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ARGO Prediction vs. CDC's ILI

—— CDC's ILI (with CDC's future revision)
—— ARGO prediction
1.96 x historical standard error
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ARGO Prediction vs. CDC's ILI

—— CDC's ILI (with CDC's future revision)
——  ARGO prediction
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The promise of big data in public health

GOOGLE FLU TRENDS



Epidemiological information
google Org EA Sreneis available 2-3 weeks ahead of

traditional clinical tracking systems
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Very promising retrospective comparison!

PERCENT OF HEALTH VISITS FOR FLU-LIKE SYMPTOMS Mid-Atlantic region

8 percent ESTIMATED ACTUAL
I Based on Google As reported by
Flu Trends data U.S. Centers for
tracking flu-related — Disease Control
search terms

OCT

2003

Sources: Google; Centers for Disease Control

Using Google to Monitor the Flu
Google Flu Trends can estimate the spread of the disease by
measuring the frequency of certain search terms. Its findings

closely track actual C.D.C. data and can, at times, anticipate the
government reports.

C.D.C. does not
data for June
through September

In April 2009, Dr. Brilliant said it epitomized the power of Google’s vaunted
engineering prowess to make the world a better place, and he predicted that it would

save untold numbers of lives.



Google Flu Trends

launched in November 2008



Real-time performance, first year...

Big errors seen during HIN1 pandemic (off-season)

discrepancy!
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To some extent GFT was good at predicting seasons: fall-winter, not flu!

Plot obtained from:
http://blog.keithw.org/2013/02/g-how-accurate-is-google-flu-trends.html



What next?
need to remove (not useful) search terms

Google Flu Trends appears to have overstated 2012-13 U.S. fiu intensity
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Flu Trends launch Algorithm update Data as of Feb. 4, 2013. Keith W
Nov. 11, 2008 Sept. 24, 2009

Sources: http://www.google.org/flutrends/us, CDC ILInet data from http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html,
Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandd

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S. during
the 2009 influenza virus A (H1IN1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/g-how-accurate-is-google-flu-trends.html



What next?
need to remove (not useful) search terms

Google Flu Trends appears to have overstated 2012-13 U.S. fiu intensity

promising
performance
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Flu Trends launch Algorithm update Data as of Feb. 4, 2013. Keith W
Nov. 11, 2008 Sept. 24, 2009

Sources: http://www.google.org/flutrends/us, CDC ILInet data from http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html,
Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandd

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S. during
the 2009 influenza virus A (H1IN1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/g-how-accurate-is-google-flu-trends.html



What next? need to remove (not useful) terms. Big discrepancies again!

Google Flu Trends appears to have overstated 2012-13 U.S. fiu intensity

nas algorithm Big
- - >
discrepancy
again!
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Flu Trends launch Algorithm update Data as of Feb. 4, 2013. Keith Winstein (keithw@mit.edu)
Nov. 11, 2008 Sept. 24, 2009

Sources: http://www.google.org/flutrends/us, CDC ILInet data from http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html,
Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S.
during the 2009 influenza virus A (H1IN1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/g-how-accurate-is-google-flu-trends.html



n tur FEVER PEAKS
a e International weekly journal of science A compa rison of three different methods of

measuring the proportion of the US population

with an influenza-like illness.

- Google Flu Trends
- CDC data
Flu Near You

When Google got flu wrong.

nature.com/news/when-google-got-flu-wrong.
Google's algorithms
overestimated peak
flu levels this year
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Forbes-  NewPest MostPopular  Lists

N Snowden And The Challenge Of
= Intelligence: The Practical Case
10 Against The NSA's Big Data

W Tweet
& £ & E ﬁ u m 12 comments, 7 called-out + Commen t Now + Follow Comments

61

We should soon be able to keep track of most activities on the surface of the earth, day or

e

s i l1 con

( {SILICON ANGLE} SiliconANGLE » Can Nate Silver’'s Data Culture Lead Us Out Of The NSA + Public Data Scare?

o “°®  Can Nate Silver’s Data Culture Lead %%
oca. - US Out of the NSA + Public Data
SERVICES Scare?
DEVOPS RYAN COX | SEPTEMBER 18TH
il flu.

RESEARCH READ MORE



Lessons learned



Let’s work on a short exercise to understand
how Google Flu Trends used to work...



