Incorporating Infecting Pathogen Counts In Vaccine Trials

Dean Follmann

National Institute of Allergy and Infectious Diseases

Vaccine Trial

- Randomize at risk healthy volunteers to vaccine or placebo
- Follow them & count significant infections

Vaccine Efficacy (VE)

 What is the proportion reduction in some outcome on vaccine compared to placebo?

•
$$VE = 1 - \frac{Infection\ Rate\ on\ Vaccine}{Infection\ Rate\ on\ Placebo}$$

•
$$VE = 1 - \frac{hazard\ rate\ on\ vaccine}{hazard\ rate\ on\ palcebo}$$

Based on human infection yes/no . . .

HIV Infection Detection

 Volunteers are followed at regular intervals (e.g. 6 months for infection)

X Infection occurs

The swarm of HIV virions in an infected individual are not genetically identical

Founder Viruses Tell More Than Infection Yes/No

Malaria Sampling

Malaria life cycle

Sample blood stage parasites PCR amplification of CS region Then Next Gen sequencing.

NRNAN . . . EW NRNEN . . . TW

Plasmodium sporozoite

AA sequence of Parasite used in RTS,S/AS01 Vaccine

4 Founding Parasites

			Posit	ion		
		290	300	310	320	330
VACCINE		NRNVDENANANSAVKNNNNEEPSDKHIKEYLNKIQNSLSTEW				
Parasite	1	G	W		DG.	.G
Parasite	2	E	K			K
Parasite	3	E			D	
Parasite	4	E		F	D	
CONSENSUS	3	E	<i>.</i>		D	

Vaccine Trial Redux

- Randomize at risk healthy volunteers to vaccine or placebo
- Follow them & count # infecting pathogens

Placebo Volunteer

/ Cell infected

2 Virions infect cells

X = 2

Vaccine Volunteer

1 Virion infects a cell
Antibodies Y block infection

X=1

Both humans are infected, but the vaccine reduces founder viruses Useful information that the vaccine is doing something

Mechanisms of Vaccine Protection

- All-or-none vaccine: a proportion of vaccinees are protected for all exposures.
- Leaky vaccine: chance of human disease after exposure is like flipping a coin w.p. Q
 - Q_v in vaccine arm Q_P in placebo arm
- Leaky leaky vaccine: chance of pathogen infecting a cell is like flipping a coin w.p. P
 - $-P_v$ in vaccine arm P_P in placebo arm

Smith et al 1984 Struchiner et al 1990 Halloran et al 1991

Vaccine Efficacy From the Virion's View

- Exposure has N virions. Each has probability p
 (p∆) of infecting a cell in a placebo (vaccine)
 recipient.
- Model X = # founder viruses
 - Vaccine $E(X) = N p \Delta = \mu \Delta$
 - Placebo $E(X) = Np = \mu$

•
$$VE_V = 1 - \frac{E(X|Z=1)}{E(X|Z=0)} = 1 - \Delta_{e}$$

Per virion reduction in probability of infection Holds for any mixture over μ

Efficiency gain using X in lieu of I(X>0)

- Suppose X₁,...,X_n ~ Poisson (μ)
- Dumb Method
 - Convert X to Y = I(X>0)
 - Estimate P(X>0) by avg(Y)
- Smart Method
 - Estimate $\widehat{\mu}$ = avg(X)
 - Estimate P(X>0) by 1-exp(- $\hat{\mu}$)
- var (smart) /var(dumb) --- estimates of P(X>0)

$\mu = .25$	μ= 1	μ= 3
1.1	1.7	5.8

Monkey Studies

- Monkeys repeatedly challenged by exposing them to virus
- Assume X per challenge is Poisson($\mu \Delta^{Z}$)
- Likelihood contribution for a monkey infected on third challenge with 4 founder viruses.
 - P(X=0) P(X=0) P(X=4)
- Use maximum likelihood to estimate $\mu \Delta$
 - Form $\widehat{VE}_V = 1 \widehat{\Delta}$

Animal vs Human Experiments

- Animal Experiments
 - Control exposure: N virions from known pool
 - Identify all Xs, even when X=0
- Human Field Trials
 - N=inoculum size uncontrolled and unknowable
 - Exposure not crisply defined
 - Exposures unknown unless infection occurs
 - X=0 never seen

