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 Understanding
◦ We can use mechanistic models to gain conceptual insights into a 

system’s behavior. E.g. how does some level of drug treatment 
affect the infection outcome.

 Prediction & What-if scenarios
◦ We can make specific testable predictions
◦ We can perform virtual experiments that would be unfeasible to 

do (costly, lengthy, unethical)

 Those two approaches are “data-free”. 

 It is useful and valuable to build and explore models in a 
“data free” manner, but for maximum impact/usefulness, 
at some point they need to be brought in contact with 
data.
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 Hypothesis testing & Parameter Estimation

◦ We can use mechanistic models to test different 
mechanisms/hypotheses

◦ For hypothesis testing, one can compare models with data 
in a qualitative manner (e.g. action of IFN on HCV, features 
that the simple HIV model can’t reproduce).

◦ A step further, one can compare models with data in a 
rigorous, quantitative manner by fitting models to data 
(inference).

◦ We can also use inference to estimate parameters that are 
not directly measurable.
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 We can use model fitting to rigorously test possible 
mechanisms, hypotheses and causal relationships.

 We can obtain estimates for important biological 
parameters that are not easily accessibly by direct 
measurement.
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 If a model does not fit the data well, we suspect that 
the hypotheses/biological mechanisms) underlying 
the model (or our implementation of them) are not 
correct. 

 If we built our model(s) based on biologically 
reasonable assumptions, we have learned something 
useful.

 Model rejection can sometimes be very insightful –
maybe even more so than having a model that fits 
well.
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 If a model fits the data well, it lends support to our 
hypotheses about certain mechanisms/causal relations 
underlying the biological system. 

 But: It is possible to produce models that describe/fit 
the data very well but are wrong or useless. For 
instance a polynomial model with enough parameters 
can pretty much always fit, but is useless for the purpose 
of gaining mechanistic insights. 

 (Large) mechanistic models are often so flexible that they 
can fit all kinds of data, without allowing one to conclude 
that the mechanisms included in the model are actually 
the ones important for the real system.

“With four parameters I can fit an 

elephant, and with five I can make him 

wiggle his trunk.” — John von Neumann
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 Goal: minimize discrepancies between data and 
model results.

Handel et al. (2010), Journal of the Royal Society Interface
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 Get yourself some data.

 Write down a model.

 Choose initial guesses for the parameters that you want to fit (e.g. 
U0, b, p). Note: For fitting, unknown initial conditions of variables 
are treated like unknown parameters.

 Simulate your model (e.g. integrate the differential equations).

 Look at the difference between data and model (more on that 
next).

 Change the values for some/all parameters, integrate model again, 
re-evaluate differences between model and data. 

 Keep doing this until changing parameters does not further reduce 
the differences between model and data.

 You (hopefully) found the best fit.        U bUV
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 We need to mathematically specify the quality of our 
fit, i.e. we need to define what we mean by “a model 
that describes data well”.

 The most general way to assess quality of model fit is 
by using the likelihood. This works with both in a 
frequentist/likelihood and Bayesian framework. 

 We will only look at one special case of likelihood-
based fitting, namely using least squares as a 
measure of model fit. 

9



 We have to quantify the difference between model 
and data to see if a given set of parameter values is 
better than another set.

 To do so, we specify an objective function (also 
known as loss/cost function) which quantifies the 
difference/agreement between the model and data.

 Usually, one sets up the problem such that larger 
discrepancies between model and data lead to a 
larger numerical value of the objective function. 
Then our goal is to minimize the objective function.
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 One way of specifying an objective function 
(quantifying differences between data and model) is 
the method of least squares. Here, each discrepancy 
(d) between a data point and a model result is 
penalized as d2, then all values summed.

 Example: Distance squared is 32+(-1)2=10 for 
scenario 1 and 22+(-2)2=8 for scenario 2.
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 It seems to make sense to increase penalty more than 
linearly as distance between data and model increases. 
Least squares does that.

 The objective function (least squares equation) is often 
called SSR=Sum of Square Residuals, RSS, SS, RSE, SE, …

 Least Squares is simple and frequently used. 

 It is a special case of the likelihood approach, making the 
assumption that errors are normally distributed with the 
same SD. 

