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Outline of Session 5

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (van der Laan, Price, Gilbert, 2016)
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Prospective Cohort Study Sub-Sampling Design
Nomenclature

• Terms used: case-cohort, nested case-control, 2-phase sampling

• Case-cohort sampling originally meant taking a Bernoulli random
sample of subjects at study entry for marker measurements (the
“sub-cohort”), and also measuring the markers in all disease cases
(Prentice, 1986, Biometrika)

• Nested case-control sampling is Bernoulli or without replacement
sampling done separately within disease cases and controls
(retrospective sampling)

• 2-phase sampling is the generalization of nested case-control sampling
that samples within discrete levels of a covariate as well as within case
and control strata (Breslow et al., 2009, AJE, Stat Biosciences)

• Source of confusion: Some papers allow case-cohort to include
retrospective sampling

• We restrict case-cohort to its original meaning
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The Cox Model with a Sub-Sampling Design

• Cox proportional hazards model

λ(t|Z ) = λ0(t)exp
{
βT0 Z (t)

}
• λ(t|Z ) = conditional failure hazard given covariate history until time t
• β0 = unknown vector-valued parameter
• λ0(t) = λ(t|0) = unspecified baseline hazard function

• Z are “expensive” covariates only measured on failures and subjects in
a random sub-sample

• i.e., Z = immune response biomarkers, measured at fixed time τ
post-randomization or at longitudinal visits
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Notation and Set-Up (Matches Kulich and Lin, 2004,
JASA)

• T = failure time (e.g., time to HIV infection diagnosis)

• C = censoring time

• X = min(T ,C ),∆ = I (T ≤ C )

• N(t) = I (X ≤ t,∆ = 1)

• Y (t) = I (X ≥ t)

• Cases are subjects with ∆ = 1

• Controls are subjects with ∆ = 0
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Notation and Set-Up (Matches Kulich and Lin, 2004,
JASA)

• Consider a prospective cohort of N subjects, who are stratified by a
variable V with K categories

• ε = indicator of whether a subject is selected for measurement of
immune responses Z (and they are measured)

• αk = Pr(ε = 1|V = k), where αk > 0

• (Xki ,∆ki ,Zki (t), 0 ≤ t ≤ τ,Vki , εki ≡ 1) observed for all marker
subcohort subjects

• At least (Xki ,∆ki ≡ 1,Zki (Xki )) observed for all cases
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Estimation of β0

• With full data, β0 may be estimated by the MPLE, defined as the
root of the score function

UF (β) =
n∑

i=1

∫ τ

0

{
Zi (t)− Z̄F (t, β)

}
dNi (t), (1)

where
Z̄F (t, β) = S

(1)
F (t, β)/S

(0)
F (t, β);

S
(1)
F (t, β) = n−1

n∑
i=1

Zi (t)exp
{
βTZi (t)

}
Yi (t)

S
(0)
F (t, β) = n−1

n∑
i=1

exp
{
βTZi (t)

}
Yi (t)
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Estimation of β0

• Due to missing data (1) cannot be calculated under the sub-sampling
design

• Most estimators are based on pseudoscores parallel to (1), with
Z̄F (t, β) replaced with an approximation Z̄C (t, β)

UC (β) =
K∑

k=1

nk∑
i=1

∫ τ

0

{
Zki (t)− Z̄C (t, β)

}
dNki (t)

• The double indices k , i reflect the stratification
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Estimation of β0

• The marker sampled cohort at-risk average is defined as

Z̄C (t, β) ≡ S
(1)
C (t, β)/S

(0)
C (t, β),

where

S
(1)
C (t, β) = n−1

K∑
k=1

nk∑
i=1

ρki (t)Zki (t)exp
{
βTZki (t)

}
Yki (t)

S
(0)
C (t, β) = n−1

K∑
k=1

nk∑
i=1

ρki (t)exp
{
βTZki (t)

}
Yki (t)
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Estimation of β0

• ρki (t) is set to zero for subjects with incomplete data, eliminating
them from the estimation

• Cases and subjects in the marker subcohort have ρki (t) > 0

• Usually ρki (t) is set as the inverse estimated sampling probability
(Using the same idea as the weighted GEE methods of Robins,
Rotnitzky, and Zhao, 1994, 1995)

• Different estimators are formed by different choices of weights ρki (t)

• Two classes of estimators (case-cohort and 2-phase)
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Example CoR Analysis: RV144 HIV-1 VE Trial

Haynes et al. (2012, NEJM) assessed in vaccine recipients the association
of 6 immune response biomarkers measured at Week 26 with HIV-1
infection through 3.5 years

• 2-phase sampling design: Measured Week 26 responses from all
HIV-1 infected cases (n = 41) and from a stratified random sample of
controls (n = 205 by gender ×# vaccinations × per-protocol)

Immune Response Variable Est. HR (95% CI) 2-Sided P-value

IgA Magnitude-Breadth to Env 1.58 (1.07–2.32) 0.02
Avidity to A244 Strain 0.90 (0.55–1.46) 0.66
ADCC to 92TH023 Strain 0.92 (0.62–1.37) 0.67
Neutralization M-B to Env 1.46 (0.87–2.47) 0.15
IgG to gp70-V1V2 Env 0.57 (0.37–0.90) 0.014
CD4 T cell Magn to 92TH023 1.17 (0.83–1.65) 0.37

Borgan et al. (2000, Lifetime Data Analysis) Cox model estimator II
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Case-cohort Estimators (Called N-estimators in Kulich and
Lin, 2004)

• The subcohort is considered a sample from all study subjects
regardless of failure status