Supervised machine learning examples:

Given the number of Google searches associated to the term “dengue”, and
given the number of confirmed cases of dengue in Mexico from 2004 to 2006
(Training period), can we estimate how many people will most likely get
dengue based on the number of searches during the subsequent years?

Google Search I'm Feeling Lucky

Dengue fever

Dengue fever is a virus-caused disease that is spread by mosquitoes.
Causes - Symptoms - Tests - Treatment - Prognosis - Prevention
National Library of Medicine

People also search for

Malaria

Fever

Yellow fever

Viral hemorrhagic fever

Typhoid fever




4. Least squares in Public Health. (30 points)

Dengue fever is a virus-caused disease that is spread by mosquitoes that affects millions of people in tropical
environments around the Globe. In this problem, you are asked to construct a simple version of the digital
disease detection tool: “Google Dengue Trends” for Mexico. For this, you will download the spreadsheet
Dengue trends AM 111.x1ls from the course website. The first column in the spreadsheet represents the
date (in months, from 2004-2011), the second column represents the number of Google searches of the term
“dengue” in Mexico, in a given month. The third column represents the number of cases of Dengue in
Mexico, as reported by the Mexican Ministry of Health. You may use Matlab or Excel for this problem.

(a) Plot the number of cases of Dengue as a function of time.

(b) For the training period 2004-2006 (36 months). find the best line that explains the number of cases
of Dengue as a function of the number of searches of the term “dengue”. You should do this by solving
the least squares problem, and you should obtain the value of the y-intercept and the slope.

(¢) Use the equation of the line you obtained in (b) and plot the number of cases as a function of the number
of searches of the term “dengue”, predicted by your method during the training period. Compare your
results to the plot in (a) for such time period.

(d) For the prediction or validation period 2007-2011, use the equation of the line you obtained in (b)
to predict the number of the dengue cases as a function of the number of searches of the term “dengue”
from 2007-2011. Plot your predictions and compare them to the actual number of cases.

(d) Discuss your results. Could you improve this modeling approach? If so, how?



Did you get it to work?



Using Google searches to track diseases statically

begin

%% Load data %%

CDC=load(CDC ILI Data) (ONE COLUMN OF VALUES)
X=load(Google search Data) (MULTIPLE COLUMNS OF VALUES)

%% initialize output array %%
Y=zeros(1: end.of.predictions) (INITIALIZE ARRAY TO STORE PREDICTIONS)

%% train model and produce predictions %%
CDC < standardize(CDC) (PERHAPS USE A TRANSFORM:Z-SCORE, LOGIT)
X < standardize(X) (PERHAPS USE A TRANSFORM:Z-SCORE, LOGIT)
model=LASSOroutine.fit(CDC[1 : training] ~ X[1 : training]) (TRAINING: IN-SAMPLE
MODEL)
Y[1 : training]=
LASSOroutine.predict(model, X[1 : training])
(IN-SAMPLE PREDICTIONS)
Y([training + 1 : end.of .predictions]|=
LASSOroutine.predict(model, X[training + 1 : end.of .predictions])
(PRODUCE OUT-OF-SAMPLE PREDICTIONS)
end




35000

30000

25000

20000

15000

10000

5000

-5000

Supervised machine learning examples:

Static approach, fixed training set

Training period
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How could the previous approach be improved with the
given information?



Using Google searches to track diseases dynamically

begin

%% Load data %%

CDC=load(CDC ILI Data) (ONE COLUMN OF VALUES)
X=load(Google search Data) (MULTIPLE COLUMNS OF VALUES)

%% initialize output arrays %%
Y=zeros(1:end.of.predictions) (INITIALIZE ARRAY TO STORE PREDICTIONS)
coefficients=zeros(1:end.of.predictions) (INITIALIZE ARRAY TO STORE COEFFS)

%% train models and produce out-of-sample predictions %%

for i = training : end.of.predictions
CDC < standardize(CDC) (PERHAPS USE A TRANSFORM:Z-SCORE, LOGIT)
X < standardize(X) (PERHAPS USE A TRANSFORM:Z-SCORE, LOGIT)

model=LASSOroutine.fit(CDCJ[1 : i] ~ X[1:i]) (TRAINING: IN-SAMPLE MODEL )

coefficients(i) <— model(coefficients)

Y (i + 1)=LASSOroutine.predict(model, X(i + 1)) (PRODUCE OUT-OF-SAMPLE
PREDICTIONS)

if (i == training)
Y[1:i]=LASSOroutine.predict(model, X[1:/]) IN -SAMPLE PREDICTIONS
end
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Supervised machine learning examples:

Static approach, fixed training set

Training period
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Supervised machine learning examples:

Dynamic approach, letting the training set expand as more
information becomes available
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How could the previous approach be improved?