 Variants of least squares, e.g. weighted least squares, 
robust least squares, etc. exist.
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 We want to fit dynamic, mechanistic models. These 
models could be stochastic. This makes model fitting 
(both theory and implementation) difficult.

 We therefore focus on models where the “true” 
dynamics of the system is described by a deterministic 
model, and variability in data only comes from errors in 
measurement.

datamodel
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 We will assume that errors 

◦ do not affect the dynamics of the system 

◦ are independent from each other  

◦ come from the same normal distribution, have the same 
magnitude/variance 

 Because of these features, the objective function is 
the least squares equation:
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 The basic scheme of fitting is simple:

◦ Run model 

◦ Compare model results with data using objective function 

◦ Change model parameters, run again 

◦ Keep doing this until you found the lowest possible value 
for the objective function.
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 The – sometimes enormous – challenge is how to do 
the fitting properly & efficiently. 

◦ There might be many parameters, too many to properly 
estimate.

◦ It might be difficult to estimate parameters in practice, even 
if in principle we can.

◦ Parameters have bounds.

◦ Data is censored.

◦ Data is on different scales.

◦ …
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 Most often in infectious disease modeling, the 
models that we fit are nonlinear, dynamical, and 
somewhat complicated.

 Analytical approaches don’t work. We need to do it 
numerically.

 Packages such as R come with solvers.

 Often, using these solvers can be tricky. A lot of trial 
and error is involved.
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 We need to vary parameters until we found the best fit.

 One approach is to systematically sample parameters 
and for each sample, run the simulation, compute 
objective function (=SSR/NLL/whatever you want to 
minimize), and see which parameter sample gives the 
best fit.

 Big disadvantage: You need to cover the space of 
parameter values rather densely, therefore even with 
smart sampling (e.g. Latin Hypercube Sampling), this 
approach is only feasible if you fit few parameters (<= 
approx. 4-5) and/or the ranges for the parameters are 
rather narrow.
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 One fitting approach is to start with one set of 
parameter values and explore the neighborhood of 
the objective function, then systematically move 
towards the parameter values that give the best fit.

 Big disadvantage: If your objective function is “ugly” 
this approach doesn’t work well.
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 Imagine that the least-squares difference between 
your data and your 2-parameter model looks like this 
(Rastrigin's Function).
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 Try many different initial conditions (choosing initial conditions 
using LHS might be a good idea). If for every condition the solver 
returns the same answer, you can be somewhat confident that it 
found the global best fit. 

 Start with a simple model with only few free parameters. Then 
slowly increase model complexity.

 Try different numerical solvers/methods. R has different built-in 
algorithms. A good suite of solvers is in the nloptr package. Others 
exist in different R packages.

 Some solvers/optimizers are called 
“global”, they are supposed to find the 
overall solution, even if you have a 
complicated optimization problem. 
But: even “global” solvers can get stuck 
in local minima or take too long.
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 Doing the fitting in a robust and efficient way is 
tricky.

 Many different numerical solvers exist. Packages like 
R, Matlab, Mathematica, etc. have built-in fitting 
routines.

 Different routines exist, they differ in how they go 
about finding the best fits. For a good introduction, 
see e.g. Bolker (2008) “Ecological Models and Data in 
R”. 

 My current favorite collection of R optimizers/fitting 
routines are the ones found in the nloptr package. 
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 Often, certain parameter values make no biological 
sense 

◦ Almost always, our parameters need to be positive

◦ Sometimes parameters are between 0 and 1 (e.g. when we 
model the efficacy of a drug)

◦ We often know that certain parameters are in a certain 
range
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 Bad: Ignore them. Fit the model and hope that the best fit is 
obtained for biologically sensible parameters (always check!). 
Problems: 

◦ During the optimization, the optimizer tries all kind of parameter 
values, even nonsensical ones. That can make the ode solver “blow up”.

◦ Without bounds, the range of possible values the solver needs to try is 
much larger, making the code run much longer.

 Meh: Impose bounds using “brute force”. Explicitly add 
bounds inside your code. It’s very flexible, but not too “clean”.   

 Good: Use optimizers that can deal with bounds (e.g. those in 
nloptr).