Casino Behavior

Placebo Queue

 $\omega(t)$ = Instantaneous risk of gambling

Vaccine Queue

Vaccine Roulette

Placebo Roulette

Cox Regression For Infection

A model for the instantaneous risk of infection

$$h(t) = \omega(t) P(X>0|Z=0)$$
 in placebo group
 $h(t) = \omega(t) P(X>0|Z=1)$ in vaccine group

Probability of infection, given exposure

Risk of INFECTION

Risk of EXPOSURE Same in both groups

Cox Regression 2

No matter the distribution of X

h(t) =
$$\omega(t) \{P_0 (X>0)\} \exp\{ \log \left(\frac{P_1(X>0)\}}{P_0(X>0)} \right) Z \}$$

= $h_0(t) \exp\{\beta Z\}$

•
$$\beta = \log\left(\frac{P_1(X>0)}{P_0(X>0)}\right)$$

• $exp(\beta)$ is the *per-exposure* reduction in the risk of infection

Truncated mean proportional to Untruncated mean

•
$$E(X) = \sum_{x=0}^{\infty} xP(X = x) = \sum_{x=1}^{\infty} xP(X = x)$$

 $= \sum_{x=1}^{\infty} xP(X = x) \frac{P(X>0)}{P(X>0)}$
 $= E(X|X>0) P(X>0)$

Thus

$$E(X \mid X>0) = \frac{E(X)}{P(X>0)}$$

Multiply

Multiplication produces a product estimate

•
$$e^{\widehat{\beta}} \frac{\overline{X_1}}{\overline{X_0}} \rightarrow \frac{P(X>0|Z=1)}{P(X>0|Z=0)} \frac{\frac{E(X|Z=1)}{P(X>0|Z=1)}}{\frac{E(X|Z=0)}{P(X>0|Z=1)}}$$

 \bar{X}_Z mean number of virions on Z among infected (i.e. X>0)

The Product Method Estimate of Δ

Multiplication produces a product estimate

•
$$e^{\widehat{\beta}} \frac{\overline{X_1}}{\overline{X_0}} \rightarrow \frac{P(X>0|Z=1)}{P(X>0|Z=0)} \frac{E(X|Z=1)}{P(X>0|Z=1)} = \frac{E(X|Z=1)}{E(X|Z=0)} = \Delta$$

 \bar{X}_Z mean number of virions on Z among infected (i.e. X>0)

- Truncated X data gets ratio of *untruncated* X^* means.
- X distribution unspecified
- Arbitrary intensity of exposure function ω (t)

Horvitz-Thompson Estimator

- Population of N objects $Y_1,...,Y_N$
- ullet Sample the ith object with probability π_i

$$\hat{\mu}_{HT} = \frac{1}{N} \sum_{i=1}^{N} \frac{Y_i}{\pi_i}$$

Estimator is unbiased

$$\mathsf{E}\left[\frac{1}{N}\sum_{i=1}^{n}\frac{Y_{i}}{\pi_{i}}\right] = \mathsf{E}\left[\frac{1}{N}\sum_{i=1}^{N}I_{i}\frac{Y_{i}}{\pi_{i}}\right] = \frac{1}{N}\sum_{i=1}^{N}E(I_{i})\frac{E(Y_{i})}{\pi_{i}}$$

Easy Asymptotics for Product Method

•
$$\log(\hat{\Delta}) = \log\left(e^{\hat{\beta}_{Cox}} \frac{\overline{X}_1}{\overline{X}_0}\right)$$

$$\log\left(e^{\hat{\beta}_{Cox}}\frac{\overline{X}_1}{\overline{X}_0}\right) = \hat{\beta}_{Cox} + \log(\overline{X}_1) - \log(\overline{X}_0)$$

- Delta-method $\log(\overline{X}_Z) \approx N\left(\log(\mu_Z), \frac{\sigma_Z^2}{I_Z \mu_Z^2}\right)$
- $\log(\hat{\Delta}) \sim N(\log(\Delta), \widehat{\operatorname{var}}(\hat{\beta}_{Cox}) + \frac{S_1^2}{I_1 \overline{X}_1^2} + \frac{S_0^2}{I_0 \overline{X}_0^2}$

