Incorporating Infecting Pathogen Counts In Vaccine Trials

Dean Follmann

National Institute of Allergy and
Infectious Diseases

Vaccine Trial

- Randomize at risk healthy volunteers to vaccine or placebo
- Follow them \& count significant infections

Vaccine Efficacy (VE)

- What is the proportion reduction in some outcome on vaccine compared to placebo?
- $V E=1-\frac{\text { Infection Rate on Vaccine }}{\text { Infection Rate on Placebo }}$
- $V E=1-\frac{\text { hazard rate on vaccine }}{\text { hazard rate on palcebo }}$
- Based on human infection yes/no . . .

HIV Infection Detection

- Volunteers are followed at regular intervals (e.g. 6 months for infection)

X Infection occurs

The swarm of HIV virions in an infected individual are not genetically identical

Founder Viruses Tell More Than Infection Yes/No

Malaria Sampling

Sample blood stage parasites PCR amplification of CS region Then Next Gen sequencing.

NRNAN . . . EW
NRNEN... TW

AA sequence of Parasite used in RTS,S/AS01 Vaccine

[^0]
4 Founding Parasites

Vaccine Trial Redux

- Randomize at risk healthy volunteers to vaccine or placebo
- Follow them \& count \# infecting pathogens

Placebo Volunteer

2 Virions infect cells

$$
X=2
$$

Vaccine Volunteer

1 Virion infects a cell
Antibodies Y block infection

$$
X=1
$$

Both humans are infected, but the vaccine reduces founder viruses Useful information that the vaccine is doing something

Mechanisms of Vaccine Protection

- All-or-none vaccine: a proportion of vaccinees are protected for all exposures.
- Leaky vaccine: chance of human disease after exposure is like flipping a coin w.p. Q
- Q_{v} in vaccine arm Q_{p} in placebo arm
- Leaky leaky vaccine: chance of pathogen infecting a cell is like flipping a coin w.p. P
- P_{v} in vaccine arm $\quad P_{p}$ in placebo arm

Vaccine Efficacy From the Virion’s View

- Exposure has N virions. Each has probability p ($\mathrm{p} \Delta$) of infecting a cell in a placebo (vaccine) recipient.
- Model X = \# founder viruses
- Vaccine $E(X)=N p \Delta=\mu \Delta$
- Placebo $E(X)=N p=\mu$
- $\mathrm{VE}_{\mathrm{V}}=1-\frac{E(X \mid Z=1)}{E(X \mid Z=0)}=1-\Delta$

Per virion reduction in probability of infection
Holds for any mixture over μ

Efficiency gain using X in lieu of $\mathrm{I}(\mathrm{X}>0)$

- Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\mu)$
- Dumb Method
- Convert X to $Y=I(X>0)$
- Estimate $\mathrm{P}(\mathrm{X}>0)$ by $\operatorname{avg}(\mathrm{Y})$
- Smart Method
- Estimate $\widehat{\mu}=\operatorname{avg}(X)$
- Estimate $\mathrm{P}(\mathrm{X}>0)$ by 1-exp($-\widehat{\mu}$)
var (smart) $/ \operatorname{var}($ dumb $) \quad$--- estimates of $P(X>0)$

$\mu=.25$	$\mu=1$	$\mu=3$
1.1	1.7	5.8

Monkey Studies

- Monkeys repeatedly challenged by exposing them to virus
- Assume X per challenge is Poisson $\left(\mu \Delta^{Z}\right)$
- Likelihood contribution for a monkey infected on third challenge with 4 founder viruses.
$-P(X=0) P(X=0) P(X=4)$
- Use maximum likelihood to estimate $\mu \Delta$
- Form $\widehat{V E}_{V}=1-\widehat{\Delta}$

Animal vs Human Experiments

- Animal Experiments
- Control exposure: N virions from known pool
- Identify all Xs, even when $\mathrm{X}=0$
- Human Field Trials
- $\mathrm{N}=$ inoculum size uncontrolled and unknowable
- Exposure not crisply defined
- Exposures unknown unless infection occurs
- $X=0$ never seen

Casino Behavior

Placebo Queue
Placebo Roulette

$\omega(\mathrm{t})=$ Instantaneous risk of gambling
Vaccine Roulette
Vaccine Queue