 Good: Transform parameters. Log-transform (log(p)) for 
positive parameters, Logit-transform (log(p/(1-p)) for 
parameters between 0 and 1, etc. 
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 Virus dynamics for an uncomplicated influenza infection 
can be reproduced by a simple model for an acute virus 
infections without an immune response.

Baccam et al. (2006), Journal of Virology
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 The data is average virus load during an uncomplicated 
influenza infection of humans (Hayden et al. 1996, JAMA)

 We fit the simple model to the data

 We fit the parameters b, p, c 

 We assume we know U0, I0, V0 and 

 We fit in log space. Why?

U bUV

I bUV I

V pI cV



 

 

 

Data from Hayden et al. (1996), JAMA
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 Get & open SISMID-U8-basic.r. Install the package nloptr
if you haven’t done so yet.

 Read the code to try and understand what’s going on. 
We fit the model to the data 4 times, with different rules 
for how to deal with the parameter bounds.

 Note that this program has 2 functions. The main 
program calls the fit routine/function “fitfunction”, this 
function in turn calls odeequations to integrate the 
differential equations.

 Run the program, interpret the results.

 Try different initial guess values for the parameters (b0, 
p0, clear0).
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 It might be that we have more parameters that we 
can possibly “identify” with the data at hand. 

 Strong non-identifiability (full degeneracy):

 Weak non-identifiability (partial degeneracy):
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 The problem of (non)-identifiability becomes worse 
for larger models with more parameters (over-
parameterization, over-fitting).

 Big models need lots of data to allow meaningful 
fitting!

 To prevent over-parameterization, one can:

◦ simplify models

◦ re-scale to get rid of some parameters

◦ fix some parameters based on prior biological knowledge

◦ try to obtain more/better data
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 Optional: Do a mathematical analysis to test  for 
structural/full/strong/theoretical identifiability (see e.g. Miao 
et al. (2011) SIAM Review “On Identifiability of Nonlinear ODE 
Models and Applications in Viral Dynamics”)

 Recommended (Required): Do test-runs with artificial data. 
◦ For fixed parameter values, use your model to simulate data. E.g. run 

deterministic model, add normal noise on top.
◦ Fit the model to the artificial data. You should get the best fit parameter 

values close to those that you actually used. If not, you have a problem. 
◦ Try this procedure for several parameter combinations.

 Doing test simulations can probe for both strong/structural 
and weak/practical identifiability.

 Only once you have tested/confirmed that you can in 
principle fit the model does it make sense to use it on real 
data!
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 Load SISMID-U8-testing.r 

 The model fits the parameters b, p and c.

 The model is fit to the artificial data (with or without 
noise). 

 Change the amount of noise added to the data, also 
change initial conditions and optimizer settings.

 What do you conclude about overfitting, is it a 
problem here? 
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 The fitting routine only returns one value for each 
parameter as the best fit value, i.e. a point estimate. 

 We don’t know what level of uncertainty is attached 
to each parameter value. E.g. is the average lifespan 
of an infected cell 2 days  1h or 2 days  1 day? 
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 We can obtain a measure of uncertainty by getting confidence 
intervals.

 Remember how a (95%) confidence interval is defined: If we 
repeated an experiment many times, in 95% of the 
experiments the CI constructed for each of the experiments 
would include our estimated parameter.

 We rarely repeat an experiment 100 times. But we can 
“simulate” repeated experiments by using the data we have. 

 Using this approach to get CI is called “bootstrapping”.

 Basic approach: resample data with replacement, perform fit 
for each data sample.

 Each fit will give best-fit values for parameters. Use 
distribution of best-fit parameter values to estimate 
confidence intervals.
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Original data, N=4
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 For each data/bootstrap sample, you will get a best 
fit and associated best-fit parameter values.

 Use the distribution of best-fit parameter values to 
estimate confidence intervals.

 Example: Sample data 1000 times, sort the 1000 
best-fit values for your cell-lifespan parameter. Entry 
25 and 975 will form your 95% CI bounds.

 R has an easy-to-use routine/package called boot
that does bootstrapping and can also compute CI in 
different ways.
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 Let’s try bootstrapping on the within-host flu data.