Product Method w/ Exponential Dbn

Product estimate under exponential time to infection

$$\widehat{\Delta} = \left(\frac{I_1}{T_1} / \frac{I_0}{T_0}\right) \frac{\bar{X}_1}{\bar{X}_0} = \left(\frac{X_{1+}}{T_1} / \frac{X_{0+}}{T_0}\right)$$

where I_Z total number of infections on Z

T_z total follow-up time on Z

 X_{Z+} total number of virions on Z

 $ar{X}_Z$ mean number of virions on Z

Monkey Studies

• 10 on placebo: 1, 2, ... , 10

$$\widehat{\mu} = \frac{8 + 0 + 0 + 2 + \dots + 0 + 0 + 7}{1 + 3 + \dots 3} = \frac{179}{57} = \frac{X_{0+}}{N_0}$$

• 10 on vaccine 1, 2, ... ,10

$$\widehat{\mu} \Delta = \frac{0+0+4+0+...+0+...+0+0+1}{3+8+...2} = \frac{75}{113} = \frac{X_{1+}}{N_1}$$

$$\bullet \ \widehat{\Delta} = \left(\frac{X_{1+}}{N_1} / \frac{X_{0+}}{N_0}\right)$$

Product Method Analogous to Estimator from Monkey Studies

Product estimate under exponential time to infection

$$\widehat{\Delta} = \left(\frac{I_1}{T_1} / \frac{I_0}{T_0}\right) \frac{X_1}{\bar{X}_0} = \left(\frac{X_{1+}}{T_1} / \frac{X_{0+}}{T_0}\right)$$

$$N_1$$

where N₇ total number of challenges on Z

Product method replaces total number of challenges with total time at risk

Concerns

- Same ω (t) for all
 - Some may have more frequent exposures
- One dbn of X for all in same group
 - Some individuals have poorer mucosal barriers...more virions get in.
- Measured covariates can address concerns

Incorporating Covariates

- Covariates for time to exposure: W^E
 - e.g. I(>3 sexual partners last month at baseline)
 - $h(t) = h_0(t) \exp(Z \beta + \theta W^E) \dots product method$
- Covariates that impact X: W^X
 - e.g. damaged cells, immune response to vaccine, closeness of infecting virus to vaccine insert
 - Natural to have $E(X^*) = e^{\varphi_0 + \varphi_1 Z + \varphi_2 W + \varphi_2 W Z}$

X-weighted Cox Regression

X-weighted Cox score equation

$$\sum_{i=1}^{n} \int_{0}^{\infty} X_{i} \left\{ Z_{i} - \frac{\sum_{i=1}^{n} Z_{i} \Delta^{Z_{i}} I(Y_{i} \ge t)}{\sum_{i=1}^{n} \Delta^{Z_{i}} I(Y_{i} \ge t)} \right\} dN_{i}(t)$$

- Virtually identical to product method
- Above a functional of empirical processes. Asymptotics for $\hat{\Delta}$ from functional delta method.
- . . . but generalizes to handle both W^E & W^X .

Example HIV

- VAX003 randomized 2,546 Thai IDUs to HIV vaccine AIDSVAXB/E or placebo
 - 211 infections reported 105:106 V:P
- $VE_H = 1 e^{-.00245} = .002$

Product Method Estimate of VE_V

- 39 volunteers, # founder viruses determined
 - High risk (IDU) volunteers
 - Infection detection within 100 days
- Mean X in vaccine 1.33, placebo 1.67

$$VE_V = 1 - e^{-.00245} \frac{1.33}{1.67} = .21$$

95% delta-method CI(-.33, .52)

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 17, 2011

VOL. 365 NO. 20

First Results of Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Children

The RTS,S Clinical Trials Partnership*

Malaria Trial

- 15,460 children randomized to malaria vaccine versus control. Focus on 5-17 months
- Primary Analysis
 - Time to clinical malaria $VE_{H} = .542 95\% \text{ Cl } (.503,.578)$
- Secondary Analysis
 - Number of infecting parasites following exposure $VE_v = .612$ 95% CI (.574,.612)

Undercounting

 Two nearly identical infecting pathogens may be counted as a single infecting pathogen

```
Amplified
```

- e.g. NRNV DENANANSAVKNN NNEEP
- e.g. NRNVDENANANSAVKNNNEEEP
- Truly 2 founders but we only count 1
- Can show that VE_V is *conservative* if the undercounting process is the same in the vaccine and placebo groups.