Assumptions in Google Flu Trends:

1. Number of (influenza-like) ill people proportional to number of total
searches of (Influenza-like illnesses) related terms

logit(P) =B, + B, x logit(Q) + €

where P is the percentage of ILI physician visits, Qis
the ILI-related query fraction, B, is the intercept,




Assumptions in Google Flu Trends:

1. Number of (influenza-like) ill people proportional to number of total
searches of (Influenza-like illnesses) related terms

45 queries

We do not know which terms!
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Figure 1: An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-sample
points during cross-validation was obtained by summing the top 45 search
queries. A steep drop in model performance occurs after adding query 81,
which is “oscar nominations”.




Assumptions in Google Flu Trends:

2. Relationship between search volume and proportion of (influenza
like) ill people is static (during a given year).



Assumptions in Google Flu Trends:

2. Relationship between search volume and proportion of (influenza
like) ill people is static (during a given year).

Consequences: Model needed constant supervision by human experts

a. Human experts needed to assess relevance of individual search
terms,

b. Human Experts needed to recalculate relationship between total
number of searches and ill people, and

c. It is bound to deliver poor predictions at some point in the near
future!



We proposed an alternative method and tested it using
low quality input from Google Correlate in January

2013.
(with D. Wendong Zhang)

New model:

1. Each search term may contribute to prediction of ILI rate
separately (multi-variate approach)

2. Relationship between search volume for each individual term
and proportion of ill people is dynamic and should be found
using supervised machine learning optimization techniques.
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Every week the multiplicative coefficients (B’s) would be automatically
updated by expanding the training set (labeled data) as new information
from the CDC became available.
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In October 2012 Google decided to discontinue updating
Google Correlate (it was Jan 2013)

V.




In October 2012 Google decided to discontinue updating
Google Correlate (it was Jan 2013)

We used even lower quality data from Google Trends to test
methodology in 2012-2013 recent flu season

V.




AMERICAN JOURNAL OF

Preventive Medicine

A Journal of the American College of Preventive Medicine and Association for Prevention Teaching and Research

What Can Digital Disease Detection Learn from
(an External Revision to) Google Flu Trends?

Mauricio Santillana, PhD, MS, D. Wendong Zhang, MA, Benjamin M. Althouse, PhD, ScM,
John W. Ayers, PhD, MA

© 2014 Published by Elsevier Inc. on behalf of American Journal of Preventive Medicine Am | Prev Med 2014;47(3):341-347 341

First week after being published online, it became the second most read paper in
journal’s history! (After a paper published in 1998)
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James S Marks

Published in issue: May, 1998
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What Can Digital Disease Detection Learn from (an
External Revision to) Google Flu Trends?
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Published online: July 1, 2014
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Google flu trends ==-Alternative

Original GFT Revised GFT
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Figure 1. The alternative model outperforms Google Flu Trends

logit[I(1)] = X7 ,a:(#)logit[Qi(1))] +e.

Santillana et al. American Journal of Preventive Medicine, 2014; 47 (3) pp 341-347
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Google Flu Trends promises are
overstated, researchers say

New study finds way to improve Google Flu Trends accuracy
threefold - but says systems must be more open

Charles Arthur
W Follow @charlesarthur %W Follow @guardiantech

theguardian.com, Friday 4 July 2014 11.44 EDT
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Google Flu Trends promises are
overstated, researchers say

New study finds way to improve Google Flu Trends accuracy
threefold - but says systems must be more open
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Researchers Suggest Fixes to Google
Flu Trends Analytics

A new study concludes that “revising the inner plumbing” of the Google Flu Trends disease
surveillance system can improve the accuracy of forecasts for the severity of a flu season.
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Google Research Blog

