Launching the next generation of digital

disease surveillance tools

Mauricio Santillana

Faculty member, CHIP, Boston Children's Hospital Informatics Program *Associate*, Harvard Institute for Computational and Applied Sciences *Instructor*, Harvard Medical School

Collaborators:

John S. Brownstein, Harvard Medical School and Healthmap co-founder Sam Kou, Harvard Statistics Department Michael Johansson, Centers for Disease Control, Puerto Rico. Elsie Sunderland, Harvard School of Engineering and Applied Sciences Caroline Buckee, Harvard School of Public Health John W. Ayers, San Diego State University Ben Althouse, Santa Fe Institute Elaine Nsoesie, University of Washington Sumiko Mekaru, Epidemico Inc. Rumi Chunara, New York University Clark Freifeld, Healthmap co-founder and Epidemico Ruchit Nagar, Yale University

Students involved:

Shiaho Yang, PhD student in Statistics, Harvard Statistics Clifton Dassuncao, PhD student in Public Health, HSPH MS' 2014 David W. Zhang, undergraduate applied math student SEAS. MS' 2013 Aditi Hota, undergraduate applied math student SEAS, BS'2014 Andre Nguyen, undergraduate applied math student SEAS, BS'2016 Tamara Louie, Master's student in Public Health, HSPH MS' 2015 Fred Lu, undergraduate applied math student SEAS, BS'2016

Disclaimer: I am not a medical doctor, clinician, or epidemiologist.

Applied Mathematician and physicist with expertise in machine learning and processing of big data sets. Interested in improving the way public health and medical decisions are made.

...and I respect your privacy!

Big data

Trillions of sensors are monitoring, tracking, and communicating information from multiple locations in real-time

Newspaper articles, Reports, etc...

30+ petabytes of usergenerated data stored, accessed, and analyzed

Google

Over 1 billion Google searches a day

Predictive Analytics

~2 billion smartphones world wide

230 million tweets every day

230 million tweets every day

time

ARGO Prediction vs. CDC's ILI

Video produced by Shihao Yang

ARGO Prediction vs. CDC's ILI

Real-time tracking vs predictions of disease incidence/risk Similarities and differences with weather prediction

The promise of big data in public health

GOOGLE FLU TRENDS

google.org Flu Trends

Epidemiological information available 2-3 weeks ahead of traditional clinical tracking systems

nature International weekly journal of science

Letter

Nature 457, 1012-1014 (19 February 2009) | doi:10.1038/nature07634; Received 14 August 2008; Accepted 13 November 2008; Published online 19 November 2008; Corrected 19 February 2009

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

- 1. Google Inc., 1600 Amphitheatre Parkway, Mountain View, California 94043, USA
- 2. Centers for Disease Control and Prevention, 1600 Clifton Road, NE, Atlanta, Georgia 30333, USA

Correspondence to: Matthew H. Mohebbi¹ Correspondence and requests for materials should be addressed to J.G. or M.H.M. (Email: <u>flutrends-support@google.com</u>).

Very promising retrospective comparison!

PERCENT OF HEALTH VISITS FOR FLU-LIKE SYMPTOMS Mid-Atlantic region

Using Google to Monitor the Flu

In April 2009, Dr. Brilliant said it epitomized the power of Google's vaunted engineering prowess to make the world a better place, and he predicted that it would save untold numbers of lives.

Google Flu Trends

launched in November 2008

Real-time performance, first year...

Big errors seen during H1N1 pandemic (off-season)

To some extent GFT was good at predicting seasons: fall-winter, not flu!

Plot obtained from:

http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html

What next? need to remove (not useful) search terms

Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pande

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S. during the 2009 influenza virus A (H1N1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html

What next? need to remove (not useful) search terms

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S. during the 2009 influenza virus A (H1N1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html

0

Sources: http://www.google.org/flutrends/us, CDC ILInet data from http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html, Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic.

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S. during the 2009 influenza virus A (H1N1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html

nature International weekly journal of science

When Google got flu wrong.

nature.com/news/when-google-got-flu-wrong.

FEVER PEAKS

A comparison of three different methods of measuring the proportion of the US population with an influenza-like illness.

Forbes -

New Posts +5 posts this hour Most Popular Forbes 400 Newcomers

Lists The Forbes 400

	63
_	~
f	Sha

61

g

Snowden And The Challenge Of Intelligence: The Practical Case Against The NSA's Big Data

🙋 🔍 🌠 🎆 🎑 🎆 🎑 12 comments, 7 called-out

+ Comment Now + Follow Comments

We should soon be able to keep track of most activities on the surface of the earth, day or night, in good weather or bad.

