Sampling Distributions

Sample Summaries

Population

- Size N (usually ∞)
- \quad Mean $=\mu$

$$
\mu=\sum p_{j} X_{j} \quad \text { or } \quad \int \ldots
$$

- Variance $=\sigma^{2}$

$$
\sigma^{2}=\sum p_{j}\left(X_{j}-\mu\right)^{2} \quad \text { or } \quad \int \ldots
$$

Sample

- Size n
- Mean $=\bar{X}$

$$
\bar{X}=\frac{1}{n} \sum_{j=1}^{n} X_{j}
$$

- Sample variance $=s^{2}$

$$
s^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}
$$

Sums of Normal Random Variables

We already know that linear functions of a normal rv are normal. What about combinations (eg. sums) of normals?
$=\Rightarrow$ If $X_{j} \sim N\left(\mu_{j}, \sigma_{j}^{2}\right)$ (indep) then

$$
Y=\sum_{j=1}^{n} X_{j}
$$

$$
Y \sim N\left(\sum_{j=1}^{n} \mu_{j}, \sum_{j=1}^{n} \sigma_{j}^{2}\right)
$$

Combine this with what we have learned about linear functions of means and variances to get ...

Distribution of the Sample Mean

A. When sampling from a normally distributed population:

1. The distribution of \bar{X} is normal.
2. \bar{X} is a random variable.
3. Mean of \bar{X} is $\mu_{\bar{X}}$ which equals μ, the mean of the population.
4. Variance of \bar{X} is $\sigma_{\bar{X}}^{2}$ which equals, σ^{2} / n the variance of the population divided by the sample size.
5. $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$.
B. When the population is non-normal but the sample size is large, the Central Limit Theorem applies.

Distribution of the Sample Mean

Central Limit Theorem

Given a population with any non-normally distributed variables with a mean μ and a variance σ^{2}, then for large enough sample sizes, the distribution of the sample mean, \bar{X}, will be approximately normal with means μ and variance σ^{2} / n.

$$
\mathrm{n} \text { large } \rightarrow \overline{\mathrm{X}} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- In general, this applies for $\mathrm{n} \geq 30$.
- As n increases, the normal approximation improves.

Central Limit Theorem - Illustration

Population

Distribution of Sample Mean

In applications we can address:

What is the probability of obtaining a sample with mean larger (smaller) than T (some constant) when sampling from a population with mean μ and variance σ^{2} ?

Transform to Standard Normal

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

random variable

$$
=\bar{X}
$$

distribution of sample mean
\approx Normal
expected value of sample mean $=\mu$
standard deviation of sample mean $=\frac{\sigma}{\sqrt{n}}$

Distribution of the Sample Mean

EXAMPLE:

Suppose that for Seattle sixth grade students the mean number of missed school days is 5.4 days with a standard deviation of 2.8 days. What is the probability that a random sample of size 49 (say Ridgecrest's 6th graders) will have a mean number of missed days greater than 6 days?

Random Variable
Distribution
Parameters
Question

Find the probability that a random sample of size 49 from this population will have a mean greater than 6 days.

$$
\begin{aligned}
\mu & =5.4 \text { days } \\
\sigma & =2.8 \text { days } \\
\mathrm{n} & =49 \\
\sigma_{\bar{X}} & =\sigma / \sqrt{n}=2.8 / \sqrt{49}=0.4 \\
\mu_{\bar{X}} & =5.4 \\
P(\bar{X}>6) & =P\left(\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}>\frac{6-5.4}{0.4}\right) \\
& =P(Z>1.5)=0.0668
\end{aligned}
$$

Let's look at the sampling distribution more closely ...

In terms of the standard normal ...

What is the probability that a random sample (size 49) from this population has a mean between 4 and 6 days? Check that

$$
\begin{aligned}
P(4 \leq \bar{X} \leq 6) & =P(-3.5 \leq Z \leq 1.5) \\
& =P(Z \leq 1.5)-P(Z \leq-3.5) \\
& =.933
\end{aligned}
$$

Confidence Intervals

\qquad

SENATOR ASTUTE IS STILL CONFUSED! SO HOLMES GIVES HIM AN archery lesson.

CONSIDER AN ARCHER-POLLSTER SHOOTING AT A TARGET. SUPPOSE THAT SHE HITS THE 10 CM RADIUS BULL'S-EYE 95\% OF THE TIME. THAT IS, ONLY ONE ARROW OUT OF 20 MISSES.

SITTING BEHIND THE TARGET IS A BRAVE DETECTIVE, WHO CAN'T SEE THE BULL'SEYE. THE ARCHER SHOOTS A SINGLE ARROW.

KNOWING THE ARCHER'S SKILL LEVEL, THE DETECTIVE DRAWS A CIRCLE. WITH 10 CM RADIUS AROUND THE ARROW. HE NOW HAS 95% CONFIDENCE THAT HIS CIRCLE INCLUDES THE CENTER OF THE BULL'S-EYE!