The latest news from Research at Google

Google Flu Trends gets a brand new engine

Posted: Friday, October 31, 2014 8+1 < 222 W Tweet < 161 m< 104

Posted by Christian Stefansen, Senior Software Engineer

Each year the flu kills thousands of people and affects millions around the world. So it's important that public
health officials and health professionals learn about outbreaks as quickly as possible. In 2008 we launched Google
Flu Trends in the U.S., using aggregate web searches to indicate when and where influenza was striking in real
time. These models nicely complement other survey systems—they’re more fine-grained geographically, and
they’re typically more immediate, up to 1-2 weeks ahead of traditional methods such as the CDC's official reports.
They can also be incredibly helpful for countries that don't have official flu tracking. Since launching, we've
expanded Flu Trends to cover 29 countries, and launched Dengue Trends in 10 countries.

The original model performed surprisingly well despite its simplicity. It was retrained just once per year, and
typically used only the 50 to 300 queries that produced the best estimates for prior seasons. We then left it to
perform through the new season and evaluated it at the end. It didn't use the official CDC data for estimation
during the season—only in the initial training.
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Google Flu Trends heavily criticized in a paper
published by Alex’s research team



BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,"** Ryan Kennedy,'** Gary King,* Alessandro Vespignani®**

www.sciencemag.org SCIENCE VOL 343

Published by AAAS
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Large errors in flu prediction were largely
avoidable, which offers lessons for the use
of big data.

14 MARCH 2014

1. Lagged (CDC-based) models capable of
outperforming GFT.

2. GFT + lagged CDC can outperform GFT
(recalibrating importance of GFT)

3. Google search engine itself changed 86

times in June and July 2012 potentially
leading to changes in Google search
results (independent variable)

4. Feedbacks (recommended search terms
depend on previous searches)




We recently established a new standard by

Incorporating historical information (via autoregressive terms)

@CrossMark
< click for updat

Accurate estimation of influenza epidemics using
Google search data via ARGO

Shihao Yang® Mauricio Santillana®“", and S. C. Kou®'

?Department of Statistics, Harvard University, Cambridge, MA 02138; bSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA
02138; and “Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115

Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved September 30, 2015 (received for review August 6, 2015)

Accurate real-time tracking of influenza outbreaks helps public health
officials make timely and meaningful decisions that could save lives.
We propose an influenza tracking model, ARGO (AutoRegression
with GOogle search data), that uses publicly available online search
data. In addition to having a rigorous statistical foundation, ARGO
outperforms all previously available Google-search-based tracking
models, including the latest version of Google Flu Trends, even
though it uses only low-quality search data as input from publicly
available Google Trends and Google Correlate websites. ARGO
not only incorporates the seasonality in influenza epidemics
but also captures changes in people’s online search behavior
over time. ARGO is also flexible, self-correcting, robust, and scal-
able, making it a potentially powerful tool that can be used for real-
time tracking of other social events at multiple temporal and
spatial resolutions.

CDC’s ILI reports have a delay of 1-3wk due to the time for
processing and aggregating clinical information. This time lag is
far from optimal for decision-making purposes. To alleviate this
information gap, multiple methods combining climate, demo-
graphic, and epidemiological data with mathematical models
have been proposed for real-time estimation of flu activity (18,
21-25). In recent years, methods that harness Internet-based
information have also been proposed, such as Google (1), Yahoo
(2), and Baidu (3) Internet searches, Twitter posts (4), Wikipedia
article views (5), clinicians’ queries (6), and crowdsourced self-
reporting mobile apps such as Influenzanet (Europe) (26),
Flutracking (Australia) (27), and Flu Near You (United States)
(28). Among them, GFT has received the most attention and
has inspired subsequent digital disease detection systems (3. 8

PPLIED
HEMATICS



We assume there is a Hidden Markov model

Yon = Yainery 0 7T 7 Y(T-N+)T
\’ \ }
Xn XN+1 X1

Our formal mathematical assumptions are
(assumption 1) yr =p, + ZI’L ajyi—j +€t, €t d N (0, 6?)
(assumption 2) X¢|y: ~ Nk (u, + yt$,Q)
(assumption 3) conditional on y;, X; is independent of {y,, X, :/#t}
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—— CDC's ILI activity level (weighted)
— ARGO