• The whole covariate history Z (t) is used for all subcohort subjects
• For cases not in the subcohort, only Z (Ti ) (the covariate at the failure

time) is used

• Prentice (1986, Biometrika): ρi (t) = εi/α for t < Ti and
ρi (Ti ) = 1/α

• Self and Prentice (1988, Ann Stat): ρi (t) = εi/α for all t
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Case-cohort N-estimators

• General stratified N-estimator

• ρki (t) = εi/α̂k(t) for t < Tki and ρki (Tki ) = 1

• α̂k(t) is a possibly time-varying estimator of αk

• αk is known by design, but nonetheless estimating αk provides greater
efficiency for estimating β0 (Robins, Rotnitzky, Zhao,1994)

• A time-varying weight can be obtained by calculating the fraction of
the sampled subjects among those at risk at a given time point
(Barlow, 1994; Borgan et al., 2000, Estimator I)
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Two-phase Sampling Estimators (Called D-estimators in
Kulich and Lin, 2004)

• Weight cases by 1 throughout their entire at-risk period

• D-estimators treat cases and controls completely separately

• αk apply to controls only, so that αk should be estimated using data
only from controls

• Nested case-control estimators are the special case with one covariate
sampling stratum K = 1
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Two-phase Sampling D-estimators

• General D-estimator

ρki (t) = ∆ki + (1−∆ki )εki/α̂k(t)

• Borgan et al. (2000, Estimator II) obtained by setting

α̂k(t) =
n∑
i

εki (1−∆ki )Yki (t)/
n∑
i

(1−∆ki )Yki (t),

i.e., the proportion of the sampled controls among those who remain at
risk at time t

• the cch package in R (by Thomas Lumley and Norm Breslow)
implements the Cox model for case-cohort (N-estimators) and 2-phase
sampling (D-estimators) (code for using cch to analyze a data set is
provided at http://faculty.washington.edu/peterg/SISMID2016.html)
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Main Distinctions Between N- and D- Estimators

• D-estimators require data on the complete covariate histories of cases

• N-estimators only require data at the failure time for cases

• E.g., for the Vax004 HIV VE trial, the immune responses in cases were
only measured at the visit prior to infection, so N-estimators are valid
while D-estimators are not valid
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Main Distinctions Between N- and D- Estimators

• For N-estimators, the sampling design is specified in advance,
whereas for D-estimators, it can be specified after the trial
(retrospectively)

• D-estimators more flexible
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Gaps of Both N- and D- Estimators

Does Not Need Allows Outcome-
Full Covariate Dependent

Estimator Histories in Cases Sampling

N (Prosp. case-cohort) Yes No
D (Retrosp. 2-phase) No Yes

• For time-dependent correlates, none of the partial-likelihood based
methods are flexible on both points

• All of the methods require full covariate histories in controls
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (van der Laan, Price, Gilbert, 2016)
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Some Marker Sampling Questions to Consider Further

• Prospective or retrospective sampling?

• How much of the cohort to sample?

• Sampling design: Which subjects to sample?
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Prospective or Retrospective Sampling?

Prospective case-cohort sampling: Select a random sample for
immunogenicity measurement at baseline

• Advantages of prospective sampling
• Can estimate case incidence for groups with certain immune responses
• Can study correlations of immune response with multiple study

endpoints
• Straightforward to descriptively study the distribution of the immune

responses in the whole study population at-risk when the immune
responses are measured

• Practicality: The lab will know what subjects to sample as early as
possible, and there is one simple subcohort list
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Prospective or Retrospective Sampling?

Retrospective 2-phase sampling: At or after the final analysis, select a
random sample of control subjects for immunogenicity measurement

• Advantages of retrospective sampling
• Can match controls to cases to obtain balance on important covariates

• E.g., balanced sampling on a prognostic factor gains efficiency
(balanced sampling = equal number of subjects sampled within each
level of the prognostic factor for cases and controls)

• Can flexibly adapt the sampling design in response to the results of the
trial

• E.g., Suppose the results indicate effect modification, with VE >> 0 in
a subgroup and VE ≈ 0% in other subgroups. Could over-sample
controls in the ‘interesting’ subgroup.
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Prospective or Retrospective Sampling?

• For cases where there is one primary endpoint and it is not of major
interest to estimate absolute case incidence, retrospective sampling
may be typically referred
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How Many Controls to Sample?

• In prevention trials, for which the clinical event rate is low, it is very
expensive and unnecessary to sample all of the controls

• Vax004 trial vaccine recipients: 225 HIV infected cases; ≈ 3000
controls

• RV144 trial vaccine recipients: 41 HIV infected cases; ≈ 7000 controls

• Rule of thumb: Under the null hypothesis, a K : 1 Control:Case ratio
achieves relative efficiency of 1− 1

1+K compared to complete sampling

K Relative Efficiency
1 0.50
2 0.67
3 0.75
4 0.80
5 0.83
10 0.91

• Simulations useful for studying the trade-offs of different K under
alternative CoR hypotheses
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Which Controls to Sample?

Two-Phase Sampling

• Phase I: All N trial participants are classified into K strata on the
basis of information known for everyone: Nk in stratum k ;
N =

∑K
k=1 Nk

• Phase II: For each k , nk ≤ Nk subjects are sampled at random, and
the ‘expensive’ immune response biomarkers Z are measured for the
resulting n =

∑K
k=1 nk subjects

P. Gilbert (U of W) Session 5: Evaluating CoRs and Optimal Surrogates 07/2016 26 / 73



Which Controls to Sample?