Cox Regression For Infection

- A model for the instantaneous risk of infection

Risk of EXPOSURE
Same in both groups

Cox Regression 2

- No matter the distribution of X

$$
\begin{aligned}
h(t) & =\omega(t)\left\{P_{0}(X>0)\right\} \exp \left\{\log \left(\frac{\left.P_{1}(X>0)\right\}}{\left.P_{0}(X>0)\right\}}\right) Z\right\} \\
& =h_{0}(t) \exp \{\beta Z\}
\end{aligned}
$$

- $\beta=\log \left(\frac{\left.\mathrm{P}_{1}(\mathrm{X}>0)\right\}}{\left.\mathrm{P}_{0}(\mathrm{X}>0)\right\}}\right)$
- $\exp (\beta)$ is the per-exposure reduction in the risk of infection

Truncated mean proportional to Untruncated mean

- $\mathrm{E}(\mathrm{X})=\sum_{x=0}^{\infty} x P(X=x)=\sum_{x=1}^{\infty} x P(X=x)$

$$
\begin{aligned}
& =\sum_{x=1}^{\infty} x P(X=x) \frac{P(X>0)}{P(X>0)} \\
& =\mathrm{E}(\mathrm{X} \mid \mathrm{X}>0) P(X>0)
\end{aligned}
$$

- Thus

$$
E(X \mid X>0)=\frac{E(X)}{P(X>0)}
$$

Multiply

- Multiplication produces a product estimate
- $e^{\widehat{\beta}} \frac{\overline{X_{1}}}{\overline{X_{0}}} \rightarrow \frac{P(X>0 \mid Z=1)}{P(X>0 \mid Z=0)} \frac{\frac{E(X \mid Z=1)}{P(X>0 \mid Z=1)}}{\frac{E(X \mid Z=0)}{P(X>0 \mid Z=1)}}$
\bar{X}_{Z} mean number of virions on Z among infected (i.e. $\mathrm{X}>0$)

The Product Method Estimate of Δ

- Multiplication produces a product estimate
- $e^{\widehat{\beta} \frac{\overline{X_{1}}}{\overline{X_{0}}}} \rightarrow \frac{\overline{P(X>\theta+Z=1)} \frac{\frac{E(X \mid Z=1)}{P(X>0 \mid Z=1)}}{\frac{P(X>0 \mid Z=0)}{\frac{E(X \mid Z=0)}{P(X>0 \mid Z=1)}}}=\frac{E(X \mid Z=1)}{E(X \mid Z=0)}=\Delta}{}$
\bar{X}_{Z} mean number of virions on Z among infected (i.e. $\mathrm{X}>0$)
- Truncated X data gets ratio of untruncated X^{*} means.
- X distribution unspecified
- Arbitrary intensity of exposure function $\omega(\mathrm{t})$

Horvitz-Thompson Estimator

- Population of N objects Y_{1}, \ldots, Y_{N}
- Sample the ith object with probability π_{i}

$$
\hat{\mu}_{H T}=\frac{1}{N} \sum_{i=1}^{n} \frac{Y_{i}}{\pi_{i}}
$$

- Estimator is unbiased

$$
\mathrm{E}\left[\frac{1}{N} \sum_{i=1}^{n} \frac{Y_{i}}{\pi_{i}}\right]=\mathrm{E}\left[\frac{1}{N} \sum_{i=1}^{N} I_{i} \frac{Y_{i}}{\pi_{i}}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left(Y_{i}\right) \frac{E\left(Y_{i}\right)}{\pi_{i}}
$$

Easy Asymptotics for Product Method

- $\log (\hat{\Delta})=\log \left(e^{\hat{\beta} \operatorname{Cox}} \frac{\bar{X}_{1}}{\bar{X}_{0}}\right)$

$$
\log \left(e^{\hat{\beta}_{C o x}} \frac{\bar{X}_{1}}{\bar{X}_{0}}\right)=\hat{\beta}_{C o x}+\log \left(\bar{X}_{1}\right)-\log \left(\bar{X}_{0}\right)
$$

- Delta-method $\log \left(\bar{X}_{Z}\right) \approx N\left(\log \left(\mu_{Z}\right), \frac{\sigma_{Z}^{2}}{I_{Z} \mu_{Z}^{2}}\right)$
- $\log (\hat{\Delta}) \sim \mathrm{N}\left(\log (\Delta), \widehat{\operatorname{var}}\left(\hat{\beta}_{C o x}\right)+\frac{S_{1}^{2}}{I_{1} \bar{X}_{1}^{2}}+\frac{S_{0}^{2}}{I_{0} \bar{X}_{0}^{2}}\right.$