S I I I C O N A N G L E

(SILICON ANGLE) CLOUD

MOBILE

SERVICES

DEVOPS

RESEARCH

SiliconANGLE » Can Nate Silver's Data Culture Lead Us Out Of The NSA + Public Data Scare?

Can Nate Silver's Data Culture Lead Us Out of the NSA + Public Data Scare?

RYAN COX | SEPTEMBER 18TH

READ MORE

Lessons learned

1. Number of (influenza-like) ill people proportional to number of **total** searches of (Influenza-like illnesses) related terms

 $logit(P) = \beta_0 + \beta_1 \times logit(Q) + \varepsilon$

where P is the percentage of ILI physician visits, Q is the ILI-related query fraction, β_0 is the intercept,

1. Number of (influenza-like) ill people proportional to number of **total** searches of (Influenza-like illnesses) related terms

Figure 1: An evaluation of how many top-scoring queries to include in the ILI-related query fraction. Maximal performance at estimating out-of-sample points during cross-validation was obtained by summing the top 45 search queries. A steep drop in model performance occurs after adding query 81, which is "oscar nominations".

2. Relationship between search volume and proportion of (influenza like) ill people is **static** (during a given year).

2. Relationship between search volume and proportion of (influenza like) ill people is **static** (during a given year).

Consequences: Model needed constant supervision by human experts

a. Human experts needed to assess relevance of individual search terms,

b. **Human Experts** needed to **recalculate** relationship between total number of searches and ill people, and

c. It is bound to **deliver poor predictions** at some point in the near future!

We proposed an alternative method and tested it using low quality input from Google Correlate in January 2013. (with D. Wendong Zhang)

New model:

- 1. Each search term may contribute to prediction of ILI rate separately (multi-variate approach)
- 2. Relationship between search volume for each individual term and proportion of ill people is **dynamic** and should be found using supervised machine learning optimization techniques.

$$oldsymbol{eta}^{lasso} = rgmin_eta \left\{ rac{1}{2} \sum_{i=1}^N \left(y_i - eta_0 - \sum_{j=1}^M x_{ij} eta_j
ight)^2 + \lambda \sum_{j=1}^M |eta_j|
ight\}$$

Every week the multiplicative coefficients (β 's) would be automatically updated by expanding the training set (labeled data) as new information from the CDC became available.

Top correlated terms to CDC-reported data from 1/2004- 3/2009 (using Google Correlate)

1	influenza type a	35	is the flu contagious	68	fever in adults
2	bronchitis	36	flu in children	69	decongestant
3	influenza a	37	fever flu	70	normal body
4	symptoms of pneumonia	38	take action tour	71	low body temperature
5	flu incubation	39	flu remedies	72	a fever
6	influenza incubation	40	flu report	73	influenza a symptoms
7	flu contagious	41	nasal congestion	74	dangerous fever
8	influenza contagious	42	fever reducer	75	is flu contagious
9	flu incubation period	43	sinus infections	76	lauderdale florida
10	tussionex	44	rhode island wrestling	77	hotel fort lauderdale
11	benzonatate	45	symptoms of influenza	78	webmail shaw ca
12	influenza symptoms	46	castaway bay	79	high fever
13	a influenza	47	coral by the sea	80	robitussin ac
14	sinus	48	cold or flu	81	bronchitis contagious
15	pneumonia	49	respiratory infection	82	indoor driving
16	flu fever	50	take action	83	tussionex pennkinetic
17	flu duration	51	respiratory flu	84	wrestling report
18	taste of chaos	52	soweto gospel	85	walking pneumonia
19	bronchitis symptoms	53	soweto gospel choir	86	days inn miami
20	symptoms of bronchitis	54	illinois wrestling	87	body temperature
21	how long does the flu last	55	how long is the flu contagious	88	phlegm
22	symptoms of the flu	56	cold symptoms	89	flu relief
23	taste of chaos tour	57	the taste of chaos	90	mt sunapee
24	influenza incubation period	58	is bronchitis	91	harlem globe
25	sinus infection	59	upper respiratory	92	levaquin
26	flu recovery	60	afrin	93	strep throat
27	chaos tour	61	painful cough	94	coughing
28	type a influenza	62	laprepsoccer	95	whistler snow
29	flu symptoms	63	upper respiratory infection	96	fever temperature
30	tessalon	64	amoxicillin	97	sales tax credit
31	type a flu	65	ski harness	98	glitches
32	treat the flu	66	robitussin dm	99	pennkinetic
33	treating the flu	67	treating flu	100	histinex
34	how to treat the flu				

AMERICAN JOURNAL OF Preventive Medicine

A Journal of the American College of Preventive Medicine and Association for Prevention Teaching and Research

What Can Digital Disease Detection Learn from (an External Revision to) Google Flu Trends?

