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Risk

Joint:

risk1(s1, s0) = Pr{Y (1) = 1|S(1) = s1,S(0) = s0},
risk0(s1, s0) = Pr{Y (0) = 1|S(1) = s1,S(0) = s0}.

Marginal :

risk1(s1) = Pr{Y (1) = 1|S(1) = s1},
risk0(s1) = Pr{Y (1) = 1|S(1) = s1}.

causal effect predictiveness (CEP) function h(x , y) = 0 iff x = y
VE (s1, s0) = 1− risk1(s1, s0)/risk0(s1, s0) and
VE (s1) = 1− risk1(s1)/risk0(s1)
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Specific Correlate of Protection based on VE modification

A Specific Correlate of Protection (CoP) is a biomarker that
predicts vaccine efficacy in same setting as the evaluation trial:

I Average Causal Necessity (ACN) VE (s1) = 0 where S(1) = CB
level of S(0), or VE (s1, s0) = 0 where S(1) = S(0) [Frangakis
and Rubin, 2002]

I Average Causal Sufficiency (ACS) VE (s1, s0) > 0 when s1 > s0
CB level of S(0) [Gilbert and Hudgens, 2008]

I Large variation in VE over (S(1),S(0)), Wide effect
Modification (WEM) [Gilbert et al., 2011a, Wolfson and
Gilbert [2010]]
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Specific Correlate of Protection more generally

Rather than using the VE function, consider the CEP
h(x , y) = log(x/y) or x − y :

I ACN h(risk1(s1), risk0(s1)) = 0 where S(1) = CB level of S(0),
or h(risk1(s1), risk0(s1)) = 0

I ACS h(risk1(s1), risk0(s1)) < 0 for some s1 >> s0 or s1 >> the
CB level of S(0)

I WEM, Large variation in CEP over (S(1),S(0))
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Criteria Ranking

Several works have suggested that WEM is the primary criteria for a
CoP:

I WEM alone provides a target for vaccine improvement.
I ACS or ACN can hold alone for a useless CoP.
I ACS or ACN alone are not sufficient to have value as a CoP.

I WEM plus ACS is sufficient
I ACS plus ACN is sufficient, as this implies WEM
I ACN and ACS with VE > 0 when s1 − s0 > 0, is the strongest

minimal criteria and implies a consistent surrogate.
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Correlate Quality Example
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The problems:

1. Interpretation of the estimates as desired, i.e. identify the
desired estimands

2. Systematic missing data

3. Estimation of and inference on the risk estimands for
evaluation of biomarkers as CoP

4. Implementation of this estimation and inference
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Assumptions: identification of the desired
estimands
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No missing data

If we could observe all outcomes in all subjects:
{Yi ,Ti ,Ci ,Si ,W, X, |Zi = 1} and {Yi ,Ti ,Ci , Si ,W, X, |Zi = 0}
Where:

I Y is the observed outcome; Y = IT<C
I T is the time an event outcome would occur, observed or not
I C is the time on trial or prior to an even driven outcome
I S in the intermediate outcome measured before or at time τ
I W, X are the baseline characteristics for subjects
I Z is the observed randomization assignment

We could use standard methods of estimation, but we would still
have problem 1. In order to link the observed S to S(1), even if we
observe S|Z = 1, requires assumptions.
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Assumptions for Identification: Set 1

I A1: Stable unit treatment value assumption (SUTVA) and
consistency

I A2: Ignorable treatment assignment

A3 may not be needed in all cases. Under A1-A2 alone what we
observe in the vaccine arm, are the potential outcomes of interest
{Y (1), S(1), . . .}
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Assumptions for Identification: Example 1

For example: For a clinical outcome of HPV wart recurrence by 1
year and the CoP of interest HPV DNA detection by 6 weeks, post
vaccination in those known to be infected prior to vaccination

I 6 weeks post in the vaccine arm is S(1); S(0) is the placebo
arm under A1&A2

I 1 year post in the vaccine arm is Y(1); Y(0) in the placebo arm
under A1&A2

I There is no need for A3, if there is recurrence within 6 weeks,
there is DNA detection within 6 weeks. So, S(1) and S(0) are
still observable.