Product Method w/ Exponential Dbn

- Product estimate under exponential time to infection

$$
\widehat{\Delta}=\left(\frac{I_{1}}{T_{1}} / \frac{I_{0}}{T_{0}}\right) \frac{\bar{X}_{1}}{\bar{X}_{0}}=\left(\frac{X_{1+}}{T_{1}} / \frac{X_{0+}}{T_{0}}\right)
$$

where I_{Z} total number of infections on Z
T_{Z} total follow-up time on Z
X_{Z+} total number of virions on Z
\bar{X}_{Z} mean number of virions on Z

Monkey Studies

- 10 on placebo: 1, 2, ... ,10

$$
\widehat{\mu}=\frac{8+0+0+2+\ldots+0+0+7}{1+3+\ldots 3}=\frac{179}{57}=\frac{\boldsymbol{X}_{0+}}{\boldsymbol{N}_{\mathbf{0}}}
$$

- 10 on vaccine $1,2, \ldots, 10$

$$
\widehat{\mu \Delta}=\frac{0+0+4+0+\ldots+0+\ldots+0+1}{3+8+\ldots 2}=\frac{75}{113}=\frac{\boldsymbol{X}_{\mathbf{1}+}}{\boldsymbol{N}_{\mathbf{1}}}
$$

- $\widehat{\Delta}=\left(\frac{X_{1+}}{N_{1}} / \frac{X_{0+}}{N_{0}}\right)$

Product Method Analogous to Estimator from Monkey Studies

- Product estimate under exponential time to infection

$$
\widehat{\Delta}=\left(\frac{I_{1}}{T_{1}} / \frac{I_{0}}{T_{0}}\right) \frac{\bar{X}_{1}}{\bar{X}_{0}}=\left(\frac{X_{1+}}{T_{1}} / \frac{X_{0+}}{T_{0}}\right)
$$

where N_{z} total number of challenges on Z

Product method replaces total number of
challenges with total time at risk

Concerns

- Same ω (t) for all
- Some may have more frequent exposures
- One dbn of X for all in same group
- Some individuals have poorer mucosal barriers...more virions get in.
- Measured covariates can address concerns

Incorporating Covariates

- Covariates for time to exposure: W^{E}
- e.g. I(>3 sexual partners last month at baseline)
$-h(t)=h_{0}(t) \exp \left(Z \beta+\theta W^{\mathrm{E}}\right) \ldots$ product method
- Covariates that impact $\mathrm{X}: \mathrm{W}^{\mathrm{X}}$
- e.g. damaged cells, immune response to vaccine, closeness of infecting virus to vaccine insert
- Natural to have $\mathrm{E}\left(\mathrm{X}^{*}\right)=e^{\varphi_{0}+\varphi_{1} Z+\varphi_{2} W+\varphi_{2} W Z}$

X-weighted Cox Regression

- X-weighted Cox score equation

$$
\sum_{i=1}^{n} \int_{0}^{\infty} X_{i}\left\{Z_{i}-\frac{\sum_{i=1}^{n} Z_{i} \Delta^{Z_{i}} I\left(Y_{i} \geq t\right)}{\sum_{i=1}^{n} \Delta^{Z_{i}} I\left(Y_{i} \geq t\right)}\right\} d N_{i}(t)
$$

- Virtually identical to product method
- Above a functional of empirical processes. Asymptotics for $\widehat{\Delta}$ from functional delta method.
- . . . but generalizes to handle both $W^{E} \& W^{X}$.

Example HIV

- VAX003 randomized 2,546 Thai IDUs to HIV vaccine AIDSVAXB/E or placebo
- 211 infections reported 105:106 V:P
- $\mathrm{VE}_{\mathrm{H}}=1-e^{-.00245}=.002$