Principle: Well-powered CoR evaluation requires broad variability in the
biomarker and in the risk of the clinical endpoint

• Can improve efficiency by over-sampling the “most informative”
subjects

• Disease cases (usually sampled at 100%)
• Rare or unusual immune responses; or rare covariate patterns believed

to affect immune response (e.g., HLA subgroups)

• Auxiliary Phase I variables measured in everyone are most valuable
when they predict the missing data (i.e., the biomarker of interest)

• In general, optimal sampling obtained with sampling probabilities
proportional to the cost-adjusted square-root variance of the efficient
influence function (Gilbert, Yu, Rotnitzky, 2014, Stat Med)
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (van der Laan, Price, Gilbert, 2016)
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Measurement Error Reduces Power to Detect a CoR

Illustrative Example

• ‘True’ CoR S∗ ∼ N(0, 1)

• ‘Measured CoR’ S = S∗ + ε, ε ∼ N(0, σ2)

• Infection status Y generated from Φ(α + βS∗)

with α set to give P(Y = 1|S∗ = 0) = 0.20 and β set to give
P(Y = 1|S∗ = 1) = 0.15

σ2 ranges from 0 to 2 (no-to-large measurement error)
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Measurement Error Reduces Power to Detect a CoR

Simple Simulation Study

• Consider a study with n = 500 participants

• Consider power of a logistic regression model to detect an association
between S and Y
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Measurement Error Reduces Power to Detect a CoR
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Deterioration of Power to Detect a CoR with Increasing Measurement Error
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Power Calculations for Assessing CoRs

• Ideally, the power/sample size calculations should explicitly account
for measurement error in the assay

• E.g., Gilbert, Janes, Huang (2016, Stat Med), implemented in the R
package CoRpower posted at
http://faculty.washington.edu/peterg/programs.html

• E.g., specify ρ ≡ σ2/σ2
obs , the proportion of inter-vaccinee variability of

the biomarker that is biologically relevant

• Rule of thumb: ρ =relative efficiency for estimating a CoR odds ratio
for the underlying perfect biomarker compared to the observed
biomarker (McKeown-Eyssen, Tibshirani, 1994, AJE)

• ‘Noise’ components of σ2
obs may be estimated, especially from

laboratory assay validation studies
• Within-vaccinee variability of replicates
• Between-vaccinee variability due to variability in the time from the last

immunization to marker sampling
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Power to Detect a CoR of HIV Infection in Vaccinees in
HVTN 505 (α = 0.05)

06/03/2014 • 20 

Method: 2-phase logistic regression (Holubkov and Breslow, 1997) 

V2 Benchmark 

V2 = magnitude of 

observed primary gp70-V1V2 

binding Ab Inverse CoR in  

RV144 (Haynes et al., 2012) 

 

rho = biologicallly relevant 

proportion of variance of the 

biomarker 

Power to Detect a CoR of HIV Infection                                    

in Vaccinees in HVTN 505 (alpha = 0.05) 
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (van der Laan, Price, Gilbert, 2016)
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Typical Correlates Assessments are Inefficient

• Broadly in epidemiology studies, biomarker-disease associations are
commonly assessed ignoring much data collected in the study

• That is, only subjects with the biomarker measured are included in
the analysis

• Standard analyses use inverse probability weighting of the biomarker
sampled subcohort, including all of the methods discussed so far

• These ubiquitously-used methods are implemented in the R package
cch (Breslow and Lumley)
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Typical Correlates Assessments are Inefficient

• Breslow et al.∗ urge statisticians/epidemiologists to consider using the
whole cohort in the analysis of case-cohort/2-phase sampling data

• Baseline data on demographics and potential confounders are typically
collected in all subjects (the Phase I data measured in everyone)

• These Phase I data are most valuable when they predict “missing”
data

∗Breslow, Lumley et al. (2009, AJE, Stat Biosciences)
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How to Leverage All of the Data?

• Question: How can we use the Phase I data to improve the
assessment of CoRs?

• One Answer: One approach adjusts the sampling weights used in the
standard analyses described above to obtain approximately efficient
estimators (e.g., Breslow et al., 2009, AJE, Stat Biosciences)
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Some Lessons Learned from Breslow et al. (2009)

1 Obtain ‘worthwhile’ efficiency gain for the CoR assessment if baseline
covariates can explain at least 40% of the variation in the
immunological biomarker (R2 ≥ 0.40)

2 If interested in interactions (evaluation of whether a baseline covariate
measured in everyone modifies the association of the biomarker and
the clinical endpoint), can obtain worthwhile efficiency gain with a
lower R2

3 Even if no gain for the CoR assessment, will usually dramatically
improve efficiency for assessing the associations of the Phase I
covariates with outcome

4 Therefore it may often be the preferred method, and all practicioners
should have methods accounting for all of the data in their analytic
toolkit

5 Additional research needed to make these more-efficient methods
work well for multivariate markers and for time-dependent markers
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How to Leverage All of the Data?

• Question: How can we use the Phase I data to improve the
assessment of CoRs?

• Another Answer: Use an efficient and double-robust method:
Inverse probability of censoring weighted targeted minimum loss based
estimation (IPCW-TMLE) (Rose and Van der Laan, 2011, Int J Biost)

Right-Censored Data Structure for Fixed Follow-up Time t

• V = Phase I information: Covariates (Z ,V0), T̃ = min(T ,C ),
∆ = I (T ≤ C ), Y ∗ = I (T̃ ≤ t)∆, Phase II sampling probability ε

• S = (A,W ) = Phase II information: Immune response biomarkers
measured at τ

• Focus on the marker A of interest; W = all other markers
• Repeat the analysis taking each element of W as A
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IPCW-TMLE: Target Parameters for Inference (Binary
Marker)

Full data structure X = (V , S) = (Z ,V0, T̃ ,∆,Y
∗,A,W )