I A different assumption may be needed that vaccination had no
impact on risk of death before 6 weeks. However, this is a
much more plausible assumption than the vaccine having no
impact on the desired clinical outcome
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Assumptions for Identification: Example 2

A3 is needed when Y(1) can occur before the measurement of S(1),
and alter S(1) in some way
For example: HIV vaccine, Y infection status at 1 year, S immune
response at 6 weeks post vaccination

I 6 weeks post in the vaccine arm is S(1); S(0) is the placebo
arm under A1&A2

I 1 year in the vaccinated the observed infection status is Y(1);
Y(0) in the placebo arm under A1&A2

I When infection occurs prior to 6 weeks, S is undefined, and
therefore that subject must be removed.

I The assumption that vaccination had no impact on risk of
death before 6 weeks is likely still needed, however, often
ignored.
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Assumptions for Identification: Set 2

I A3: Equal individual clinical risk up to time τ , T (1) < τ if and
only if T (0) < τ

I A4: Case CB, S(0) = Q, some constant Q for all subjects
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Assumptions for Identification

Under assumption A1-A3 alone we can identify the marginal risk
estimand in the vaccine arm:

I risk1(s1)

Under assumption A1-A4 we can identify the joint and marginal risk
estimand in the vaccine arm:

I risk1(s1) = risk1(s1, s0)

The A1-A4 assumptions allow for identification of risk estimand in
vaccinated subjects alone (CoR analysis):

We are still missing all the S(1) for all placebo/control
subjects.
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Systematic missing data
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BIV, BIP, CPV

Follmann [2006] introduced two trial augmentations for observing or
imputing the missing S(1) values, assuming constant biomarker:

I Baseline irrelevant vaccination, (BIV) vaccinating all subjects
with a different vaccine prior to randomization and using this
response to predict S(1) for the placebo arm

I Baseline immunogenicity predictor, (BIP) measuring baseline
variables that are predictive of S(1)

I Close-out placebo vaccination, (CPV) at the close of the trial
vaccinate those subjects that have not dropped-out or had an
observed event
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BIV, BIP assumptions

BIV is a special form of BIP:

I BIV are assumed to be independent of outcome conditional on
S(1). For the BIV response W, we can assume Y⊥W |S(1),

I While a BIP, W, should be considered for inclusion in the risk
model.

When BIP or BIV alone are used, risk model testing is very limited.
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Assumptions CPV

Assumptions for CPV:

I Individual time constancy of the immune response distribution,
S(1) = Sc(1) almost surely.

I No infections in the uninfected placebo group during the
close-out period, Pr{Y (0)c = 0|Y (0) = 0} = 0.

Where SC (1) is the measurement taken τ time after closeout
vaccination and Y C is the indicator of observed event during the
closeout period. The second assumption only needed in event-driven
settings same as A3.
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Extensions to BIP and CPV

Gabriel and Follmann [2016] introduce several augmented trial
designs that extend Follmann [2006]:

I Baseline measurement of the candidate correlate (BSM)
I Close out vaccination, or treatment, of all placebo or control

subjects (CCT)
I Run-in vaccination of all subjects
I Step-wedge and Cross-over trials
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BSM, BIP, CCT Augmentations
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Assumptions BSM

Assumptions for BSM to induce CB:

I Individual time constancy of the intermediate response from
baseline to time τ after randomization under control,
SB = S1(0) almost surely.

When this assumption holds, for the candidate correlate
S = Sτ − SB , S(0) = 0 for all subjects, i.e. Case CB, assumption A4
will hold. The immune response to malaria antigen during the dry
season, would be an example of a BSM measurement that should
not change.
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CCT

Assumptions for CCT:

I Individual time constancy of the intermediate response at time
τ post treatment under previous control St(0, 1) = S1(1)
almost surely.