Product Method Estimate of VE_{V}

- 39 volunteers, \# founder viruses determined - High risk (IDU) volunteers
- Infection detection within 100 days
- Mean X in vaccine 1.33, placebo 1.67

$$
\mathrm{VE}_{\mathrm{V}}=1-e^{-.00245} \frac{1.33}{1.67}=.21
$$

95\% delta-method $\mathrm{Cl}(-.33, .52)$

The NEW ENGLAND JOURNAL of MEDICINE

First Results of Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Children

The RTS,S Clinical Trials Partnership*

Malaria Trial

- 15,460 children randomized to malaria vaccine versus control. Focus on 5-17 months
- Primary Analysis
- Time to clinical malaria

$$
V E_{H}=.542 \quad 95 \% \mathrm{Cl}(.503, .578)
$$

- Secondary Analysis
- Number of infecting parasites following exposure

$$
\mathrm{VE}_{\mathrm{V}}=.612 \quad 95 \% \mathrm{Cl} \quad(.574, .612)
$$

Undercounting

- Two nearly identical infecting pathogens may be counted as a single infecting pathogen

Amplified

- e.g. NRNVDENANANSAVKNNNNEEP
- e.g. NRNVDENANANSAVKNNNEEEP
- Truly 2 founders but we only count 1
- Can show that VE_{V} is conservative if the undercounting process is the same in the vaccine and placebo groups.

Summary

- Discussed a way to incorporate Founder virus information into vaccine trials

$$
-\mathrm{VE}_{\mathrm{V}}=1-\frac{E(X \mid Z=1)}{E(X \mid Z=0)}=1-\Delta
$$

- Ratio of untruncated means from truncated data.
- Product: simple, minimal assumptions
- Martingale: good for covariates that impact X
- VE_{V} can complement not supplant VE_{H}
- Extensions and connections are interesting

Incorporating Infecting Pathogen Counts In Sieve Analysis

Dean Follmann

National Institute of Allergy and
 Infectious Diseases

Pathogens are diverse

- A pathogen species can have distinct strains
- Serotypes ---- different surface antigens
- Genetics ---- different DNA or RNA
- Vaccines may protect differentially against the different strains
- Vaccine induced antibodies may protect well against some strains but not others.
- Vaccines may induce CD4 \& CD8 T-cells with differential protection
- HIV, malaria, Ebola

Pathogens are diverse

HIV multiple genotypes

Bowles et al PLoS One 2014

Rotavirus

5 major serotypes

Streptococcus pneumoniae

90+ serotypes

Ref: Gilbert et al 2001

Malaria Sampling

Sample blood stage parasites PCR amplification of CS region Then Next Gen sequencing.

NRNAN . . . EW
NRNEN... TW

AA sequence of Parasite used in RTS,S/AS01 Vaccine

[^1]
\# of Founding Parasites

	Position				
	290	300	310	320	330
	,	_1.	\|	\|	I
VACCINE	NRNV	ANSAV	EPSD	LNKI	
Parasite 1		W		D.	
Parasite 2	E				K.
Parasite 3	E			D	
Parasite 4	E		.	D.	
CONSENSUS	E.				

Table 1
Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

Table 1
Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

$$
\begin{aligned}
& X_{a}=\# \text { of infecting pathogens with 'a' total mismatches in 290-331 } \\
& X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, \ldots=\begin{array}{r}
(0,0,1,2,0,1,0,0,0 \\
012345
\end{array}
\end{aligned}
$$

Table 1
Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

Position

New type of data

- Before, used the consensus strain
$-Y_{a}=1$ if infected by `strain` a, else 0
-e.g. $\left(Y_{1}, Y_{2}\right)=(1,0)$ or (0,1)
- Now, get \# infecting pathogens of each type
$-X_{a}=$ number of 'strains' of type a e.g. $\left(X_{1}, X_{2}\right)=(2,0)$ or $(3,1)$

Analysis of New Data

- Can we shoehorn this data with multiple infecting strains into existing methods for a single infecting strain?
- Can we develop new methods that explicitly account for multiple infecting strains?

Shoehorn: Within Cluster Resampling aka Multiple Outputation

1) Randomly pick a single pathogen for each infected person

- Fred 4 unique strains: 1 match 3 mismatch
- Pick a strain at random e.g. mismatch

2) Run a standard sieve analysis $-\mathrm{VE}($ match $)=.65 \quad \mathrm{VE}($ mismatch $)=.51$
3) Repeat many many many times and average.

Within Cluster Resampling Schematic

Resample \#	Dataset	VE(match)	VE(mismatch)
1	D_{1}	\longrightarrow	65.1
2	D_{2}	$\longrightarrow 51.2$	42.1
3	D_{3}	\longrightarrow	53.4
4	D_{4}	\longrightarrow	
9999	D_{9999}	\longrightarrow	38.1
10000	D_{10000}	\longrightarrow	47.8
AVERAGE			63.2

There is an easy way to get a p-value for within cluster resampling.