Mauricio Santillana, PhD, MS, D. Wendong Zhang, MA, Benjamin M. Althouse, PhD, ScM, John W. Ayers, PhD, MA

© 2014 Published by Elsevier Inc. on behalf of American Journal of Preventive Medicine Am J Prev Med 2014;47(3):341–347 341

First week after being published online, it became the second most read paper in journal's history! (After a paper published in 1998)

AMERICAN JOURNAL OF Preventive Medicine

A Journal of the American College of Preventive Medicine and Association for Prevention Teaching and Research

Articles in Press

Most Read

Most Cited

Relationship of Childhood Abuse and Household Dysfunction to Many of the Leading Causes of Death in Adults: The Adverse Childhood Experiences (ACE) Study

Vincent J Felitti, Robert F Anda, Dale Nordenberg, David F Williamson, Alison M Spitz, Valerie Edwards, Mary P Koss, James S Marks

Vol. 14, Issue 4 Published in issue: May, 1998

Abstract Full-Text HTML PDF

What Can Digital Disease Detection Learn from (an External Revision to) Google Flu Trends?

Mauricio Santillana, D. Wendong Zhang, Benjamin M. Althouse, John W. Ayers Vol. 47, Issue 3 Published online: July 1, 2014 Abstract | Full-Text HTML | PDF

Figure 1. The alternative model outperforms Google Flu Trends

 $\operatorname{logit}[I(t)] = \sum_{i=1}^{n} a_i(t) \operatorname{logit}[Q_i(t))] + e,$

Santillana et al. American Journal of Preventive Medicine, 2014; 47 (3) pp 341-347

Negative influence		No influence	Pos	sitive influence
< -0.1	-0.05	0	0.05	>0.1

Santillana et al. American Journal of Preventive Medicine, 2014; 47 (3) pp 341-347

Negative influence		No influence	Pos	sitive influence
< -0.1	-0.05	0	0.05	>0.1

Santillana et al. American Journal of Preventive Medicine, 2014; 47 (3) pp 341-347

theguardian

News US World Sports Comment Culture Business Money

News \rangle Technology \rangle Google

Google Flu Trends promises are overstated, researchers say

New study finds way to improve Google Flu Trends accuracy threefold - but says systems must be more open

Charles Arthur

y Follow @charlesarthur

y Follow @guardiantech

theguardian.com, Friday 4 July 2014 11.44 EDT

theguardian

News US World Sports Comment Culture Business Money

News \rangle Technology \rangle Google

Google Flu Trends promises are overstated, researchers say

New study finds way to improve Google Flu Trends accuracy threefold - but says systems must be more open

POLICY & EHR HEALTH INFO REVENUE CYCLE CHRONIC REGULATION EKCHANGE & PAYMENTS CARE

NE

Researchers Suggest Fixes to Google Flu Trends Analytics

A new study concludes that "revising the inner plumbing" of the Google Flu Trends disease surveillance system can improve the accuracy of forecasts for the severity of a flu season.

theguardian

News US World Sports Con Your source for the latest research news

News > Technology > Google

Google Flu Trends I overstated, research

New study finds way to improve threefold - but says systems mu

ScienceDaily

Featured Research

> Public health

> Data mining

from universities, journals, and other organization

Finding real value in big data for public health

Date: July 2, 2014

Source: San Diego State University

Summary: Media reports of public health breakthroughs from big data have been largely oversold, according to a new study. But don't throw away that data just yet. The authors maintain that the promise of big data can be fulfilled by tweaking existing methodological and reporting standards. In the study, the research team demonstrate this by revising the inner plumbing of the Google Flu Trends (GFT) digital disease surveillance system, which was heavily criticized last year (see here and here) after producing erroneous forecasts.

Share This

- Email to a friend > f Facebook > Y Twitter in LinkedIn
- > St Google+
- > 🖨 Print this page

management			
POLICY & EHR HEA	Related Topics	-CDC Google	Flu TrendsAlternative
REGULATION 🚽 🚽 EXC	Health & Medicine > Health Policy > Public Health Education		Revised GFT
Researchers Sug	Computers & Math Image: Computers and Internet > Computer Modeling Image: Computer Modeling		
Flu Trends Analy	Science & Society 2 > Public Health 0	, AL	m A
A new study concludes that "revising the in surveillance system can improve the accur	> Surveillance 2 Related Articles 0	Wave 1 Wave 2 post-H1N11 3/29.09 8/2/09 12/2/7/09	10 '12 season 2012-13 season 9/30/12 5/12/1

A graph depicting Google Flu Trends.