HE REASONED THAT IF HE DREW 10 CM RADIUS CIRCLES AROUND MANY ARROWS, HIS CIRCLES WOULD INCLUDE THE CENTER 95\% OF THE TIME.

(PROBABILISTS USE THE TERM STOCHASTIC TO DESCRIBE RANDOM MODELS. IT'S DERIVED FROM THE GREEK STOCHAZESTHAI, MEANING TO AIM AT A TARGET, OR GUESS, FROM STOCHOS, A TARGET.)

Confidence Intervals

Q: When we do not know the population parameter, how can we use the sample to estimate the population mean, and use our knowledge of probability to give a range of values consistent with the data?

Parameter: μ

Estimate: \bar{X}

Given a normal population, or large sample size, we can state:

$$
P\left[-1.96 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq+1.96\right]=0.95
$$

Confidence Intervals

$$
P\left[-1.96 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq+1.96\right]=0.95
$$

We can do some rearranging:

$$
\begin{gathered}
P[-1.96 \sigma / \sqrt{n} \leq \bar{X}-\mu \leq+1.96 \sigma / \sqrt{n}]=0.95 \\
P[-\bar{X}-1.96 \sigma / \sqrt{n} \leq-\mu \leq-\bar{X}+1.96 \sigma / \sqrt{n}]=0.95 \\
P[\bar{X}-1.96 \sigma / \sqrt{n} \leq \mu \leq \bar{X}+1.96 \sigma / \sqrt{n}]=0.95
\end{gathered}
$$

The interval

$$
(\bar{X}-1.96 \sigma / \sqrt{n}, \bar{X}+1.96 \sigma / \sqrt{n})
$$

is called a $\mathbf{9 5 \%}$ confidence interval for μ.

Normal Quantiles

Go back to Rosner, table 3
Notice that we can use the table two ways:
(1) Given a particular x value (the quantile) we can look up the probability:

Rosner table 3 ...

x	A	B	C	D
$:$	$:$	$:$	$:$	$:$
$\mathbf{1 . 6 5}$.9505	.0495	.4505	.9011
$:$	$:$	$:$	$:$	$:$

(2) Given a particular probability, we can look up the quantile:

$$
\mathrm{P}(\mathrm{Z} \leq ?)=. \mathbf{9 5 0 5}
$$

$\mathrm{Q}_{\mathrm{Z}}^{(\mathrm{p})}$ is the value of x such that $\mathrm{P}(\mathrm{Z} \leq \mathrm{x})=\mathrm{p}$

Verify: $\quad Q_{Z}^{(.95)}=1.65$
$\mathrm{Q}_{\mathrm{Z}}^{(.975)}=1.96$
$\mathrm{P}\left(\mathrm{Q}_{\mathrm{Z}}^{(05)} \leq \mathrm{Z} \leq \mathrm{Q}_{\mathrm{Z}}^{(05)}\right)=.90 \Rightarrow \mathrm{Q}_{\mathrm{Z}}^{(05)}=-1.65, \mathrm{Q}_{\mathrm{Z}}^{(09)}=1.65$

Notice that $\mathrm{Q}_{\mathrm{Z}}^{(\mathrm{p})}=-\mathrm{Q}_{\mathrm{Z}}^{(1-\mathrm{p})}$

Confidence Intervals σ known

When σ is known we can construct a confidence interval for the population mean, μ, for any given confidence level, $(1-\alpha)$. Instead of using 1.96 (as with 95% CI's) we simply use a different constant that yields the right probability.

So if we desire a $(1-\alpha)$ confidence interval we can derive it based on the statement

$$
P\left[Q_{Z}^{\left(\frac{\alpha}{2}\right)}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<Q_{Z}^{\left(1-\frac{\alpha}{2}\right)}\right]=1-\alpha
$$

That is, we find constants $Q_{Z}^{\left(\frac{\alpha}{2}\right)}$ and $Q_{Z}^{\left(1-\frac{\alpha}{2}\right)}$ that have exactly ($1-\alpha$) probability between them.

A (1- α) Confidence Interval for the Population Mean

$$
\left(\bar{X}+Q_{Z}^{\left(\frac{\alpha}{2}\right)} \times \frac{\sigma}{\sqrt{n}}, \bar{X}+Q_{Z}^{\left(1-\frac{\alpha}{2}\right)} \times \frac{\sigma}{\sqrt{n}}\right)
$$

Confidence Intervals σ known - EXAMPLE

Suppose gestational times are normally distributed with a standard deviation of 6 days. A sample of 30 second time mothers yield a mean pregnancy length of 279.5 days. Construct a 90% confidence interval for the mean length of second pregnancies based on this sample.

Confidence Intervals σ unknown

To get a CI for μ using the methods outlined above, we need $\overline{\mathrm{X}}$ and σ^{2}. But usually, σ is unknown - we only have $\overline{\mathrm{X}}$ and s^{2}. It turns out that even though

$$
\frac{(\bar{X}-\mu)}{\sigma / \sqrt{n}}
$$

is normally distributed,

$$
\frac{(\bar{X}-\mu)}{s / \sqrt{n}}
$$

is not (quite)!
W.S. Gosset worked for Guinness Brewing in Dublin, IR. He was forced to publish under the pseudonym "Student". In 1908 he derived the distribution of

$$
\frac{(\bar{X}-\mu)}{s / \sqrt{n}}
$$

which is now known as Student's \mathbf{t}-distribution.