Easy Inference With WCR

- Each resample gives estimates of the parameter and its variance
$-P_{1} V_{1}, \quad P_{2} V_{2}, \ldots, P_{10000} V_{10000}$
- Calculate 3 Statistics
- Average the P_{i},
- Average the V_{i}

- Sample variance of the P_{i}

\bar{P}

$\overline{\sqrt{\bar{V}-S^{2}}}$ is standard normal on the null

Easy Inference With WCR

- Each resample gives estimates of the parameter and its variance
$-P_{1} V_{1}, \quad P_{2} V_{2}, \ldots, P_{10000} V_{10000}$
- Calculate 3 Statistics
- Average the P_{i},
- Average the V_{i}

- Sample variance of the P_{i}

\bar{P}

$\overline{\sqrt{\bar{V}-S^{2}}}$ is standard normal on the null

WCR

- WCR can be used whenever you have a statistical procedure P that requires 1 outcome per person, but you have multiple outcomes.
- Can be used in lieu of GEE
- Like exchangeable with rho -> 1
- One person, one vote
- Opposite of working independence rho=0
- One pathogen, one vote

WCR = t-test on cluster means

- Test means of two groups X vs Y

$$
\begin{array}{ll}
\mathrm{x}_{11} \mathrm{x}_{12} \mathrm{x}_{13} \\
\mathrm{x}_{21} \mathrm{x}_{22} \\
\mathrm{x}_{31} & \bar{x}_{1} \\
& \bar{x}_{2} \\
& \bar{x}_{3} \\
\mathrm{y}_{11} \mathrm{y}_{12} \mathrm{y}_{13} \mathrm{y}_{14} \longrightarrow & \bar{y}_{1} \\
\mathrm{y}_{21} \mathrm{y}_{22} & \\
& \bar{y}_{2}
\end{array}
$$

Sieving at DV10 Region

DV10 Region	RTS,S Vaccine \# Events	Control Vaccine (\% Incidence)	VE		
Match	90	(2.5)	86	(5.6)	63.1
Mismatch	1091	(30.8)	822	(53.7)	53.9

- Test of equal VE has $p=.04$
- Some evidence of sieving.

New Methods

- Let's develop new methods that explicitly use the counts
- Passive surveillance
- Get $\left(X_{1}, X_{2}\right)=(0,0)$ or $(3,1)$ or $(2,0)$ at end of study
- Active surveillance
- Get time of infection detection and
$-\operatorname{Get}\left(X_{1}, X_{2}\right)=$ CQ, 2 or $(3,1)$ or $(2,0)$

Passive and active surveillance

Passive Surveillance: Modern Data \& Analysis

Group	X_{1}	X_{2}
Vaccine	1	0
Vaccine	0	0
Placebo	3	0
Placebo	2	4
Vaccine	0	2
Placebo	0	0

Placebo group 5 mismatched out of 9
Vaccine group 1 mismatched out of 3

Passive Surveillance Single Pathogen Data \& Analysis

Group	X_{1}	X_{2}
Vaccine	1	0
Vaccine	0	0
Placebo	1	0
Placebo	0	1
Vaccine	0	1
Placebo	0	0

Placebo group 1 mismatched out of 2
Vaccine group 1 mismatched out of 2

Passive Surveillance: Counts

- Assume bivariate negative binomial
$-X_{\text {si }}$ Poisson $\exp \left\{b_{i}+B 0+B 1 Z+B 2 I(s=1)+B 3 Z I(s=1)\right\}$
$-s=1,2 \quad i=1, \ldots n$ subjects $\exp \left(b_{i}\right) \sim$ Gamma (μ, V)
$-\mathrm{Z}=$ vaccine indicator
- Condition. $X_{0} \mid X_{0}+X_{1}=N$ follows Binomial($\mathrm{N}, \frac{e^{B 1}}{1+e^{B 1}}$) in placebo Binomial($\left.\mathrm{N}, \frac{e^{B 1+B 3}}{1+e^{B 1+B 3}}\right) \quad$ in vaccine