Summary

Discussed a way to incorporate Founder virus information into vaccine trials

$$-VE_V = 1 - \frac{E(X|Z=1)}{E(X|Z=0)} = 1 - \Delta$$

- Ratio of untruncated means from truncated data.
 - Product : simple, minimal assumptions
 - Martingale: good for covariates that impact X
- VE_V can complement not supplant VE_H
- Extensions and connections are interesting

Incorporating Infecting Pathogen Counts In Sieve Analysis

Dean Follmann

National Institute of Allergy and Infectious Diseases

Pathogens are diverse

- A pathogen species can have distinct strains
 - Serotypes ---- different surface antigens
 - Genetics ---- different DNA or RNA
- Vaccines may protect differentially against the different strains
 - Vaccine induced antibodies may protect well against some strains but not others.
 - Vaccines may induce CD4 & CD8 T-cells with differential protection
 - HIV, malaria, Ebola

Pathogens are diverse

HIV multiple genotypes

Bowles et al PLoS One 2014

Rotavirus 5 major serotypes

Streptococcus pneumoniae

90+ serotypes

2 x K contingency table of infecting strains

Malaria Sampling

Malaria life cycle

Sample blood stage parasites PCR amplification of CS region Then Next Gen sequencing.

NRNAN . . . EW NRNEN . . . TW

Plasmodium sporozoite

AA sequence of Parasite used in RTS,S/AS01 Vaccine

of Founding Parasites

		Posit	ion		
	290	300	310	320	330
			1	1	1
VACCINE	NRNVDEN	ANANSAVKNN	NNEEPSDKHI	KEYLNKIQNS	LSTEW
Parasite 1	G	W		DG.	.G
Parasite 2					
Parasite 3	E			D	
Parasite 4	E		F	D	
CONSENSUS	E	 		D	

Table 1

Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

	Position							
VACCINE	290 NRNVDE	300 _ NANANSAVKNN	310 NNEEPSDKH	320 KEYLNKIQNS	330 SLSTEW	at	match in 93-302	total mismatches 290-331
Parasite 1	G	W		D G	G	0	0	5
Parasite 2	Ε	K			K	_1	1	3
Parasite 3	Ε			D		0	1	2
Parasite 4	E		F	D		0	1 	3
CONSENSUS	E			D		0	1	2

 $X_1, X_2 = (\text{# match at 320}, \text{# mismatch at 320}) = (1,3)$

Table 1

Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

	Position							
VACCINE	l	300 NANANSAVKNN	1	1	1	at		total mismatches 290-331
Parasite 1 Parasite 2 Parasite 3 Parasite 4	E E E		F	D	K	1 0 0		
CONSENSUS						0	1	2

X_a = # of infecting pathogens with 'a' total mismatches in 290-331

$$X_0, X_1, X_2, X_3, X_4, X_5, \dots = (0,0,1,2,0,1,0,0,0)$$

 $0.12345\dots$

Table 1

Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

	Position							
VACCINE	290 300 DV10 Region 	1	1	330 SLSTEW	match at	DV10 Regi match in 93-302	total mismatches	3
Parasite 2 Parasite 3	EK.		D	K	1 0	0 1 1 1	5 3 2 3	
CONSENSUS	E		D		0	1	2	

DV10 Region

 $X_1 X_2 = ($ # match DV10 region, # mismatch DV10 region) = (3,1)

New type of data

- Before, used the consensus strain
 - $-Y_a = 1$ if infected by `strain` a, else 0
 - $-e.g. (Y_1, Y_2) = (1,0) \text{ or } (0,1)$

- Now, get # infecting pathogens of each type
 - $X_a = number of `strains` of type a$
 - e.g. $(X_1, X_2) = (2,0)$ or (3,1)

Analysis of New Data

- Can we shoehorn this data with multiple infecting strains into existing methods for a single infecting strain?
- Can we develop new methods that explicitly account for multiple infecting strains?

Shoehorn: Within Cluster Resampling aka Multiple Outputation

- 1) Randomly pick a single pathogen for each infected person
 - Fred 4 unique strains: 1 match 3 mismatch
 - Pick a strain at random e.g. mismatch
- 2) Run a standard sieve analysis
 - -VE(match) = .65 VE(mismatch) = .51
- 3) Repeat many many many times and average.

Within Cluster Resampling Schematic

Resample #	Dataset		VE(match)	VE(mismatch)
1	D_1	+	→ 65.1	42.1
2	D_2		→ 51.2	53.4
3	D_3	_	→ 71.3	38.1
4	D_4	_	61.3	47.8
9999	D ₉₉₉₉	_	52.1	38.9
10000	D ₁₀₀₀₀		→ 63.2	54.1
AVERAGE			63.1	53.9

There is an easy way to get a p-value for within cluster resampling.