GFT (Oct 2014)
—— Santillana et al. (2014)

AR(3)

A\
\
\
c Google Correlate Google Trend :
I r Ll Ll I T 1 1 I r 1 T Ll :
Apr 04 Oct 03 Apr 03 Oct 02 Apr 02 Oct 01 Apr 07 Oct 06 Apr 05 Oct 04 Mar 28
2009 2009 2010 2010 2011 2011 2012 2012 2014 2014 2015

prediction error




03/29/09

12/27/09
H1N1 Flu outbreak

09/30/12

05/19/13

09/28/14

04/26/15

2014-15
Partial Flu Season

HIN1 Wave 1 HIN1 Wave 2

T T T T T T T T
Jun 08 Aug 01 Oct03 Nov 07 Dec 26
2009 2009 2009 2009 2009

Oct04 Nov 01

2014

Feb 07 Mar 07 Apr04
2015 2015 2015




Whole period

Off-season flu [

Regular flu seasons (week 40 to week 20 next year)

HIN1 2010-11 2011-12 2012-13 2013-14 2014-15 partial
RMSE [ |
ARGO |(0.637 0.655 0.618 0.830 0.679 0.308 0.593
GFT (Oct 2014) (2.213 0.773 1.110 3.023 4.451 0.981 (.683
Santillana et al. (2014) [0.909 0.945 0.864 1.688 (0.918 0.495 ().683
AR(3)0.955 0.813 0.794 1.051 1.191 0.966 0.924
Naive | 1.000 (0.354) | 1.000 (0.600) | 1.000 {(0.339) 1.000 (0.163) 1.000 (0.499) 1.000 (0.350) 1.000 (0.500)
MAE
ARGO | 0.680 0.607 0.588 0.760 0.653 0.406 0.673
GFT (Oct 2014) [1.828 0.777 1.260 3.277 0.028 0.884 (.726
Santillana et al. (2014)[1.035 0.793 0.977 1.782 (.897 0.634 (.872
AR(3)0.920 0.777 0.787 0.951 ().988 0.915 0.924
Naive | 1.000 (0.206) | 1.000 {0.425) |1.000 {(0.259) 1.000 (0.135) 1.000 (0.325) 1.000 {0.213) 1.000 (0.332)
Correlation
ARGO |0.984 0.984 0.988 0.924 0.968 0.993 0.981
GFT (Oct 2014)|0.874 0.989 0.968 0.833 (.926 0.969 0.984
Santillana et al. (2014) (0.970 0.959 0.982 ().898 (0.960 0.982 0.967
AR(3)0.963 0.968 0.971 0.877 (0.903 0.928 0.939
Naive | 0.960 0.951 0.954 (.887 (.924 0.923 0.929
Corr. of increment
ARGO |0.744 0.796 0.793 0.309 0.532 0.944 0.851
GFT (Oct 2014) [0.706 0.863 0.702 ().484 (0.502 0.849 0.910
Santillana et al. (2014) |0.671 0.782 0.688 0.599 (0.375 ().882 ().738
AR(3)0.386 0.585 0.569 0.077 0.011 0.414 ().498
Naive | (.438 0.602 0.570 0.095 (0.134 0.415 (.518
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New flu tracker uses Google search data
better than Google

Unlike defunct Flu Trends, the model is self-correcting and close to reality.

by Beth Mole - Nov 9, 2015 3:35pm EST



New flu tracker uses Google search data

better than Google

La revanche du big data : Harvard plus
forte que Google pour prédire la grippe

Des chercheurs de la prestigieuse université américaine ont con¢u un

modele statistique deux fois plus efficace que la méthode Google. Le

géant de I'Internet avait fermé cet été son projet, dont les prédictions
avaient tourné au flop.




Par Delphine Cuny Redactric

New Google, estadistica y ‘big data’ para
betticazar brotes de gripe

> BLED TR R K3 Ve ouete REETR ¥ Tweet

Un nuevo modelo que combina informacién epidemiolégica y busquedas de Google es capaz de predecir
los brotes de gripe una o dos semanas antes que los métodos clinicos tradicionales. El modelo podra servir
para mejorar la toma de decisiones, como la distribucién de personal y recursos hospitalarios en regiones

que mds lo necesiten.