Where St(0, 1) = SC is the measurement taken τ time after closeout
vaccination of those subjects previously on control for 1 period. A
immuno-therapy vaccine in cancer is an example of a setting where
CCT could be used, as all subjects have cancer, crossing over all
placebo subjects over at the end of the trial is possible.
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Run-in

Figure: image
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Assumptions Run-in

Assumptions for Run-in:

I Distributional time constancy of clinical outcome after one
period of active treatment within all subgroups defined by the
intermediate response, (Y1(z)|S(1) = s1, S(0) = s0) =d

(Y2(1, z)|S(1) = s1, S(0) = s0) for all s1 and s0 and z ∈ {0, 1}
I Individual time constancy of the intermediate response any

treatment regardless of previous treatment SB(1) = S1(1) and
SB = S1(0) almost surely.

Although this might seem implausible, I am currently working in
malaria vaccines where this is very plausible.
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Run-in Example
Malaria vaccine in a seasonal driven malaria endemic area:

I Enrolling, measuring SB and vaccinating all subjects at the end
of the dry season during year 1 and measuring SB(1) τ after
vaccination

I As current vaccine has short lived immune response and
efficacy, allowing for a wet and dry season for wash out will
adequately reduce the immune responses and efficacy. As
subjects are exposed every year, a vaccination should not
increase immune responses in a way that a previous year’s
worth of repeated exposure does not.

I Randomize and vaccinate subjects at the end of the dry season,
measure S(1) and S(0) τ time after vaccination.

I When assumptions hold, all the intermediate counterfactual
measurements are obtained

I We can directly test the Run-in assumption 2, and when it does
not hold we can perfectly model the use of SB(1) as a BIP
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Run-in Example

Figure: image

29 / 82



Estimation and Inference
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General Risk Definition

Joint:

risk1(s1, s0) = g [Fs0,s1{Y (1)|S(1) = s1, S(0) = s0}],
risk0(s1, s0) = g [Fs0,s1{Y (0)|S(1) = s1, S(0) = s0}].

Marginal :

risk1(s1) = g [Fs1{Y (1)|S(1) = s1}],
risk0(s1) = g [Fs1{Y (0)|S(1) = s1}].
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Time-dependent Risk Definitions

Many Ways to Define Risk in this Setting:

riskCDF
z (t|s1) ≡ Pr(T (z) ≤ t|S(1) = s1,T (1) > τ,T (0) > τ)

or based on the hazard function,

riskHZ
z (t|s1) =

∫
t 1− riskCDF

z (t|s1)
1− riskCDF

z (t|s1) .

riskHZ
z (t|s1) conditions on being at risk at time t

VE (t|s1) = 1− risk1(t|s1)
risk0(t|s1)
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Constant Shape Weibull model for risk

λ = 1/exp(β0 + β1 ∗ z + β2 ∗ s1 + β3 ∗ s1 ∗ z)

riskCDF
z (t|s1)

= 1− exp(−(t ∗ λ)a)

riskHZ
z (t|s1)

= a
λ
×
(

t
λ

)(a−1)
.

with riskHZ
z (t|s1) and a CEP of log(RR), the CEP is time-free. However,

contrasts of riskCDF
z (t|s1) are always causal, whereas contrasts in the

Hazard are not in some cases.
With assumption of this model and A3, time must start at τ in the
model
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Exponential model for risk

riskCDF
z (t|s1) = 1− exp(−(t ∗ 1/λ))

riskHZ
z (s1) = 1/λ.

Then for the CEP of log(RR):

log(risk1(s1)/risk0(s1)) = (−β1 − β3 ∗ s1)

I ACN β1 = 0
I ACS β3 ≥ 0
I WEM β3 6= 0
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Count outcomes

riskz(s1) =

E [Y |S(1) = s1,Z = z ] = exp(β0 + β1 ∗ z + β2 ∗ s1 + β3 ∗ s1 ∗ z)

Then for the CEP of log(RR):

log(risk1(s1)/risk0(s1)) = (β1 + β3 ∗ s1)

I ACN β1 = 0
I ACS β3 ≤ 0
I WEM β3 6= 0
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Continuous outcomes

In the package we use the CDF for risk
riskz(s1) =

E [Y |S(1) = s1,Z = z ] = β0 + β1 ∗ z + β2 ∗ s1 + β3 ∗ s1 ∗ z

Then for the CEP of risk difference:

risk1(s1)− risk0(s1) = (β1 + β3 ∗ s1)