Passive Surveillance: Single Pathogen

- Identify most popular strain

$$
-W=1 \text { if } X_{0}>X_{1}, \quad \text { or if } X_{0}=X_{1} \text { flip a coin }
$$

- Then W follows

$$
\begin{aligned}
& \text { Binomial }\left(1, \frac{e^{B 1}}{1+e^{B 1}}\right) \quad \text { in placebo } \\
& \text { Binomial }\left(1, \frac{e^{B 1+B 3}}{1+e^{B 1+B 3}}\right) \quad \text { in vaccine }
\end{aligned}
$$

Simulation

- $X \sim$ bivariate negative binomial
$-\exp \left(\mathrm{b}_{\mathrm{i}}\right) \sim$ Gamma(.5,v) v=0,1,2
- Counts: Binomial (= GEE-I), WCR
- Infection: Bernoulli

SIMULATION VARIANCE OF Sieve effect B3

V	Binomial (new)	Bernoulli (old)	WCR (shoehorn)	Binomial/ Bernoulli	Binomial/ WCR
0	.066	.139	.083	2.1	1.3
1	.072	.170	.109	2.4	1.5
2	.047	.201	.090	4.2	1.9

Sweet but

- Simulations were based on an idealized model - Nice bivariate negative binomial model
- Nice leaky leaky mechanism
- Can show if vaccine impacts $P(X>0)$ but no effect on $X>0$, (i.e. non-leaky leaky) WCR is better
- Mechanism of protection important

Active Surveillance

- Let's consider field trials
- Time to infection as endpoint
- Count X_{1}, X_{2} once infected
- Only observe $X_{1}, X_{2} \mid X_{1}+X_{2}>0$
- Do natural modification of the product method

The Product Method Estimate of Δ

- Multiplication produces a product estimate
- $e^{\widehat{\beta}} \overline{\overline{X_{1 s}}} \rightarrow \frac{E\left(X_{s} \mid Z=1\right)}{E(X s \mid Z=0)}=\Delta_{s}$
- $\quad \bar{X}_{Z s}$ mean number of strain s virions on Z among infected (i.e. $X_{Z 1}+X_{Z 2}>0$)
- Truncated X data gets ratio of untruncated X^{*} means.
- X distribution unspecified
- Arbitrary intensity of exposure function $\omega(\mathrm{t})$

Sieving Effect on Counts

- Test equality of ratio of unconditional means

$$
-\frac{E\left(X_{1} \mid Z=1\right)}{E\left(X_{1} \mid Z=0\right)}=\Delta_{1}=\Delta_{2}=\frac{E\left(X_{2} \mid Z=1\right)}{E\left(X_{2} \mid Z=0\right)}
$$

- Equivalent to testing ratio of `truncated’ means.

$$
\beta \frac{\mu_{11}^{t}}{\mu_{01}^{t}}=\varepsilon^{\beta} \frac{\mu_{12}^{t}}{\mu_{02}^{t}}
$$

$$
\mu_{z s}^{t}=\mathrm{E}\left(\mathrm{X}_{\mathrm{zs}} \mid \mathrm{X}_{\mathrm{z} 1}+\mathrm{X}_{\mathrm{z2}}>0\right)
$$

Sieving Effect on Infections

- Let $Y_{s}=I\left(X_{s}>0\right)$
- Test equality of ratio of unconditional means

$$
-\frac{E\left(Y_{1} \mid Z=1\right)}{E\left(Y_{1} \mid Z=0\right)}=\frac{E\left(Y_{2} \mid Z=1\right)}{E\left(Y_{2} \mid Z=0\right)}
$$

- Equivalent to testing ratio of 'truncated’ means.

$$
e^{\beta} \frac{\mu_{11}^{t}}{\mu_{01}^{t}}=e^{\beta} \frac{\mu_{12}^{t}}{\mu_{02}^{t}} \quad \mu_{z S}^{t}=\mathrm{E}\left(\mathrm{Y}_{\mathrm{ZS}} \mid \mathrm{Y}_{\mathrm{Z} 1}+\mathrm{Y}_{\mathrm{Z2}}>0\right)
$$

Simulation Setup

- Exponential gap times to exposures
- Bivariate negative binomial at each exposure.
- Infected if $X_{1}+X_{2}>0$
- Evaluate product estimate
- Compare to WCR where we pick a pathogen at random