> Data mining

A graph depicting Google Flu Trends.

Big Data's Potential in Public Health: Revisiting Google Flu Trends

July 7, 2014 Written by: Dan Gray 1 Reply

This

nail to a friend acebook vitter nkedIn pogle+ int this page

Resea Flu Tre

Public Health

can be improved through simple changes in three different methodologies used by the system, according to a new study published in the American Journal of Preventive Medicine, Health Data Management reports (Goedert, Health Data Management, 7/7).

A new study concludes that "revising the in surveillance system can improve the accur Related Articles

A graph depicting Google Flu Trends.

- > Public health
- > Data mining

Google Research Blog

The latest news from Research at Google

Bi(Flu July 7.: Google Flu Trends gets a brand new engine

Posted: Friday, October 31, 2014	8+1 222	Tweet 161	Like 104

ganizatio

end

je

13 season

5/12/1

Posted by Christian Stefansen, Senior Software Engineer

Each year the flu kills thousands of people and affects millions around the world. So it's important that public health officials and health professionals learn about outbreaks as quickly as possible. In 2008 we launched Google Flu Trends in the U.S., using aggregate web searches to indicate when and where influenza was striking in real time. These models nicely complement other survey systems—they're more fine-grained geographically, and they're typically more immediate, up to 1-2 weeks ahead of traditional methods such as the CDC's official reports. They can also be incredibly helpful for countries that don't have official flu tracking. Since launching, we've expanded Flu Trends to cover 29 countries, and launched Dengue Trends in 10 countries.

A ne The original model performed surprisingly well despite its simplicity. It was retrained just once per year, and surve typically used only the 50 to 300 queries that produced the best estimates for prior seasons. We then left it to perform through the new season and evaluated it at the end. It didn't use the official CDC data for estimation during the season—only in the initial training.

Google Flu Trends heavily criticized in a paper published by Alex's research team

BIG DATA

The Parable of Google Flu: Traps in Big Data Analysis

David Lazer, 1.2* Ryan Kennedy, 1.3.4 Gary King, 3 Alessandro Vespignani 5.6.3

Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data.

We recently established a new standard by Incorporating historical information (via autoregressive terms)

Accurate estimation of influenza epidemics using Google search data via ARGO

Shihao Yang^a, Mauricio Santillana^{b,c,1}, and S. C. Kou^{a,1}

NAS PNAS

^aDepartment of Statistics, Harvard University, Cambridge, MA 02138; ^bSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; and ^cComputational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115

Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved September 30, 2015 (received for review August 6, 2015)

Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for realtime tracking of other social events at multiple temporal and spatial resolutions. CDC's ILI reports have a delay of 1–3wk due to the time for processing and aggregating clinical information. This time lag is far from optimal for decision-making purposes. To alleviate this information gap, multiple methods combining climate, demographic, and epidemiological data with mathematical models have been proposed for real-time estimation of flu activity (18, 21–25). In recent years, methods that harness Internet-based information have also been proposed, such as Google (1), Yahoo (2), and Baidu (3) Internet searches, Twitter posts (4), Wikipedia article views (5), clinicians' queries (6), and crowdsourced selfreporting mobile apps such as Influenzanet (Europe) (26), Flutracking (Australia) (27), and Flu Near You (United States) (28). Among them, GFT has received the most attention and has inspired subsequent digital disease detection systems (3, 8,