General target parameters

• PX ,0 = true probability distribution of X

• MF = statistical model for PX ,0

• ΨF :MF → Rd = target parameter of the full-data distribution

• ψF
0 = ΨF (PX ,0) = target parameter of the true probability

distribution of X

Causal risk target parameters for a binary marker A

ψF
RD,0 = EX ,0 [EX ,0(Y |A = 1,W )− EX ,0(Y |A = 0,W )] (2)

ψF
RR,0 =

EX ,0 [EX ,0(Y |A = 1,W )]

EX ,0 [EX ,0(Y |A = 0,W )]

in each case with MF nonparametric
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IPCW-TMLE: Target Parameters for A Quantitative

• Idea from Alex Luedtke
• Make inferences about

maxl<uΨF
RD(PX ,0; l , u) = maxl<u{E [Y |A ≥ u]− E [Y |A ≤ l ]}

and

maxl<uΨF
RR(PX ,0; l , u) = maxl<u

{
E [Y |A ≤ l ]

E [Y |A ≥ u]

}
subject to a constraint on l and u such as that mentioned above

• Assesses whether any trichotomization of the marker A yields a
significant CoR, with the inference formally accounting for the
searching for the best-discriminating cut-points
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IPCW-TMLE: Data-Adaptive Target Parameters for A
Quantitative

• Following Van der Laan, Hubbard, and Pajouh (2013), define
data-adaptive causal contrasts using K -fold cross-validation

• Based on the first K − 1 data pieces, define two cut-points l1 < u1 for
A that maximize the IPCW-TMLE of |ΨF

RD(PX ,0; l1, u1)|, under a
constraint such as ≥ 5% cases with A < l1 and with A > u1

• Obtain IPCW-TMLE of ΨF
RD(PX ,0; l1, u1) from withheld K th piece

• Repeat for each set of K − 1 data pieces with the K th piece withheld,
yielding K maximizing cutpoints (l1, u1) · · · (lK , uK ) and K
corresponding ICPW-TMLE estimators on withheld data sets

• Define the data-adaptive causal risk difference parameter as

K∑
k=1

ΨF
RD(PX ,0; lk , uk),

estimated by the average of the IPCW-TMLE estimates
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Implementation to Obtain the IPCW-TMLE of E [Y |A]

Observed data i.i.d. copies of O = (Z ,V0, T̃ ,∆,Y
∗, ε, εA, εW )

• If the full data X were available, then existing TMLE procedures
could be used

• True target parameter PX ,0 defined wrt a specified full-data loss
function LF (PX )(X ): PX ,0 = argminPX∈MFE0L(PX )(X )

• TMLE Step 1: Construct an initial estimator P0
X ,n of PX ,0

• TMLE Step 2: Bias-correct P0
X ,n through an iterative algorithm to

yield P∗
X ,n, making the empirical average of the full-data efficient

influence curve at P∗
X ,n equaling zero, hence yielding an efficient

estimator
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Implementation to Obtain the IPCW-TMLE of E [Y |A]

• IPCW-TMLE proceeds in the same way, except in each step the
following IPCW-loss function is used in place of the full-data loss
function, where Πn(V ) is a nonparametric or TMLE estimator of the
marker sampling probability Π0(V ) = P(ε = 1|V )

L(PX )(O) ≡ ε

Πn(V )
LF (PX )(X )

• Step 1 (initial estimation of PX ,0) can be maximally flexible and
robust by using 2 or 3 superlearners for each element of PX ,0

1 Sampling probability estimator Πn(V )

2 Conditional risk EX ,0(Y |A,W )

3 “Exposure mechanism” g0(a|W ) ≡ PX ,0(A = a|W )
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Implementation to Obtain the IPCW-TMLE of E [Y |A]

Properties of IPCW-TMLE

• Πn(V ) guaranteed consistent for Π0(V ) if all the marker missingness
is by design

• Double-robustness property: IPCW-TMLE is consistent even if the
superlearner inconsistently estimates one (but not both) of
EX ,0(Y |A,W ) and g0(a|W )

• Consistent estimation of both terms implies the IPCW-TMLE is
asymptotically efficient
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Implementation to Obtain the IPCW-TMLE of E [Y |A]

• Ordinary superlearner (van der Laan, Polley, and Hubbard, 2007) may
be used to estimate each piece Π0(V ), EX ,0(Y |A,W ), g0(a|W ), e.g.,
implemented with the Superlearner R package, using learners that
allow specification of subject-specific weights εi/Πn(Vi )

• If there is substantial happenstance missingness of markers, then the
missing at random assumption may fail

• In this setting the superlearner for Πn(V ) may be helpful
• Neugebauer et al. (2013) demonstrated in marginal structural models

that replacing a standard strategy of logistic regression modeling of the
propensity score with superlearner reduced bias and improved efficiency
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Outline

1 Traditional CoR methods: Inverse probability weighted Cox model

2 Key issues
• Marker sampling design
• Marker measurement error

3 Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)

4 Estimated optimal surrogate (van der Laan, Price, Gilbert, 2016)

P. Gilbert (U of W) Session 5: Evaluating CoRs and Optimal Surrogates 07/2016 47 / 73



Introduction to an Optimal Surrogate

• Goal: Determine a surrogate outcome for a long-term outcome so
that future randomized or observational studies can restrict
themselves to only collecting the surrogate outcome

• Data from a clinical trial for developing a surrogate: n iid
observations of O = (W ,Z ,S ,Y )

• W = Vector of baseline covariates
• Z = Treatment assignment (e.g., 1=vaccine; 0=placebo)
• S = Vector of response variables/markers at an intermediate time

point τ
• Y = Outcome of interest at a final time point after τ (binary or

quantitative)

• Assume Z is randomized conditional on W
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Introduction to an Optimal Surrogate