I ACN β1 = 0
I ACS β3 ≤ 0
I WEM β3 6= 0

36 / 82



Standard ML when Full CCT or Run-in is performed

When CCT, or Run-in is performed we have all the missing S(1) or
S(1) and S(0) measurements:

I Standard methods can be used for estimation *Assumptions
are still needed to link these estimates to the estimands

I Model and assumption testing can be carried out
I When models or assumptions fail, EML (or measurement error

modeling) can be used to correct for the bias and much of the
efficiency loss [Gabriel and Follmann, 2016]
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Full likelihood ML with BIP alone

Observed Likelihood:

L(β, γ, ν) ≡
∏

i
f (Ti |Zi ,Si (1),Wi ,Yi , δi ; γ, β)

f (Ti |Zi , Si (1),Wi ,Yi , δi ; γ β) = {gz(t|s1,w , y ; γ, β, )}δ

×
{∫

gz(t|s,w , y , γ, β)dFS(1)|W (s)
}(1−δ)

Where δ indicates S(1) is observed, and assuming a model for
S(1)|W
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Full likelihood ML with CPV alone or CPV+BIP

Observed Likelihood is the same less W:

L(β, γ, ν) ≡
∏

i
f (Ti |Zi , Si (1),Xi ,Yi , δi ; γ, β)

f (Ti |Zi , Si (1),Xi ,Yi , δi ; γ β) = {gz(t|s1, x , y ; γ, β, )}δ

×
{∫

gz(t|s, x , y , γ, β)dFS(1)(s)
}(1−δ)

Where δ indicates S(1) is observed, and assuming a model for S(1)

39 / 82



Estimated Maximum Likelihood

Integrate the observed likelihood over the estimated distribution of
S(1)|W

L(β, γ, ν̂) ≡
∏

i
f̂ (Ti |Zi ,Si (1),Wi ,Yi , δi ; γ, β)

f̂ (Ti |Zi , Si (1),Wi ,Yi , δi ; γ β) = {gz(t|s1,w , y ; γ, β, )}δ

×
{∫

gz(t|s,w , y , γ, β)dF̂S(1)|W (s)
}(1−δ)

Assumed parametric form of S(1)|W can be tailored to the
data [Pepe and Fleming, 1991]
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Parametric EML

Assumed parametric model for S(1)|W
I Follmann [2006] linear normal, linear in W
I Gilbert and Hudgens [2008] censored normal, linear in W

Package allows more models.
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Semi-parametric EML

The Model for outcome remains the same, the model for the
correlate is given by:

FS(1)|W ∼ F [{s1 − µ(w)}/σ(w)] = F (ς),
nV∑

k=1

wk(s(1,k) − γ′wk)
σ(wk)2 = 0

nV∑
k=1

wk{(s(1,k) − γ′wk)2 − σ(wk)2}
σ(wk)2 = 0

µ(w) = γ′W and ln(σ(w)) = η′W
[Huang and Gilbert, 2011, Heagerty and Pepe, 1999]
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Creating new S(1)

S∗i ,k(1) = γ̂′wi + exp(η̂′wi )ςk
There are k total imputations used for each missing S(1) value. We
can then use these imputed values to estimate{∫

gz(ti |s,wi , qi , yi , γ, β)dFS(1)|W (s)
}
by the empirical integral:

( 1
nV

) nV∑
k

gz(ti |S∗i ,k(1),wi , qi , yi , γ, β)·

This gives us a general estimated log likelihood of:

l(β, γ, ν̂) =
∑

i
log(gz(ti |si ,1,wi , qi , yi ; γ β, )) ∗ δi

+
∑

i

{( 1
nV

) nV∑
k

log(gz(ti |S∗i ,k(1),wi , qi , yi , γ, β))
}
∗ (δi − 1)
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Non-parametric EML

Gilbert and Hudgens [2008] introduced a non-parametric EML
I Categorical S(1) and W, and binary outcome Y
I For those Subjects missing S(1), sum the likelihood

contribution over the S(1) for those subjects with the same W
I Because S(1) is categorical the model for Y |S(1) can also be

non-parametric

Can categorize S(1), however makes evaluation of ACN harder.
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EML Method: Assumptions for unbiased/consistent
estimation