Results

	WCR V		VE on Infection	$\mathrm{VE}=1-\mathrm{P}(\mathrm{X}>0 \mid \mathrm{Z}=1) / \mathrm{P}(\mathrm{X}>0 \mid \mathrm{Z}=0)$	
Var	Mean(X)	\% infected	$\ln \left(1-\mathrm{VE}_{1}\right)$	$\operatorname{Ln}(1-\mathrm{VE} 2)$	$\left.\operatorname{Ln}(1-\mathrm{VE})_{1}\right) /(1-\mathrm{VE})$
1	9.4	. 29	-. 512	-1.030	. 514
			(.042)	(.089)	(.100)
0	2.1	. 30	-. 449	-. 981	. 532
			(.036)	(.094)	(.106)

Product Estimate VE on \# pathogens VE =1-E(X|Z=1)/E(X|Z=0)

Var	Mean (X)	\% infected	$\operatorname{In}\left(1-\mathrm{VE}_{1}\right)$	$\operatorname{Ln}\left(1-\mathrm{VE}_{2}\right)$	$\operatorname{Ln}\left(1-V E_{1}\right) /\left(1-V E_{2}\right)$
1	9.4	.29	-1.660	-2.170	.508
			$(.897)$	$(.932)$	$(.042)$
0	2.1	.30	-1.550	-2.030	.527
			$(.043)$	$(.091)$	$(.084)$

New method can be more powerful

Weighted Estimating Equations

- Covariates W for active surveillance
- Can incorporate risk factors for exposure
- Can allow pathogen distribution $\mathrm{F}\left(\mathrm{X}_{1}, \mathrm{X}_{2} \mid \mathrm{Z}\right)$ to change over time
- Can allow sieve effect to vary with W
- Vaccine blocks ' 1 ' in older people \& blocks ' 2 ' in younger people
- Details forthcoming . . . someday

Beyond Mismatch

Table 1
Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting parasites that could have been recovered from an infected volunteer in a vaccine trial along with the position-wise most popular sequence, i.e. the consensus sequence.

$X_{a}=$ \# of infecting pathogens with 'a' total mismatches in 290-331
$X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, \ldots=(0,0,1,2,0,1,0,0,0$
$012345 \ldots .$. . \# of mismatches

Beyond Mismatch

- Consider the region 290-331. Assume $X_{z s} \sim$ Poisson\{ $\left.\exp \left(A_{s}+Z^{*}(B 0+B 1 s)\right)\right\}$

\# mismatches	Vaccine Rate	Placebo Rate	Count	Sieve effect
0	$\exp (A 0+B 0+B 1$ * 0$)$	$\exp (\mathrm{AO})$	7	
1	$\exp (A 1+B 0+B 1 * 1)$	$\exp (\mathrm{A} 1)$	3	
2	$\exp (A 2+B 0+B 1 * 2)$	$\exp (\mathrm{A} 2)$	0	
3	$\exp (A 3+B 0+B 1 * 3)$	$\exp (\mathrm{A} 3)$	1	
	.	.	.	
.	.	-	.	
.	- ${ }^{\text {a }}$.	.	
43	$\exp (\mathrm{A} 43+\mathrm{B} 0+\mathrm{B1}$ * 43)	$\exp (\mathrm{A} 43)$	0	
Count	30	55		

Beyond Mismatch

- For a given subject, conditional on Z and the number of infecting pathogens, X_{+}
$X_{1} X_{2} \ldots X_{43} \sim \operatorname{Multinomial}\left(X_{+} p_{1} p_{2} \ldots p_{43}\right)$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{s}}=\exp \left(\mathrm{As}+\mathrm{Z}^{*}(\mathrm{~B} 0+\mathrm{B} 1 \mathrm{~s})\right) \\
& p_{\mathrm{s}}=\frac{\exp (\mathrm{As}+\mathrm{Z} *(\mathrm{BO}+\mathrm{B} 1 \mathrm{~s}))}{\sum_{s=1}^{43} \exp (\mathrm{As}+\mathrm{Z} *(\mathrm{~B} 0+\mathrm{B} 1 \mathrm{~s}))}
\end{aligned}
$$

- Analogous to usual sieve methods with $X_{+}=1$
- May be hard to estimate with so many parameters
- Redefine so there are fewer parameters
- or

Beyond Mismatch

- Model has 43 nuisance parameters
- Want to allow arbitrary dbn of WT viruses
- Under independence of subjects can condition on rows to eliminate them