• Define an optimal surrogate for the current trial as the function of
the data (W ,Z ,S) collected by the intermediate time point τ that
optimally predicts the final outcome Y

• A true parameter that we estimate with a targeted super-learner

• Goal: Use the estimated optimal surrogate in future clinical trials
for estimation and testing of a mean contrast treatment effect on Y

• Tackles the transportability problem of inferring the causal treatment
effect in a new trial without measuring clinical endpoints Y (e.g.,
addressed by Pearl and Bareinboim, 2011, 2012)
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Optimal Surrogate Framework vs. Other Frameworks

• vs. controlled/natural effects and VE curve frameworks:
Departs by being based on average causal effects identified from
standard assumptions in randomized trials

• vs. Prentice/valid replacement endpoint framework: Aligns in
that the optimal surrogate satisfies the Prentice definition

• Partially aligns with the Prentice criteria
• The best optimal surrogate will have treatment and candidate

surrogate highly predictive of Y , similar to Prentice criteria 1 and 2
• The framework posits a conditional mean version of Prentice criterion 3

for licensing correct inferences on Y in a new trial
• It handles equally well the general case where S varies or is constant in

the placebo group

• vs. meta-analysis framework: Aligns in its objective of inference on
the clinical treatment effect in a future study without collecting Y in
that study (Gail et al., 2000, Biostatistics)

• Departs in being based on a single (or few) trials and different
transportability assumptions
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Optimal Surrogate Framework

• Departs from all previous frameworks by defining the optimal
surrogate as an unknown target parameter

• Predicted values from the estimated optimal surrogate are used as the
actual surrogate endpoint

• In large samples this resulting surrogate must satisfy the Prentice
definition (under the standard assumptions of an RCT)

• New approach in treating the surrogate endpoint problem as a
supervised statistical learning problem

• Previous methods evaluate a pre-selected univariable or
low-dimensional vector candidate surrogate

• The optimal surrogate approach is robust in that asymptotically
consistent hypothesis tests and confidence intervals for the clinical
treatment effects in the current and future trials are obtained without
parametric modeling assumptions
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Statistical Formulation of Estimation of an Optimal
Surrogate

Observed data: iid copies O = (W ,Z , S ,Y ) ∼ P0

• W = vector of baseline covariates

• Z = binary treatment assigned at baseline

• S = vector of intermediate outcomes measured at a fixed time point τ

• Y = final univariate outcome measured at a later final time point

• Potential outcomes (S1, S0) and (Y1,Y0) under treatment assignment
Z = 1 and Z = 0

• Treatment Z is randomized conditional on W
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A Nonparametric Approach

• X = (W , S0,S1,Y0,Y1) = full-data structure with distribution PX ,0

• O = (W ,Z ,S ,Y ) = observed data with distribution P0 determined
by PX ,0 and g0(z | X ) = g0(z |W )

• The statistical model M for P0 makes at most some assumptions
about g0

• Known in a randomized trial

• M puts no assumptions on the marginal distribution of W nor on the
conditional distribution of (S ,Y ) given A,W
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Candidate Surrogate Outcomes

• Any real-valued function (W ,A,S)→ ψ(W ,A, S) ∈ IR is a candidate
surrogate, representing a measurement one can collect by time τ

• Question: How to define a good surrogate in terms of the true data
distribution P0?

• Starting point: We would like the surrogate Sψ ≡ ψ(W ,A, S) to be
valid in the actual study, according to the Prentice definition:

E0(Y1 − Y0) = 0 if and only if E0(Sψ1 − Sψ0 ) = 0,

where Sψz = ψ(W , z , Sz), for z ∈ {0, 1}
• Guarantees that an α-level test for Hψ

0 : E0(Sψ1 − Sψ0 ) = 0 is also an
α-level test for H0 : E0(Y1 − Y0) = 0
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Optimal Surrogate Outcome

• Criterion for ranking valid surrogates and defining a P0-optimal
surrogate: full-data mean squared error

ψ → MSEPX ,0
(ψ) ≡

∑
z

EPX ,0

{
g0(z |W )(Yz − ψ(W , z ,Sz))2

}
• Goal is to minimize the weighted mean square prediction error for

predicting Yz across z ∈ {0, 1}
• Given a class Ψ of possible surrogate functions ψ(), the P0-optimal

surrogate in this class is defined as

ψF
0 = arg min

ψ∈Ψ
MSEPX ,0

(ψ)
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Optimal Surrogate Outcome

Theorem 1.
The minimizer of ψ → MSEPX ,0

(ψ) over all functions
(W ,A,S)→ ψ(W ,A,S) is:

S̄0 = ψ0(W ,Z , S) ≡ E0(Y |W ,Z ,S)

Potential outcomes of this P0-optimal surrogate: S̄0,z = E0(Yz |W , Sz),
z ∈ {0, 1} and

EP0(S̄0,z |W ) = EP0(Yz |W )

• Implication: Under P0, a 95% confidence interval for the causal
effect of treatment on the P0-optimal surrogate is also a 95%
confidence interval for the causal effect of treatment on Y
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Conditions for a New Study P Under Which the
P0-Optimal Surrogate is also the P-Optimal Surrogate

Theorem 2.
Consider a new study with iid observations O∗ = (W ∗,Z ∗, S∗,Y ∗) with
distribution P, where Z ∗ is randomized conditional on W ∗

• Transportability assumption:
E [Y ∗|W ∗ = w ,Z ∗ = z , S∗ = s] = E [Y |W = w ,Z = z , S = s] for all
(w , z , s) in a support of (W ∗,Z ∗,S∗)

• Support assumption: A support of (W ∗,Z ∗, S∗) is contained in a
support of (W ,Z ,S)