I The assumed model for S(1)|W is correct and consistently
estimated

I The risk model for Y |S(1),Z is correct
I Under BIP alone, no interaction between the BIP W and S

associated with outcome, No S(1) ∗W or S(1) ∗W ∗ Z
I Under BIP alone linear model for S(1)|W no interaction

between the BIP W and Z associated with outcome except
through S, No Z ∗W
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EML Method: Asymptotic Properties

I risk model parameters are asymptotically normal
I consistent for risk model parameters
I Given the zero probability of observing S(1) in the placebo arm,

asymptotic unbiasedness and asymptotic variance unknown and
highly dependent on the model.

Strange CPV+BIP outcomes - more CPV measurements
taken when a good BIP is used, BIP alone is more efficient
[Gilbert et al., 2011b]
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Sub-sampling Paradox

CPV is only ever observed for those subjects without an event.
I The estimation of S(1)|W assumes a validation set that

includes subjects with events in the vaccine arm
I Using the CPV measurements as direct imputations in the

conditional risk, uses a different validation set for the risk
estimation than was assumed for estimation of S(1)|W, even
under assumption 2 as it depends on Y.

Huang et al. [2012] discuss this paradox and provide an estimation
method that solves the problem.
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Pseudoscore Method
Biased Observation of F (s|Z ,W ), which we do when we have CPV
for Z =0

F (s|Z ,W ) = P(S ≤ s|W ,Z , δ = 1)P(δ = 1|Z ,W )
P(δ|S = s,Z ,W )

≡ F ∗(s|Z ,W )P(δ = 1|Z ,W )
P(δ|S = s,Z ,W ) .

F ∗(s|Z = z ,W = w) = F (s|W = w ,Z = z , δ = 1)
an empirical estimate of F ∗(S(1)|Z ,W ),

FN(s1|z ,w) =
∑

i I[S≤s1,Z=z,W =w ,δ=1]∑
i I[Z=z,W =w ,δ=1]

where δ is the indicator of observing S(1) and
φ(t,Z ,W ) = P(δ = 1|T = t,Z ,W = w), positive expected
probability of selection into second phase with respect to outcome.
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Pseudoscore Equation For binary outcome

Pseudoscore Equation

SPs(β, γ; FN , φ) =
∑
iεv

Sβ,γ(Yi |S(1)i ,Zi ,Wi )+

∑
jεv

∑
iεv

Sβ.γ(Yj |S(1)i ,Zj ,Wj)hφzj (Yj |S(1)i ,Wj , β, γ)I[zj =Zi ,wj =Wi ]∑
lεv hφzj (Yj |S(1)l ,Wj , β, γ)I[zj =Zl ,wj =Wl ]

hφz (y |s1, z ,w , β, γ) = gz(y |s1,w , β, γ)
qφz (s1,w , β, γ)

·

qφz (S(1),Wβ, γ) =
∫
φ(y , z ,W )gz(y |S(1),W , β, γ)dy .
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Pseudoscore Equation For Time-to-event

Pseudoscore Equation

SPs(β, γ; FN , φ) =
∑
iεv

Sβ,γ(Ti |S(1)i ,Zi ,Wi ,Yi )+

∑
jεv

∑
iεv

Sβ.γ(Tj |S(1)i ,Zj ,Wj ,Yj)hφzj (Tj |S(1)i ,Wj ,Yj , β, γ)I[zj =Zi ,Wj =Wi ]∑
lεv hφzj (Tj |S(1)l ,Wj ,Yj , β, γ)I[zj =Zl ,Wj =Wl ]

hφz (t|s1, z ,w , y , β, γ) = gz(t|s1,w , y , β, γ)
qφz (s1,w , β, γ)

·

qφz (S(1),W , β, γ) =
∫
φ(t, z ,W )gz(t|S(1),W ,Y , β, γ)dt.
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Pseudoscore Method: Assumptions

I
∫

t φ(t, z ,W )dt > 0 for all φ in the neighborhood of the true
φ0.