Easy Inference With WCR

 Each resample gives estimates of the parameter and its variance

$$-P_1V_1$$
, P_2V_2 , ... $,P_{10000}V_{10000}$

Calculate 3 Statistics

- Average the
$$P_{i,}$$
 - Average the V_{i} - Sample variance of the P_{i} - S^{2}

$$\frac{\bar{P}}{\sqrt{\bar{V}-S^2}}$$
 is standard normal on the null

Easy Inference With WCR

 Each resample gives estimates of the parameter and its variance

$$-P_1V_1$$
, P_2V_2 , ... $,P_{10000}V_{10000}$

Calculate 3 Statistics

- Average the
$$P_{i,}$$
 - Average the V_{i} - Sample variance of the P_{i} - S^{2}

$$\frac{\bar{P}}{\sqrt{\bar{V}-S^2}}$$
 is standard normal on the null

WCR

- WCR can be used whenever you have a statistical procedure P that requires 1 outcome per person, but you have multiple outcomes.
- Can be used in lieu of GEE
 - Like exchangeable with rho -> 1
 - One person, one vote
 - Opposite of working independence rho=0
 - One pathogen, one vote

WCR = t-test on cluster means

Test means of two groups X vs Y

$$y_{11} y_{12} y_{13} y_{14} \longrightarrow \overline{y}_1$$
 $y_{21} y_{22} \longrightarrow \overline{y}_2$

Sieving at DV10 Region

DV10 Region	RTS,S Vaccine # Events	Control Vaccine (% Incidence)	VE
Match	90 (2.5)	86 (5.6)	↑ 63.1
Mismatch	1091 (30.8)	822 (53.7)	53.9

Averaged over 1000s of synthetic data sets with 1 Strain per person

- Test of equal VE has p=.04
- Some evidence of sieving.

New Methods

- Let's develop new methods that explicitly use the counts
- Passive surveillance
 - $\text{ Get } (X_1, X_2) = (0,0) \text{ or } (3,1) \text{ or } (2,0) \text{ at end of study}$
- Active surveillance
 - Get time of infection detection and
 - $\text{ Get } (X_1, X_2) = (0.6) \text{ or } (3,1) \text{ or } (2,0)$

Passive and active surveillance

Passive Surveillance: Modern Data & Analysis

Group	X_1	X ₂
Vaccine	1	0
Vaccine	0	0
Placebo	3	0
Placebo	2	4
Vaccine	0	2
Placebo	0	0

Placebo group 5 mismatched out of 9

Vaccine group 1 mismatched out of 3

Passive Surveillance Single Pathogen Data & Analysis

Group	X_1	X ₂
Vaccine	1	0
Vaccine	0	0
Placebo	1	0
Placebo	0	1
Vaccine	0	1
Placebo	0	0

Placebo group Vaccine group

Placebo group 1 mismatched out of 2

1 mismatched out of 2

Passive Surveillance: Counts

- Assume bivariate negative binomial
 - $-X_{si}$ Poisson exp{b_i + B0 + B1 Z + B2 I(s=1) + B3 Z I(s=1) }
 - -s=1,2 i=1,...n subjects exp(b_i) ~ Gamma (μ , V)
 - Z= vaccine indicator
- Condition. $X_0 | X_0 + X_1 = N$ follows

Binomial(N,
$$\frac{e^{B1}}{1+e^{B1}}$$
) in placebo

Binomial(N,
$$\frac{e^{B1+B3}}{1+e^{B1+B3}}$$
) in vaccine

Passive Surveillance: Single Pathogen

- Identify most popular strain
 - -W=1 if $X_0>X_1$ or if $X_0=X_1$ flip a coin
- Then W follows

Binomial(1,
$$\frac{e^{B1}}{1+e^{B1}}$$
) in placebo

Binomial(1,
$$\frac{e^{B1+B3}}{1+e^{B1+B3}}$$
) in vaccine

Simulation

X~ bivariate negative binomial

 $-\exp(b_i) \sim Gamma(.5,v) v=0,1,2$

• Counts: Binomial (= GEE-I), WCR

• Infection: Bernoulli

SIMULATION VARIANCE OF Sieve effect B3							
V	Binomial (new)	Bernoulli (old)	WCR (shoehorn)	Binomial/ Bernoulli	Binomial/ WCR		
0	.066	.139	.083	2.1	1.3		
1	.072	.170	.109	2.4	1.5		
2	.047	.201	.090	4.2	1.9		