Normal and t distributions

x

Confidence Intervals σ^{2} unknown
 t Distribution

When σ is unknown we replace it with the estimate, s, and use the t-distribution. The statistic

$$
\frac{\bar{X}-\mu}{s / \sqrt{n}}
$$

has a t-distribution with $\mathrm{n}-1$ degrees of freedom.
We can use this distribution to obtain a confidence interval for μ even when σ is not known.

See Rosner, table 5 or display tprob (df,t)

A (1- α) Confidence Interval for the Population Mean when σ is unknown

$$
\left(\bar{X}+Q_{t(n-1)}^{\left(\frac{\alpha}{2}\right)} \times s / \sqrt{n}, \overline{\mathrm{X}}+Q_{t(n-1)}^{\left(1-\frac{\alpha}{2}\right)} \times s / \sqrt{n}\right)
$$

Confidence Intervals - $\boldsymbol{\sigma}^{2}$ unknown t Distribution - EXAMPLE

Given our 30 moms with a mean gestation of 279.5 days and a variance of 28.3 days 2, we can now compute a 95% confidence interval for the mean length of pregnancies for second time mothers:

Confidence Intervals sample variance

Q: Can we derive a confidence interval for the sample variance?

A: Yes. We'll need the Chi-square distribution

> Definition: The sum of squared independent standard normal random is a random variable with a Chi-square distribution with n degrees of freedom.

Let Z_{i} be standard normals, $\mathrm{N}(0,1)$. Let

$$
X=Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2}=\sum_{i=1}^{n} Z_{i}^{2}
$$

\mathbf{X} has a $\chi^{2}(\mathrm{n})$ distribution

Chi-square Distribution

Properties of $\chi^{2}(\mathrm{n})$: Let $\mathrm{X} \sim \chi^{2}(\mathrm{n})$.

1. $\mathrm{X} \geq 0$
2. $\mathrm{E}[\mathrm{X}]=\mathrm{n}$
3. $\mathrm{V}[\mathrm{X}]=2 \mathrm{n}$
4. \mathbf{n}, the parameter of the distribution is called the degrees of freedom.

Chi-square Distribution Sample Variance

The Chi-square distribution describes the distribution of the sample variance. Recall

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

and

$$
(n-1) \frac{s^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}
$$

Now the right side almost looks like

$$
\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}
$$

which would be $\chi^{2}(\mathrm{n})$.
Since μ is estimated by \bar{X} one degree of freedom is lost leading to ...

$$
(n-1) \frac{s^{2}}{\sigma^{2}} \sim \chi^{2} \quad \text { with } \mathrm{n}-1 \text { degrees of freedom }
$$

Chi-square Distribution
 Confidence Interval for $\boldsymbol{\sigma}^{\mathbf{2}}$

We can use the Chi-square distribution to obtain a ($1-\alpha$) confidence interval for the population variance.

$$
P\left[Q_{\chi^{2}(n-1)}^{\left(\frac{\alpha}{2}\right)}<(n-1) \frac{s^{2}}{\sigma^{2}}<Q_{\chi^{2}(n-1)}^{\left(1-\frac{\alpha}{2}\right)}\right]=1-\alpha
$$

Now, inverting this statement yields:
$P\left[s^{2} \times(n-1) / Q_{\chi^{2}(n-1)}^{\left(1-\frac{\alpha}{2}\right)}<\sigma^{2}<s^{2} \times(n-1) / Q_{\chi^{2}(n-1)}^{\left(\frac{\alpha}{2}\right)}\right]=1-\alpha$
Therefore,
A (1- α) Confidence Interval for the Population Variance

$$
\left(s^{2} \times(n-1) / Q_{\chi^{2}(n-1)}^{\left(1-\frac{\alpha}{2}\right)}, s^{2} \times(n-1) / Q_{\chi^{2}(n-1)}^{\frac{\alpha}{2}}\right)
$$

Chi-square Distribution

 Confidence Interval for $\boldsymbol{\sigma}^{\mathbf{2}}$ - EXAMPLE

 Confidence Interval for $\boldsymbol{\sigma}^{\mathbf{2}}$ - EXAMPLE}

Suppose for the second time mothers were not happy using the standard deviation of 6 days since it was based on the population of all mothers regardless of parity. The sample variance was 28.3 days 2. What is a 95% confidence interval for the variance of the length of second pregnancies?

Summary

- General ($1-\alpha$) Confidence Intervals.
- CI for μ, σ assumed known $\rightarrow \mathrm{Z}$.
- CI for μ, σ unknown $\rightarrow \mathrm{T}$.
- CI for $\sigma^{2} \rightarrow \chi^{2}$
- \uparrow confidence \rightarrow wider interval
- \uparrow sample size \rightarrow narrower interval