\# mismatches	Vaccine Rate	Placebo Rate	count	Pr(Infection in vaccine \mid infection)
0	$\exp (\mathrm{AO}+\mathrm{BO}+\mathrm{B1} * 0)$	$\exp (\mathrm{AO})$	7	$\exp (B 0+B 1 * 0) /\left(1+\exp \left(B 0+B 1^{*} 0\right)\right.$
1	$\exp (A 1+B 0+B 1 * 1)$	$\exp (\mathrm{A} 1)$	3	$\exp (B 0+B 1 * 1) /(1+\exp (B 0+B 1 * 1)$
2	$\exp (\mathrm{A} 2+\mathrm{BO}+\mathrm{B} 1 * 2)$	$\exp (\mathrm{A} 2)$	0	$\exp (B 0+B 1 * 2) /(1+\exp (B 0+B 1 * 2)$
3	$\exp (A 3+B 0+B 1 * 3)$	$\exp (\mathrm{A} 3)$	1	$\exp \left(\mathrm{BO}+\mathrm{B1}{ }^{*} 3\right) /\left(1+\exp \left(\mathrm{BO}+\mathrm{B} 1^{*} 3\right)\right.$
.		.	.	
.		.	.	
43	$\exp (A 43+B 0+B 1 * 43)$	$\exp (A 43)$	0	$\exp (B 0+B 1 * 43) /(1+\exp (B 0+B 1 * 43)$
Count	30	55		

Beyond Mismatch

- Likelihood based on product of binomials (N, Y)

\mathbf{N}	$\operatorname{Pr}(\operatorname{lnfection}$ in vaccine \| infection)	$\mathbf{Y}=$ \# vaccine
7	$\exp \left(B 0+B 1^{*} 0\right) /\left(1+\exp \left(B 0+B 1^{*} 0\right)\right.$	3
3	$\exp \left(B 0+B 1^{*} 1\right) /\left(1+\exp \left(B 0+B 1^{*} 1\right)\right.$	1
0	$\exp \left(B 0+B 1^{*} 2\right) /\left(1+\exp \left(B 0+B 1^{*} 2\right)\right.$	0
1	$\exp \left(B 0+B 1^{*} 3\right) /\left(1+\exp \left(B 0+B 1^{*} 3\right)\right.$	0
.	.	
.	.	
.	.	
0	$\exp \left(B 0+B 1^{*} 42\right) /\left(1+\exp \left(B 0+B 1^{*} 42\right)\right.$	0

- May be able to relax independence assumption with GEE for correlated binomial data
- Analogous results obtains for active surveillance

Non-recurrent disease (e.g. HIV)

Sieve Parameter

- per exposure sieve effect for untruncated data

$$
\theta_{a, a^{\prime}}=\frac{E\left(X_{a} \mid Z=1\right) / E\left(X_{a} \mid Z=0\right)}{E\left(X_{a^{\prime}} \mid Z=1\right) / E\left(X_{a^{\prime}} \mid Z=0\right)}
$$

- Using the contingency table, we estimate ratios based on available data
- At end of follow-up (passive)
- At the time of infection (active)
- Neither are at time of exposure

Sieve Parameter

- Define the sieve parameters for active \& passive surveillance

$$
\frac{E\left(X_{a}^{P} \mid Z=1\right) / E\left(X_{a}^{P} \mid Z=0\right)}{E\left(X_{a^{\prime}}^{P} \mid Z=1\right) / E\left(X_{a^{\prime}}^{P} \mid Z=0\right)} \quad \frac{E\left(X_{a}^{A} \mid Z=1\right) / E\left(X_{a}^{A} \mid Z=0\right)}{E\left(X_{a^{\prime}}^{A} \mid Z=1\right) / E\left(X_{a^{\prime}}^{A} \mid Z=0\right)}
$$

- Can show the per-exposure ratio of means $\theta_{a, a^{\prime}}$ equals each of the above ratios
- Analogous to work by Gilbert

Acknowledgements

- Betz Halloran, Peter Gilbert, Michael Sachs, Erin Gabriel
- Chiung-Yu Huang (JHU)

[^0]: NRNVDENANANSAVKNNNNEEPSDKHIKEYLNKIQNSLSTEW

[^1]: NRNVDENANANSAVKNNNNEEPSDKHIKEYLNKIQNSLSTEW