Sweet but

- Simulations were based on an idealized model
 - Nice bivariate negative binomial model
 - Nice leaky leaky mechanism
- Can show if vaccine impacts P(X>0) but no effect on X>0, (i.e. non-leaky leaky) WCR is better
 - Mechanism of protection important

Active Surveillance

- Let's consider field trials
 - Time to infection as endpoint
 - Count X₁, X₂ once infected
- Only observe $X_1, X_2 \mid X_1 + X_2 > 0$
- Do natural modification of the product method

The Product Method Estimate of Δ

Multiplication produces a product estimate

•
$$e^{\widehat{\beta}} \frac{\overline{X_{1S}}}{\overline{X_{0S}}} \rightarrow \frac{E(X_S|Z=1)}{E(XS|Z=0)} = \Delta_S$$

- \overline{X}_{Zs} mean number of strain s virions on Z among infected (i.e. $X_{Z1} + X_{Z2} > 0$)
- Truncated X data gets ratio of untruncated X^* means.
- X distribution unspecified
- Arbitrary intensity of exposure function ω (t)

Sieving Effect on Counts

Test equality of ratio of unconditional means

$$-\frac{E(X_1|Z=1)}{E(X_1|Z=0)} = \Delta_1 = \Delta_2 = \frac{E(X_2|Z=1)}{E(X_2|Z=0)}$$

 Equivalent to testing ratio of `truncated' means.

$$e^{\beta} \frac{\mu_{11}^t}{\mu_{01}^t} = e^{\beta} \frac{\mu_{12}^t}{\mu_{02}^t} \qquad \mu_{zs}^t = E(X_{zs} | X_{z1} + X_{z2} > 0)$$

Sieving Effect on Infections

- Let $Y_s = I(X_s > 0)$
- Test equality of ratio of unconditional means

$$- \frac{E(Y_1|Z=1)}{E(Y_1|Z=0)} = \frac{E(Y_2|Z=1)}{E(Y_2|Z=0)}$$

Equivalent to testing ratio of `truncated' means.

$$e^{\beta} \frac{\mu_{11}^t}{\mu_{01}^t} = e^{\beta} \frac{\mu_{12}^t}{\mu_{02}^t} \qquad \mu_{zs}^t = E(Y_{zs} | Y_{z1} + Y_{z2} > 0)$$

Simulation Setup

- Exponential gap times to exposures
- Bivariate negative binomial at each exposure.
 - Infected if $X_1+X_2>0$
- Evaluate product estimate
- Compare to WCR where we pick a pathogen at random

Results

	V	VCR VE	on injection	VE - 1- P(X/U	Z-1)/P(X/U Z-U)
Var	Mean(X)	% infected	In(1-VE ₁)	Ln(1-VE ₂)	Ln(1-VE ₁)/(1-VE ₂)
1	9.4	.29	512	-1.030	.514
			(.042)	(.089)	(.100)
0	2.1	.30	449	981	.532
			(.036)	(.094)	(.106)

VE on Infaction

MCD

Product Estimate VE on # pathogens VE = 1 - E(X|Z=1)/E(X|Z=0)

Var	Mean(X)	% infected	In(1-VE ₁)	Ln(1-VE ₂)	Ln(1-VE ₁)/(1-VE ₂)
1	9.4	.29	-1.660	-2.170	.508
			(.897)	(.932)	(.042)
0	2.1	.30	-1.550	-2.030	.527
			(.043)	(.091)	(.084)

New method can be more powerful

 $VF = 1_{-}D(Y > 0.17 - 1)/D(Y > 0.17 - 0)$

Weighted Estimating Equations

- Covariates W for active surveillance
 - Can incorporate risk factors for exposure
- Can allow pathogen distribution $F(X_1, X_2 | Z)$ to change over time
- Can allow sieve effect to vary with W
 - Vaccine blocks '1' in older people & blocks '2' in younger people
- Details forthcoming . . . someday

Table 1

Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

	Position								
VACCINE	1	300 _ NANANSAVKNN	310 NNEEPSDKH	I	330 SLSTEW	at	match in 93-302	total mismatches 290-331	3
Parasite 1 Parasite 2 Parasite 3 Parasite 4	E				K	0 1 0 0	0 1 1 1	5 3 2 3	
CONSENSUS	E			D		0	1	2	•