Result: The P0-optimal surrogate equals the P-optimal surrogate: for all
(w , z , s) in a support of (W ∗,Z ∗, S∗),

EP(Y ∗ |W ∗ = w ,Z ∗ = z , S∗ = s) = EP0(Y |W = w ,Z = z ,S = s)

and

EP(Y ∗ |W ∗ = w ,Z ∗ = z ,S∗ = s) = EP(Y ∗z |W ∗ = w ,S∗z = s)
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Transportability Theorem Under a Prentice Criterion 3:
Application to a New Treatment Z ∗ 6= Z

• If the new study considers a new treatment Z ∗ 6= Z , then generally
the transportability theorem will not apply, because
E [Y ∗|W ∗ = w ,Z ∗ = z , S∗ = s] 6= E [Y |W = w ,Z = z , S = s]

Theorem 3.

• Transportability and Support assumptions: Same as in Theorem 2

• Prentice criterion 3 assumption for both settings:
E [Y ∗|W ∗,Z ∗,S∗] = E [Y ∗|W ∗, S∗] and E [Y |W ,Z ,S ] = E [Y |W , S ]

Result: The P-optimal surrogate equals the P0-optimal surrogate:

EP(Y ∗ |W ∗ = w ,Z ∗ = z ,S∗ = s) = EP0(Y |W = w ,Z = z , S = s)

EP(Y ∗ |W ∗ = w ,Z ∗ = z ,S∗ = s) = EP(Y ∗z |W ∗ = w , S∗z = s)

EP0(Yz |W = w , Sz = s) & EP(Y ∗z |W ∗ = w , S∗z = s) constant in z
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Super-learning of the P0-optimal surrogate

• Estimation of the P0-optimal surrogate is a standard prediction
problem

• Estimate E0(Y |W ,Z ,S) by a minimizer of the risk of a loss
• E.g., for Y binary, use log-likelihood loss

L(ψ)(O) = −{Y logψ(W ,A,S) + (1− Y ) log(1− ψ(W ,A,S))}

• Loss-based super-learning∗: yields an optimal estimator among any
given class of candidate estimators

• Oracle inequality for the cross-validation selector: the estimator is
asymptotically at least as good as any candidate in the set of candidate
estimators

∗van der Laan, Polley, and Hubbard (2007); van der Laan and Rose (2011)
textbook
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Dengue Phase 3 Trial Example

• Two randomized, double-blinded, placebo-controlled, multicenter,
Phase 3 trials of a recombinant, live, attenuated, tetravalent dengue
vaccine (CYD-TDV)

• CYD14: Asia-Pacific region (Capeding, et al., 2014, The Lancet)
• CYD15: Latin America (Villar et al, 2015, NEJM)

Trial Designs

• 2:1 randomization to vaccine:placebo

• Immunizations at months 0, 6, 12

• Primary follow-up from Month 13 to Month 25 (active phase of
follow-up)

• Primary endpoint: Symptomatic, virologically confirmed dengue
(VCD)
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Results on Vaccine Efficacy (Estimates from a Proportional
Hazards Model)

CYD14: V̂E = 56.5% (95% CI 43.8–66.4) CYD15: V̂E = 64.7% (95% CI 58.7–69.8)

CYD15 Trial (Villar et al., 2015, NEJM)CYD14 Trial (Capeding et al., 2014, The Lancet)
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Illustration of Estimated Optimal Surrogate Approach

Analysis carried out by Brenda Price

• Based on pseudo CYD14 and CDY15 simulated data sets

• Treat CYD14 as the current trial; CYD15 as the future trial

Notation and Variables

• Z = Vaccination status (1=vaccine; 0=placebo)

• Y = Disease outcome (1=VCD endpoint between Month 13 and 25;
0 = no VCD endpoint by Month 25)

• W = Baseline covariates: age, sex, baseline PRNT50 neutralization
titers to the 4 serotypes in the vaccine

• S = Month 13 PRNT50 neutralization titers to the 4 serotypes in the
vaccine
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Illustration of Estimated Optimal Surrogate Approach

Objectives

1 Estimate the P0-optimal surrogate via targeted super-learner in
CYD14, yielding ψTMLE

n (W ,A, S)

2 Estimate VE ∗ in CYD15 based on the estimated optimal surrogate
from CYD14 without using the CYD15 outcome data Y
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Estimates of Dengue Risks and VEs in CYD14 and CYD15

1 Estimate the P0-optimal surrogate via targeted super-learner in
CYD14, yielding ψTMLE

n (W ,A, S). Obtain:

Ê [Y |Z = z ] =
1

nz

nz∑
i=1

I (Zi = z)ψTMLE
n (Wi ,Zi = z , Si ), z = 0, 1

V̂E = 1− Ê [Y |Z = 1]/Ê [Y |Z = 0]

2 Estimate VE ∗ in CYD15 based on the estimated optimal surrogate
from CYD14 without using the CYD15 outcome data Y

Ê [Y ∗|Z ∗ = z ] =
1

n∗z

n∗z∑
i=1

I (Z ∗i = z)ψTMLE
n (W ∗

i ,Z
∗
i = z , S∗i ), z = 0, 1

V̂E
∗

= 1− Ê [Y ∗|Z ∗ = 1]/Ê [Y ∗|Z ∗ = 0]

Wald 95% CIs based on influence functions and the delta method
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Super-learner to Estimate the Optimal Surrogate

• Use the MSE loss function for the superlearner cross-validation
selector (matched to the optimality criterion for a surrogate)