I g(t|s,w , y ;β, γ) > 0 for almost all observed data in the
neighborhood of the true β0 and γ0. Strictly positive value
given the assumption of the parametric model for outcome T .

I P(δ = 1|T , S,Z ,W ) = P(δ = 1|T ,Z ,W ) = φ(T ,Z ,W ), S is
missing at random, (MAR).

Assumption 1 as stated requires CPV.
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Pseudoscore Method: Asymptotic Properties
Under regularity conditions 4.1-4.3 of Theorem 4.1 of Chatterjee
[1999] and van der Vaart and Wellner [1996]

I a. The pseudoscore estimating equations SPs(β, γ; FN , φ̂) = 0
have a unique, consistent sequence of solutions, {θ̂Ps

N }N≥1, and
I 2.

√
N(θ̂Ps

N − θ0) = −Ψ−1
θ

1√
N

N∑
i=1

g0(Ti |Si ,Wi ,Yi , δi ) + op(1);

where g0(T , S,W ,Y , δ) =
δ{S0,β0,γ0 (t|s,w , y) + a(s,w)}+ (1− δ)S0,β0,γ0;F0 (t|w , y)
where the subscript 0 indicates that both the model and the
parameters in the model are the truth, and

I c. If Var0(g0(T |S,W ,Y , δ)) <∞, then√
N(θ̂Ps

N − θ0)→d N(0,Ω), where Ω is defined by the
sandwich formula,

Ω = [Ψθ(θ0,F ∗0 )]−1Var0(g0(T , S,W ,Y , δ))[Ψt
θ(θ0,F ∗0 )]−1
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BIP alone Pseudoscore for Binary outcome
Huang et al. [2012] develop a Pseudoscore method for a Binary
outcome for BIP alone settings, relaxing PS assumption 1, using the
randomization assumption:

I φ(t,W ) > 0 for all φ in the neighborhood of the true φ0, .

SPs(β, γ; FN , φ) =
∑
iεv

Sβ,γ(Yi |S(1)i ,Zi ,Wi )+

∑
jεv

∑
iεv

Sβ,γ(Yj |S(1)i ,Zj ,Wj)hφzj (Yj |S(1)i ,Wj , β, γ)I[wj =Wi ]∑
lεv hφzj (Yj |S(1)l ,Wj , β, γ)I[wj =Wl ]

hφz (y |s1,W , β, γ) = gz(y |s1,w , β, γ)
qφz (s1,W , β, γ)

·

qφz (S(1),W , β, γ) =
∫
φ(y ,W )gz(y |S(1),W , β, γ)dy .
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Evidence of ACN

ACN in general cannot be directly tested, but the CEP curve and CI
of it at S(1) = 0 can be used as supportive evidence of ACN.

I If the main effect term for vaccine in the parametric model
does not reject the null of equaling zero

I If CI of the CEP when S(1) = 0 or S(1) = S(0) covers 0 and is
narrow

I If CEP = 0 at S(1) = 0

these are all evidence in support of ACN.
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Testing for WEM and ACS

Under most models we are interested in testing for WEM with a test
of the interaction term S(1) ∗ Z

I Although for some CEP and structural risk models there is
potential variation in the CEP even when there is interaction
between vaccination and S(1) in the risk models, this is not
generally considered wide effect modification. CEP∗ 6= CEP
even with β3 = 0

I Null hypothesis under all parametric models and CEP for WEM
is the testing of the interaction term from the risk model being
different than zero. β3 6= 0

I ACS has the same null as WEM for the parametric models, the
alternative is now just one sided in the direction of lower risk
on the vaccine arm. β3 ≥ 0

I ACS can also be evaluated by plotting the CEP
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Inference

For the EML estimation procedure
Bootstrap - Although Pepe and Fleming [1991] did provide a

closed form variance, this requires a non-zero probability of
observing S(1) in all subjects.

I There is possible a closed form variance for EML even in our
setting, however, it may be too complicated to be worth using
when bootstrap works.