 Open SISMID-U8-boot.r, also install package boot.

 Try to understand as much as possible of the code (there is 
lots going on).

 While you are testing your model, set the number of 
bootstraps to a low value (e.g. Rmax=5).

 Once your model works, run it with a higher Rmax (e.g. 50). 
Be patient, the bootstrap takes a while.

 Make sure you understand the results.

 If your computer is fast enough: increase bootstrap samples 
(to 200 or more), rerun.

 Type ?boot.ci to learn about some of the methods to obtain 
CI.
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 If we have only one model, we can test if this specific 
model describes the data well. If it does, we can use 
it to estimate parameters, e.g. duration of 
infectiousness, fraction of asymptomatic, etc.

 Note: One could interpret each specific choice of 
parameter values as its own model, especially if a 
parameter is zero.

 Often, we want to test multiple specific 
mechanisms/hypotheses. To do so, we need to build 
multiple models and see which model best describes 
the data.
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 If we are certain we have a good model, we can use 
it to obtain parameter estimates.

 Often, we don’t know which model is good/best. 

 We can design different models and fit them to data, 
than compare how well different models fit

◦ Example: HCV & IFN model
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IFN might reduce 
production of virions

IFN might reduce susceptibility 
of cells to infection

Based on Neumann et al. (1998) Science
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 Check “by eye”. If it looks wrong/bad, it probably is.

 Are there systematic deviations between model and 
data?

 Do the best fit parameter values make biological 
sense? A model that is statistically the best but 
biologically unreasonable is pointless! 

 Statistical measures.
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 “Classical” approaches, e.g. F-test, Likelihood ratio.
◦ Commonly used.
◦ Limited. Cannot deal with non-nested models, awkward for multiple 

model comparison.  

 Information Theoretical Measures, for instance Akaike’s “An 
Information Criterion” (AIC).
◦ More general than classical approaches.
◦ Easy to compute/use.
◦ Theory/fundamentals are complicated. 

 Cross-validation, train/test approach.
◦ Closest to what we really care about (performance of model on 

independent data).
◦ Very flexible.
◦ Needs a decent amount of data to be able to withhold some for testing 

purposes.
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Nested:

a=w=k=r=0

Non-nested
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 Theory behind it is rather mathematical, but computation/application is easy.

 For least-squares fitting, AIC is given by:

 N=number of data points, SSR=sum of square residuals, K number of parameters 
that are fit (+1 for the implicit fitting of the standard deviation in the least squares 
approach).

 Lower AIC is better.

 SSR usually decreases for more parameters, so 1st term becomes smaller. 2nd term 
increases: AIC is a trade-off between good fit (low SSR) and parsimony (simple 
model, low K).

 For more details: 

◦ Anderson 2008, Springer “Model Based Inference in the Life Sciences”
◦ Burnham and Anderson (2003) “Model Selection and Multi-Model Inference“ 

ln( ) 2
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AIC N K
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 AIC doesn’t work well for small sample size

 Corrected AIC (AICc) does better:

 K = number of fitted parameters (for likelihood 
approach), K = number of explicitly fitted parameters 
(+1 for implicit fitting of SD in least squares 
approach). 
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 Absolute value of AIC is meaningless, only differences in 
AIC between models matter.

 For two models with AIC1>AIC2, define =AIC1-AIC2. 
Then you can apply the following guidelines:

◦ For <2, models are essentially equally good. 
◦ For >10, there is strong support for the model with smaller AIC. 
◦ In between is “gray area”.
◦ These are only “rules of thumb” there is – fortunately! – nothing 

like a 0.05 p-value.

 Since AIC is based on information theory, one should 
avoid using the terms “significant” and “reject”, which 
have clearly defined meanings in classical statistics.
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 AIC works for both nested and non-nested models.

 There is no arbitrary cutoff (e.g. p=0.05).

 It is easy to compare between more than 2 models.

 I recommend AIC over “classical” approaches (F-test/likelihood 
ratio). (Train/test even better if you got enough data).

 There are other quantities similar to AIC:

◦ Bayes Information Criterion (BIC)
◦ Deviance Information Criterion (DIC)
◦ Others (TIC, HQIC, QAIC)…

 AIC is widely used, but BIC and DIC are catching up.