Table: Input Variables for the Learning Algorithms

Input Variables

W : Baseline demographics age (range 2–14 years), sex
W : Baseline titers to the 4 serotypes inside the CYD-TDV vaccine,

min and max of the 4 titers, interactions with age
S : Month 13 titers to the 4 serotypes inside the CYD-TDV vaccine,

min and max of the 4 titers, interactions with age
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Super-learner to Estimate the Optimal Surrogate

Table: Learning Algorithms Employed

Learners
mean: E (Y |Z = z ,W , S) = βz for z ∈ {0, 1}
LR: Logistic regression with all input variables
step LR: Best LR model by AIC through a step-wise search
gam2: generalized additive modela with 2 degrees of freedom
gam3: generalized additive model with 3 degrees of freedom
gam4: generalized additive model with 4 degrees of freedom
discrete SLb

super-learnerb
a Hastie and Tibshirani (1990) textbook

b van der Laan, Polley, and Hubbard (2007); van der Laan and Rose
(2011) textbook
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Cross-validated Mean-Squared Errors (CV-MSEs): CYD14
and maximum baseline titers and interactions of age with baseline serotype titers and month 13
titers. The potential surrogates (S) included the month 13 (post-vaccination) serotype titers for all
four serotypes, including minimum and maximum serotype titers.

Figure 1: CV-MSE values with cross-validated 95% confidence intervals (CIs) for the vaccine and
placebo groups. Lower values indicate a better fit to the data. SuperLearner, discrete SuperLearner,
and the generalized additive model (degree 4) appear to do similarly well at predicting dengue
outcome.
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Figure 2: AUC loss values with cross-validated 95% CIs for the vaccine and placebo groups. Higher
values indicate a better fit to the data, and we see that SuperLearner does the best at predicting
dengue outcome, followed by 4th-degree generalized additive models for the vaccine and placebo
groups, respectively.
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The cross-validated MSE and risk values for the SuperLearner runs using MSE and AUC loss-based
approaches are shown in Figures 1 and 2, respectively. Comparison of the two sets of results
revealed that the two approaches yielded somewhat similar results, but had slightly different top
performing learners. For MSE loss generalized additive models are the best performer with the
lowest CV-MSE; for AUC loss the super-learner achieves the highest CV-AUC for the vaccine group
and the generalized additive model for the placebo group. The resulting super learners were used to
define the estimated optimal surrogate in all subsequent analyses.
Figure 3 displays the empirical reverse cumulative distribution function for the estimated optimal

2
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Empirical RCDFs for the Estimated Optimal Surrogate
Values: CYD14

Figure 3: Reverse CDF function for the estimated optimal surrogate (SuperLearner) constructed
using MSE loss and AUC based loss for the CYD14 trial. We see that, on average, cases have
higher predicted probability of VCD (optimal surrogate) values (red). Additionally, thresholds that
correctly classify almost all controls also correctly classify most cases. Though the actual values of
the estimated optimal surrogate differ between the loss fuctions, the relationship between thresholds
set in the controls and classification rates in the cases is similar.
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surrogates for the vaccine and placebo groups (Ψ̂n(W, 1, S), Ψ̂n(W, 0, S)) when fit in SuperLearner
using MSE loss and AUC loss, using all input variables available. On average, cases (VCD) had
a higher predicted probability of VCD (estimated optimal surrogate) than controls (no VCD).
Additionally, thresholds that correctly classified almost all controls also correctly classified almost all
cases. Specifically, the cutoff that correctly classified 95% of all controls also correctly classified 57%
of all cases among vaccinated individuals. However, the cutoff that correctly classified 95% of all
controls correctly classified only 35% of cases among individuals who received placebo, demonstrating
that the estimated optimal surrogate is more predictive for vaccinated individuals. We also note that
although the actual values of the estimated optimal surrogate differed between the loss functions,
the relationships between the thresholds set in the controls and classification rates in the cases were
similar.

For all observations in CYD14 we calculated Ψ̂n(Wi, Ai, Si) and then estimated the TMLE for
the primary target parameter of interest, vaccine efficacy (V̂ ETMLE), using Ψ̂n(Wi, Ai, Si). For
CYD14, V̂ E14

TMLE was 52% with a 95% confidence interval of 41% to 66%, and the cross validated
R2 (CV-R2) value for the estimated optimal surrogate (fit using AUC-based loss) for the vaccine and
placebo groups were 0.15 and 0.09, respectively. The cross validated AUC values for the estimated
optimal surrogate for the vaccine and placebo groups were 0.89 (95% CI 0.86, 0.91) and 0.76 (95%
CI 0.72, 0.8), respectively. Cross validated AUC was used to estimate AUC to account for the
estimated optimal surrogate being fit on the CYD14 data.

2.2 Applying the estimated optimal surrogate to a new study: CYD15 data

Once the estimated optimal surrogate Ψ̂n(W,A, S) has been defined in a particular study, it is often
desirable to use that newly defined surrogate as an endpoint in a future study, since the surrogate
is often easier, more timely, and less expensive to measure than clinical endpoints. Moreover, the

3
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Estimated Optimal Surrogate TMLEs of E [Y |Z = 1],
E [Y |Z = 0], and VE : CYD14

Parameter TMLE MLE using Y

E [Y |Z = 1] 1.8% (95% CI 1.5–2.1) 1.7% (95% CI 1.4–2.1)
E [Y |Z = 0] 3.7% (95% CI 3.1–4.4) 3.7% (95% CI 3.1–4.4)

VE = 1− E [Y |Z=1]
E [Y |Z=0] 52% (95% CI 41–66) 55% (95% CI 43–68)
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Using the Estimated Optimal Surrogate in CYD15

Calculate the estimated optimal surrogate endpoint ψTMLE
n (W ∗,Z ∗, S∗)

(built in CYD14) for all CYD15 participants– How well does it predict Y ∗?

estimated optimal surrogate can be used to estimate V E in a new vaccine efficacy trial when
the clinical endpoint is not available. We conducted this analysis for the CYD15 vaccine trial,
withholding the CYD15 VCD clinical endpoint data and using the estimated optimal surrogate
derived from CYD14 plus estimated optimal surrogate measurements in CYD15 to estimate V E in
CYD15. Importantly, however, VCD outcome data are available for CYD15, enabling us to evaluate
the performance of the estimated optimal surrogate in predicting V E in the new setting.

