is accounted
for by the regression model. Only if this value is close to
1 can we trust the regression analysis.

» See “Coefficient of determination” on Wikipedia for
more.
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Sensitivity analysis - regression

» Since the parameters/inputs are of different magnitude,
so are the RC. It is therefore difficult to compare and
rank them.

» One can normalize/standardize the coefficients by
multiplying with SD,/SD
v SDy, |

Y:b0+zbixi bi*: SD |
' Y

» The SRC (b,") are comparable because they all refer to a 1
standard deviation change in their respective
mdependent variables. A standard deviation change in X.
results in b,” standard deviation increase in Y.

» This standardization doesn’t mean they have to be
between -1 and 1, though they often are.




Sensitivity analysis - regression

» The same issue with regard to linearity between
input and output that applies to CC also applies to
RC.

» Since we often don’t know/care about linearity
between input and output, we can again use rank
transformation to obtain standardized rank
regression coefficients (SRRC).
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Regression analysis - Example

» Let’s revisit our familiar model.
» Our input is the same as before, the parameters d and g.
» We now want to use Bg and X, as well as B, as output.

» We need to define a regression model. Let’s choose

Y =b X, +b,X, +b, X, X,

» The X; are our inputs/parameters, Y are our outputs (one
equation for each of the 3 outputs) and the b, are the RC.
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Regression analysis - R
» Open SISMID-U6-us3.r

» Read the code, make sure you understand it. Run it,
read/understand the output.

» Run the code to perform regression and compare the
results from the models.

» Change d to be between 1 and 4, run the code again.
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Regression analysis — R Results
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Regression analysis — R Results

Adjusted R-squared for Bs, Xs, Bpeak - first regression model: 1, 1, 0.39035
Adjusted R-squared for Bs, Xs, Bpeak - simple regression model: 1, 0.9688, 0.3466
[1] "PRCC for Bs and d: 1.000000"

[1] "SRRC for Bs and d: 1.000000"

[1] "SRRC2 for Bs and d: 1.000000“

[1] "PRCC for Bs and g: -0.093637"

[1] "SRRC for Bs and g: -0.000000"

[1] "SRRC2 for Bs and g: -0.000000

[1] "PRCC for Xs and d: -0.971894"

[1] "SRRC for Xs and d: -0.980639"

[1] "SRRC2 for Xs and d: -0.894087“

[1] "PRCC for Xs and g: 0.910344"

[1] "SRRC for Xs and g: 0.430890"

[1] "SRRC2 for Xs and g: 0.476393“

[1] "PRCC for Bpeak and d: 0.999078"

[1] "SRRC for Bpeak and d: 1.034723"

[1] "SRRC2 for Bpeak and d: 0.997386"

[1] "PRCC for Bpeak and g: 0.387463"

[1] "SRRC for Bpeak and g: 0.037640"

[1] "SRRC2 for Bpeak and g: 0.018011”

v VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV v v v




Regression — Interpreting the results

d

» The equation for the steady stateare B == X, = g(l— d

S )
: r K rB
» Our regression models are max

Y =bX,+b,X,+b, X, X, Y =bX +b,X,
» With X;=d, X,=g, we get

Y =bd +b,g+b,gd Y =bd +Db,g

» Both regression models perfectly describe how B, depends on the
parameters (i.e. b;=1/r, b,=b,=0). Therefore, we expect R?=1.

» Regression model 1 can perfectly describe how X, dependson g, d
(i.e. b;=0, b,=1/k, by;=-1/krB,_.,), model 2 can not. Therefore, we
expect R?=1 for the 1%t model, R*<1 for the second.

|
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Regression - Interpreting the results

» Since we don’t have an analytic expression for B, _ , we
can’t check that one easily.

» We find that the quality of regression differs depending
on the range of d. Range of 1-4:

> Adjusted R-squared for Bpeak - first regression model: 0.390359
o Adjusted R-squared for Bpeak - simple regression model: 0.34665

» Range 0.1-0.4:

o Adjusted R-squared for Bpeak - first regression model: 0.972277"
> Adjusted R-squared for Bpeak - simple regression model: 0.94579

» Why is that?
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