I The closed form variance will not solve the efficiency paradox.
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Variance Formula Pseudoscore

The closed form variance is given by:

Ω = [Ψθ(θ0,F ∗0 )]−1var0g0(Y |S(1),W ,Y ,Z , δ)[Ψθ(θ0,F ∗0 )]−1

Thus, VE (s1)− VE (s ′
1) has asymptotic variance given by:

Ω[VE ′
θ0(y |s1)]2 + Ω[VE ′

θ0(y |s ′
1)]2 − 2Ω[VE ′

θ0(y |s1)VE ′
θ0(y |s ′

1)]·

Although there is a closed form variance for Pseudoscore estimated
models, Currently only bootstrap is implemented in the
package
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Comparison of Methods

I CCT or Cross-over designs allow for more efficient estimation
and more robust assumption testing

I Full ML most efficient when all models are correct, in BIP
alone settings. Computationally taxing particularly with
complex models.

I Parametric EML almost as efficient as full ML when all models
are correct, in BIP alone settings. Computationally faster than
Full ML.
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Comparison of Methods: continued

I Semi-parametric EML & Pseudoscore more robust due to
flexible modeling of S(1)|W distribution, less efficient when
assumed parametric models are correct.

I Parametric or Semi-parametric EML allow for continuous W,
Pseudoscore methods allowing for continuous W have been
developed in other lines of research, but not for CoP evaluation,
yet.

I Power declines with ρSW rapidly under EML. ρSW ≥ 0.5
needed for unbiased estimation with EML under BIP alone

I Power declines with ρSW more slowly under Pseudoscore, lower
ρSW needed for unbiased estimation.
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What settings have these methods been developed for?

Augmentation S(1) W Outcome Method(s)
BIP alone Categorical Categorical Binary Any EML

Pseudoscore
BIP alone Any Categorical Any Semi or parametric

EML, Pseudoscore
BIP alone continuous continuous Any Semi or parametric

EML
BIP +CPV Any Categorical Any Pseudoscore
BIP +CPV Any continuous Any Semi or parametric

EML
CCT Any Any Any glm

sub-sampling
of W Any Any Any EML
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Risk Difference Based Summary Statistics: binary setting

In the Binary setting:
Let ρz = Pr(Y (z) = 1) and R(v) = F−1(CEP(s(1))) the quantile
curve for the risk difference CEP. The area sandwiched between
R(v) and ρ0 − ρ1 can be used to compare candidate CoPs.

TG =
∫ 1

0
|R(v)− (ρ0 − ρ1)|dv ,

STG = TG(t)/[2(ρ0 − ρ1){1− ρ0 + ρ1}]

[Gilbert and Hudgens, 2008, Huang and Gilbert [2011]]

As shown in Huang and Gilbert [2011] the STG is proportional to
the sum of the maximal sensitivity and specificity.
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Risk Difference Based Summary Statistics: time-to-event
setting

Similarly in the time-to-event setting: Let ρz(t) = RiskCDF (t) and
Rt(v) = F−1(CEP(t|s(1)))

TG(t) =
∫ 1

0
|Rt(v)− (ρ0(t)− ρ1(t))|dv ,

STG(t) = TG(t)/[2(ρ0(t)− ρ1(t)){1− ρ0(t) + ρ1(t)}]

This and other summary statistics for time-to-event clinical outcome
CoP comparison outlined in Gabriel et al. [2015]
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Integrated STG

For a time independent summary one can
∫

t dF (t), Gabriel et al.
[2015] used a KM estimate of the marginal time distribution:

T̃G =
∫

t

∫ 1

0
|Rt(v)− (ρ0(t)− ρ1(t))|dvdF (t),

S̃TG = T̃G/[2(ρ0(t)− ρ1(t)){1− ρ0(t) + ρ1(t)}]
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STG and STG(t) comparisons

As was shown in Huang and Gilbert [2011] and Gabriel et al. [2015],
one can use the null:

STGk − STGl = 0

to test for quality differences between two correlates, l and k.