 The field is very dynamic and under rapid development – lots of 
issues are not yet settled. (E.g. what to do if AIC tells you model 1 is 
better than model 2 but BIC tells you the models are similarly 
good?)

48



 Open SISMID-U8-aic.r. The code fits two different 
models to the virus load data:

 For model 1, we fit a and r. For model 2, we fit a, w
and k.

 Also try different initial conditions.

 Which model is statistically better supported by the 
data?
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 AIC or similar can suggest which model is “best”.

 Always be careful with interpretation:
◦ If the model with lowest AIC still doesn’t fit the data well, or produces 

biologically unrealistic parameter values, you should interpret this as 
“all the models you tested are poor”

◦ If several models fit the data well, maybe the best one can say is that 
they are all reasonable and one would need more data to further 
discriminate.

 For your best model, repeat all the steps you – hopefully – did 
before you did the stats:
◦ Check “by eye”. If it looks wrong/bad, it probably is.
◦ Are there systematic deviations between model and data?
◦ Do the best fit parameter values make biological sense? A model that is 

statistically the best but biologically unreasonable is pointless! 
◦ Use the model to simulate data. Then try to fit the model to the 

simulated data. If the model can’t fit that, something went wrong.
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 Fitting data to models is useful for testing 
hypotheses/mechanisms and obtaining parameter 
estimates.

 Fitting is can be tricky due to numerical issues, 
parameter bounds, censored data, correlations, multiple 
variable measurements…

 Especially for fitting, it is better to start with simple 
models and slowly include more complexity. The built-up 
of models should be driven by availability of data and the 
questions asked. The quality of the data provides the 
main limitation. The better/richer the data, the more 
complex the model may be without risk of overfitting.
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 Always perform reality checks!

◦ Do the variables and units match (e.g. RNA copies versus 
PFU)

◦ Are there biological reasons to fix or bound some 
parameters?

◦ What does it mean when the best fit occurs for a 
biologically unreasonable parameter but an almost equally 
good fit can be found for biologically reasonable parameter 
values?

 It’s not unlikely that you come away “empty-
handed”, i.e. you have to conclude that several 
alternative models fit the data equally well.
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 Data fitting is a huge area, one could spend a whole 
course just on that topic.

 We focused on least squares fitting. Other fitting 
approaches are possible, for instance maximum 
likelihood. ML is equivalent to least square fitting if 
errors are normally distributed. 

 Bayesian approaches are increasing in popularity. 
They are usually technically more difficult and take 
potentially very long to run. R and/or BUGS are 
commonly used.
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 Some further topics and references:

◦ Fitting of different datasets over varying conditions (e.g. 
with and without treatment); heterogeneous data (e.g. 
fitting virus and infected cells at the same time). Handel et 
al (2010) JRSI.

◦ Models with process noise (i.e. stochastic models). He et al. 
(2010) JRSI.

◦ Multilevel models that combine data from “similar but 
different” sources (e.g. different patients). Canini et al 
(2011) JVI.

◦ Bayesian approaches to fitting. O’Neill 2010 Stat Mech
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 A nice introduction that is not too technical and freely available online: 
“Fitting Models to Biological Data using Linear and Nonlinear Regression” 
at http://www.graphpad.com/manuals/prism4/RegressionBook.pdf 

 This is the manual to the fitting software Prism but most of the book is a general and very readable 
introduction to fitting. The graphpad.com webpage contains additional resources.

 The explanation of AIC weights as probabilities is wrong.

 Clark (2007) “Models for Ecological Data”: Comprehensive, discusses static 
and dynamic models, a mix of classic and Bayesian methods

 Bolker (2008) “Ecological Models and Data in R”: This book focuses mostly 
on static models, but it is very good in describing concepts, pitfalls, etc.

 Hilborn and Mangel (1997) "The Ecological Detective: Confronting models 
with data”: Less “hands-on” compard to Clark and Bolker, but has nice 
explanations of data fitting, model comparison, etc.

 A good (but technical) book for information theoretic approaches to 
model comparison is Burnham and Anderson (2003) “Model Selection and 
Multi-Model Inference“
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