	Whole period	Off-season flu Regular flu seasons (week 40 to week 20 next year)					
		H1N1	2010-11	2011-12	2012-13	2013-14	2014-15 partial
RMSE							
ARGO	0.637	0.655	0.618	0.830	0.679	0.308	0.593
GFT (Oct 2014)	2.213	0.773	1.110	3.023	4.451	0.981	0.683
Santillana et al. (2014)	0.909	0.945	0.864	1.688	0.918	0.495	0.683
AR(3)	0.955	0.813	0.794	1.051	1.191	0.966	0.924
Naive	1.000 (0.354)	1.000 (0.600)	1.000 (0.339)	1.000(0.163)	1.000(0.499)	1.000(0.350)	1.000 (0.500)
MAE							
ARGO	0.680	0.607	0.588	0.760	0.653	0.406	0.673
GFT (Oct 2014)	1.828	0.777	1.260	3.277	5.028	0.884	0.726
Santillana et al. (2014)	1.035	0.793	0.977	1.782	0.897	0.634	0.872
AR(3)	0.920	0.777	0.787	0.951	0.988	0.915	0.924
Naive	1.000 (0.206)	1.000(0.425)	1.000 (0.259)	1.000(0.135)	1.000(0.325)	1.000(0.213)	1.000(0.332)
Correlation							
ARGO	0.984	0.984	0.988	0.924	0.968	0.993	0.981
GFT (Oct 2014)	0.874	0.989	0.968	0.833	0.926	0.969	0.984
Santillana et al. (2014)	0.970	0.959	0.982	0.898	0.960	0.982	0.967
AR(3)	0.963	0.968	0.971	0.877	0.903	0.928	0.939
Naive	0.960	0.951	0.954	0.887	0.924	0.923	0.929
Corr. of increment							
ARGO	0.744	0.796	0.793	0.309	0.532	0.944	0.851
GFT (Oct 2014)	0.706	0.863	0.702	0.484	0.502	0.849	0.910
Santillana et al. (2014)	0.671	0.782	0.688	0.599	0.375	0.882	0.738
AR(3)	0.386	0.585	0.569	0.077	0.011	0.414	0.498
Naive	0.438	0.602	0.570	0.095	0.134	0.415	0.518

New flu tracker uses Google search data better than Google

Unlike defunct Flu Trends, the model is self-correcting and close to reality.

by Beth Mole - Nov 9, 2015 3:35pm EST

New flu tracker uses Google search data better than Google

MOTS-CLÉS

La revanche du big data : Harvard plus forte que Google pour prédire la grippe

Des chercheurs de la prestigieuse université américaine ont conçu un modèle statistique deux fois plus efficace que la méthode Google. Le géant de l'Internet avait fermé cet été son projet, dont les prédictions avaient tourné au flop.

m...

New Google, estadística y 'big data' para bett cazar brotes de gripe

Un nuevo modelo que combina información epidemiológica y búsquedas de Google es capaz de predecir los brotes de gripe una o dos semanas antes que los métodos clínicos tradicionales. El modelo podrá servir para mejorar la toma de decisiones, como la distribución de personal y recursos hospitalarios en regiones que más lo necesiten.

G+1 320

Me gusta

154

🔰 Tweet

Más información sobre: gripe brote epidemia Google estadística big data

HARVARDgazette

SCIENCE & HEALTH > HEALTH & MEDICINE

f 📲 🛃 @

On top of the flu

Chance for advance warning in search-based tracking method

November 9, 2015 | ✓

And on Aug 20th, 2015

Google discontinues Flu Trends indefinitely!

Google Research Blog

The latest news from Research at Google

The Next Chapter for Flu Trends

Posted: Thursday, August 20, 2015

Instead of maintaining our own website going forward, we're now going to empower institutions who specialize in infectious disease research to use the data to build their own models. Starting this season, we'll provide Flu and Dengue signal data directly to partners including Columbia University's Mailman School of Public Health (to update their dashboard), Boston Children's Hospital/Harvard, and Centers for Disease Control and Prevention (CDC) Influenza Division. We will also continue to make historical Flu and Dengue estimate data available for anyone to see and analyze.

g+1

Most read:

•

🕑 💼 🚯 💱 🖸 🚳 Q

NEWS

Google Flu Trends calls out sick, indefinitely

Google will pass along search queries related to the flu to health organizations so they can develop their own prediction models

MORE LIKE THIS 💠

Google

Google Begins Tracking Swine Flu in Mexico

Were Dead Wrong

Google's Panicky Flu Estimates

By Fred O'Connor Follow IDG News Service Aug 20, 2015 2:07 PM PT

VB	NEWS	EVENTS	RESEARCH	SUBSCRIBE	Sign up Login	С

BIG DATA

Google discontinues Flu Trends, starts offering data to researchers

JORDAN NOVET AUGUST 20, 2015 12:17 PM

Our team at Boston Children's Hospital now has access to Google's search volumes, as one of the exclusive Google's partners.

We are creating a new improved disease forecasting platform

SealthMap Flu Trends

Thanks to Sue Aman, Rachel Chorney, Jeff Andre, Andre Nguyen, John Brownstein and Healthmap team!

Boston Children's Hospital Until every child is well

Beyond Google searches...

What are doctors searching for?

What are people tweeting? What are they reporting on crowd-sourced disease surveillance apps?

Can we use Electronic Health Records (EHR) to track disease incidence? What lab tests or medications are doctors prescribing?