Mas informacién sobre: gripe brote epidemia Google  estadistica big data

SINC W Seguir a @agencia_sinc 09 noviembre 2015 21:00

El modelc es capaz de produck estimaciones mas precisas sobre brotes de gripe que cualquier otro métedo disponible, segun los autores.

/ Sebastian Smit



New Google, estadistica y ‘big data’ para
bett cazar brotes de gripe
5 0fEO TREN € v o HEJN ¥ oot

Un nuevo modelo que combina informacién epidemiolégica y busquedas de Google es capaz de predecir
los brotes de gripe una o dos semanas antes que los métodos clinicos tradicionales. El modelo podra servir
para mejorar la toma de decisiones, como la distribucién de personal y recursos hospitalarios en regiones

que mds lo necesiten.

Mas informacién sobre:  gripe brote  epidemia Google estadistica big data

HARVARDgazette

B SCIENCE & HEALTH > HEALTH & MEDICINE

On top of the flu

Chance for advance warning in
search-based tracking method

November 9, 2015 | ¥




Let’s work on writing our own version of ARGO
Step-by-step

Download Google searches input file from the website “Google
correlate”

Download the CDC data (gold standard) from course website

Repeat dengue exercise, this time make it multi-variables (build a static
and dynamic version: Santillana et al, 2014, AJPM)

Add historical information in the form of autoregressive terms

Let’s make sure you succeed on Wed morning.

If you need assistance, please download the ARGO package from course
website



Using Google searches to track diseases dynamically

begin

%% Load data %%

CDC=load(CDC ILI Data) (ONE COLUMN OF VALUES)
X=load(Google search Data) (MULTIPLE COLUMNS OF VALUES)

%% initialize output arrays %%
Y=zeros(1:end.of.predictions) (INITIALIZE ARRAY TO STORE PREDICTIONS)
coefficients=zeros(1:end.of.predictions) (INITIALIZE ARRAY TO STORE COEFFS)

%% train models and produce out-of-sample predictions %%

for i = training : end.of.predictions
CDC < standardize(CDC) (PERHAPS USE A TRANSFORM:Z-SCORE, LOGIT)
X < standardize(X) (PERHAPS USE A TRANSFORM:Z-SCORE, LOGIT)

model=LASSOroutine.fit(CDCJ[1 : i] ~ X[1:i]) (TRAINING: IN-SAMPLE MODEL )

coefficients(i) <— model(coefficients)

Y (i + 1)=LASSOroutine.predict(model, X(i + 1)) (PRODUCE OUT-OF-SAMPLE
PREDICTIONS)

if (i == training)
Y[1:i]=LASSOroutine.predict(model, X[1:/]) IN -SAMPLE PREDICTIONS
end




And on Aug 20th, 2015



Google discontinues Flu Trends indefinitely!

Google Research Blog

The latest news from Research at Google

The Next Chapter for Flu Trends

Posted: Thursday, August 20, 2015

Instead of maintaining our own website going forward, we're now going to empower institutions who specialize in
infectious disease research to use the data to build their own models. Starting this season, we'll provide Flu and
Dengue signal data directly to partners including Columbia University’s Mailman School of Public Health (to update
their dashboard), Boston Children’s Hospital/Harvard, and Centers for Disease Control and Prevention (CDC)
Influenza Division. We will also continue to make historical Flu and Dengue estimate data available for anyone to

see and analyze.
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Google Flu Trends calls out sick, indefinitely

Google will pass along search queries related to the flu to health MORE LIKE THIS ::
organizations so they can develop their own prediction models

Google Begins Tracking Swine Flu in Mexico

Fred O'Connor | Follow B Google's Panicky Flu Estimates

. wogle
IDG News Service | v, Were Dead Wrong
/

NEWS  EVENTS  RESEARCH SUBSCRIBE Signup | Login Q

BIG DATA

Google discontinues Flu Trends, starts offering data
to researchers

JORDAN NOVET  AUGUST 20, 2015 12:17 PM
TAGS: GOOGLE, GOOGLE FLU TRENDS



Our team at Boston Children’s Hospital now has
access to Google’s search volumes, as one of the
exclusive Google’s partners.

We are creating a new improved disease forecasting
platform



I¥} HealthMap Flu Trends
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Thank youl!

Contact: msantill@fas.harvard.edu