For this analysis, we used the CYD14 SuperLearner estimated optimal surrogate, calculated
for CYD15 study participants, to classify the CYD15 participants into cases and controls. In
particular, after estimating Ψ̂n(W,A, S) from the CYD14 data, we calculated Ψ̂∗n(W ∗, A∗, S∗) for
each observation in the new setting of CYD15, and compared these fitted values to the known
case and control outcomes Y . As shown in the reverse cumulative distribution function plots from
this analysis, the estimated optimal surrogate still provides some power to distinguish between the
cases and controls, with cases having higher average predicted probabilities of dengue (Figure 4).
Using this estimated optimal surrogate in CYD15 for the vaccine group, the threshold that correctly
classified 95% of controls correctly classified 36% of cases; for the placebo group, the threshold that
would correctly classified 95% of controls would correctly classified 24% of cases.

Figure 4: Reverse CDF function of the estimated optimal surrogate for CYD15 vaccine and placebo
recipients. The surrogate used here was the one fit from the CYD14 trial using AUC loss. We see
that, on average, CYD15 cases again have higher predicted probability of VCD (estimated optimal
surrogate) values. Additionally, thresholds that correctly classify most controls (no VCD) also
correctly classify a large number of cases.
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AUC Loss: CYD15

For CYD15, the AUC for the estimated optimal surrogate was 0.78 (95% CI 0.76, 0.8) for the
vaccinated group and 0.6 (95% CI 0.57, 0.64) for the placebo group. These findings indicate that an
estimated optimal surrogate generated from data obtained in an earlier and similar, yet independent,
clinical trial (CYD14) could be used to obtain a reasonably accurate classifier of VCD in a second
clinical trial, CYD15. Our results also imply that the estimated optimal surrogate for the vaccinated
group has stronger predictive ability than that for the placebo group, implying that the month 13
serotype titer values make a stronger contribution to predicting dengue in vaccine recipients than
placebo recipients.

Based on the estimated optimal surrogate values Ψ̂∗n(W ∗, A∗, S∗) for CYD15 vaccine and placebo
recipients, we then calculated the TMLE for vaccine efficacy (V̂ E15

TMLE) for CYD15 (which does

4

• Reduced classification accuracy for the new setting
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How Well Does the Surrogate Estimate VE∗ in CYD15?

Table: Estimation in CYD15 based on the estimated optimal surrogate
ψTMLE
n (W ∗,Z∗,S∗) built in CYD14 (not using outcome data Y ∗ in CYD15) vs.

estimation using Y ∗ in CYD15

Parameter ψTMLE
n MLE using Y ∗

E [Y ∗|Z = 1] 1.5% (95% CI 1.4-1.6) 1.8% (95% CI 1.4–1.9)
E [Y ∗|Z = 0] 3.3% (95% CI 3.2–3.4) 3.7% (95% CI 3.6–4.5)

VE ∗ = 1− E [Y ∗|Z=1]
E [Y ∗|Z=0] 54% (95% CI 44–67) 59% (95% CI 51–65)
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Compare Predictive Ability of Input Variable Sets

Table: Cross Validated AUCs∗ with 95% CIs

Input Set CYD14 Vaccine CYD14 Placebo CYD15 Vaccine CYD15 Placebo
(1) Demographics 0.61 (0.57, 0.66) 0.6 (0.55, 0.65) 0.54 (0.5, 0.58) 0.5 (0.47, 0.54)
(2) All baseline 0.89 (0.86, 0.92) 0.79 (0.76, 0.83) 0.58 (0.54, 0.61) 0.55 (0.51, 0.58)
(3) Month 13 titers 0.71 (0.67, 0.75) 0.63 (0.58, 0.68) 0.65 (0.62, 0.69) 0.57 (0.54, 0.61)
(4) All data 0.89 (0.86, 0.91) 0.76 (0.72, 0.8) 0.78 (0.76, 0.8) 0.6 (0.57, 0.64)

∗Cross-valided area under the ROC-curves (Van der Laan, Hubbard, and
Pajouh, 2013)

• The user can judge the tradeoff of accuracy and simplicity of the
estimated optimal surrogate
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Checking Assumptions of the Transportability Theorem

Transportability Assumptions

1 A∗ is randomized conditional on W ∗

2 E [Y ∗|W ∗ = w ,A∗ = a, S∗ = s] = E [Y |W = w ,A = a, S = s] for all
(w,a,s) in a support of (W ∗,A∗,S∗)

3 A support of (W ∗,A∗, S∗) is contained in a support of (W ,A,S)

• Condition 1 is met by the design of CYD15: both CYD14 and CYD15
randomized treatment

• Condition 2 could be examined by comparing estimates of
E [Y ∗|W ∗ = w ,A∗ = a,S∗ = s] = E [Y |W = w ,A = a, S = s]

• Condition 3
• CYD14 age range 2–14; CYD15 9–16 (assumption fails)
• All titer variables had the same minimum values
• Maximum titers also similar except Month 13 serotype 3 maximum

titers 14% higher for CYD15 and baseline serotype 1 (4) maximum
titers 18% (2%) greater for CYD15
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