X_a = # of infecting pathogens with 'a' total mismatches in 290-331

$$X_0, X_1, X_2, X_3, X_4, X_5, \dots = (0,0,1,2,0,1,0,0,0)$$

0 1 2 3 4 5 # of mismatches

Consider the region 290-331. Assume

$$X_{zs} \sim Poisson\{ exp(A_s + Z*(B0 + B1s)) \}$$

		Placebo	
# mismatches	Vaccine Rate	Rate	Count
0	exp(A0 + B0 + B1 * 0)	exp(A0)	7
1	exp(A1 + B0 + B1 * 1)	exp(A1)	3
2	exp(A2 + B0 + B1 * 2)	exp(A2)	0
3	exp(A3 + B0 + B1 * 3)	exp(A3)	1
		•	•
43	exp(A43 + B0 + B1 * 43)	exp(A43)	0
Count	30	55	

Sieve effect

 For a given subject, conditional on Z and the number of infecting pathogens, X₊

$$X_1 X_2 ... X_{43} \sim Multinomial(X_+ p_1 p_2 ... p_{43})$$

$$p_s = exp(As + Z*(B0+B1 s))$$

$$p_s = \frac{exp(As + Z*(B0+B1 s))}{\sum_{s=1}^{43} exp(As + Z*(B0+B1 s))}$$

- Analogous to usual sieve methods with X₊ = 1
- May be hard to estimate with so many parameters
 - Redefine so there are fewer parameters
 - or

- Model has 43 nuisance parameters
 - Want to allow arbitrary dbn of WT viruses
- Under independence of subjects can condition on rows to eliminate them

# mismatches	Vaccine Rate	Placebo Rate	Count	Pr(Infection in vaccine infection)
0	exp(A0 + B0 + B1 * 0)	exp(A0)	7	exp(B0+B1*0)/(1+exp(B0+B1*0)
1	exp(A1 + B0 + B1 * 1)	exp(A1)	3	exp(B0+B1*1)/(1+exp(B0+B1*1)
2	exp(A2 + B0 + B1 * 2)	exp(A2)	0	exp(B0+B1*2)/(1+exp(B0+B1*2)
3	exp(A3 + B0 + B1 * 3)	exp(A3)	1	exp(B0+B1*3)/(1+exp(B0+B1*3)
•		•	•	
		•		
		•		
43	exp(A43 + B0 + B1 * 43)	exp(A43)	0	exp(B0+B1*43)/(1+exp(B0+B1*43)
Count	30	55		

Likelihood based on product of binomials (N,Y)

N	Pr(Infection in vaccine infection)	Y = # vaccine
7	exp(B0+B1*0)/(1+exp(B0+B1*0)	3
3	exp(B0+B1*1)/(1+exp(B0+B1*1)	1
0	exp(B0+B1*2)/(1+exp(B0+B1*2)	0
1	exp(B0+B1*3)/(1+exp(B0+B1*3)	0
•	•	
•		
	•	
0	exp(B0+B1*42)/(1+exp(B0+B1*42)	0

- May be able to relax independence assumption with GEE for correlated binomial data
- Analogous results obtains for active surveillance

Non-recurrent disease (e.g. HIV)

Sieve Parameter

per exposure sieve effect for untruncated data

$$\theta_{a,a'} = \frac{E(X_a|Z=1)/E(X_a|Z=0)}{E(X_{a'}|Z=1)/E(X_{a'}|Z=0)}$$

- Using the contingency table, we estimate ratios based on available data
 - At end of follow-up (passive)
 - At the time of infection (active)
 - Neither are at time of exposure

Sieve Parameter

Define the sieve parameters for active & passive surveillance

$$\frac{E(X_a^P|Z=1)/E(X_a^P|Z=0)}{E(X_{a'}^P|Z=1)/E(X_{a'}^P|Z=0)} \quad \frac{E(X_a^A|Z=1)/E(X_a^A|Z=0)}{E(X_{a'}^A|Z=1)/E(X_{a'}^A|Z=0)}$$

- Can show the *per-exposure* ratio of means $\theta_{a,a'}$ equals each of the above ratios
- Analogous to work by Gilbert

Acknowledgements

Betz Halloran, Peter Gilbert, Michael Sachs,

Erin Gabriel

Chiung-Yu Huang (JHU)