Both STG must bounded away from zero in order from this to have
good properties. A CoP must have some WEM, then comparisons
between CoPs can be made via the difference in the summary
statistics STGk − STGl or STG t

k − STG t
l or S̃TGk − S̃TG l by Wald

test based on bootstrap standard errors.
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ZEST Example
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ZEST Merck Protocol 022 Phase III Vaccine Trial:
Estimated VE = 69.8%, 95% CI 54.1% to 80.6%

Figure: image

- Phase III ZEST trial: N = 22, 439 50-59 year-olds randomized in 1:1 allocation
to attenuated zoster vaccine (ZV, Zostavaxő; Merck Sharp & Dohme Corp.) or
placebo and followed for 1-2 years for Herpes Zoster (HZ) Sutradhar et al. [2009]
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ZEST Example BIP Only

Figure: image
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Four Statistical Methods Applied

I Method A: Parametric estimated maximum likelihood (EML)
binary clinical endpoint treating the S(1) as continuous Gilbert
and Hudgens [2008]

I Method B: Parametric EML time-to-event clinical endpoint
treating the S(1) as continuous and allowing for time-variation
in VE and surrogate quality and accounting for censoring
Gabriel and Gilbert [2014]

I Method C: Non-parametric EML binary clinical endpoint
treating the S(1) as categorical Gilbert and Hudgens [2008]

I Method D: Semi-parametric pseudo-score binary clinical
endpoint treating the S(1) as continuous Huang and Gilbert
[2011]

The results from all methods agree
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ZEST Example Fold-Rise
Results of from the different EML methods:

Figure: image 69 / 82



ZEST Example Fold-Rise
Pseudoscore:

Figure: image 70 / 82



VE Curve: Titer Difference, Continued

The estimated VE (s1) curves support that titer difference is an
excellent CoP

I Method A: P-values < 0.001 for variation in VE (s1)
I Method B: No evidence that VE (t|s1) varied with time

(p = 0.78), proportional hazards version of the Weibull model
used, p-values < 0.001 for variation of VE (s1) in s1

I Methods C: P-values < 0.001 for variation in VE (s1)
I Methods D: Tests not performed
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ZEST Example Titer level
Results of from the different EML methods:

Figure: image
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VE Curve: Week 6 Titers, Continued

The estimated VE (s1) curves varied only slightly over the range of
titers, supporting that Week 6 titer is a poor CoP

I Method A: P-value = 0.91 for variation in VE (s1)
I Method B: No evidence for time-varying VE (s1) (p = 0.55),

proportional hazards version of the Weibull model used,
p-value=0.98 for variation in VE (s1)

I Method C: P-value = 0.82 for variation in VE (s1)
I Methods D : Tests not performed
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Comparison Based on STG

I Test based on difference in standardized total gain Huang and
Gilbert [2011] supports titer difference as a superior CoP
(p = 0.045)

I Only binary test performed
I This test was not really needed, given that there was no

evidence of WEM for 6-week titers
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Implementation
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Implementation of Methods Comparison

I Continuous BIP, in BIP alone designs, only EML or full ML
methods have been developed or implemented

I Categorical BIP alone or CPV+BIP designs, Pseudoscore
methods have been developed and well as EML and ML, only
methods for binary clinical outcome has been published or
implemented

I Only Bootstrap variance has been implemented for any of the
EML or Pseudoscore methods, although Pseudoscore methods
have closed form asymptotic variance

I Although 2-phase sampling methods have been developed in
the literature, only methods where W is measured in all
subjects, even with sub-sampling of S(1) in the vaccine arm
have been implemented in the software
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Currently implemented in software

I All three estimation methods with BIP are implemented for
binary outcomes

I Saturated Weibull model allows for the characterization of
time-varying effects, but can have poor convergence, not
implemented in software yet

I Continuous Time-to-event, other outcomes, semi-parametric
and fully parametric EML only

I VE and risk-difference curve plotting from any of the
estimation methods, with confidence bands

I Tests of WEM based on coefficients from any of the estimation
methods

I STG and time-dependent STG estimation implemented
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Coming soon in software

I Pseudoscore for Continuous Time-to-event and other outcomes
I Tests for STG and time-dependent STG differences for

comparison of candidate CoP
I Integrated STG
I Expanded models for S(1)|W
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