Sampling Distributions

Sample Summaries

Population

• Size N (usually ∞)

• Mean =
$$\mu$$

$$\mu = \sum p_j X_j \quad or \quad \int \dots$$

• Variance = σ^2

$$\sigma^2 = \sum p_j (X_j - \mu)^2 \quad or \quad \int \dots$$

Sample

- Size n
- Mean = \overline{X}

$$\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_{j}$$

• Sample variance = s^2 $s^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X})^2$

Sums of Normal Random Variables

We already know that linear functions of a normal rv are normal. What about combinations (eg. sums) of normals?

==> If
$$X_j \sim N(\mu_j, \sigma_j^2)$$
 (indep) then

$$Y = \sum_{j=1}^n X_j$$

$$Y \sim N\left(\sum_{j=1}^n \mu_j, \sum_{j=1}^n \sigma_j^2\right)$$

Combine this with what we have learned about linear functions of means and variances to get ...

Central Limit Theorem

Given a population with any non-normally distributed variables with a mean μ and a variance σ^2 , then for large enough sample sizes, the distribution of the sample mean, \overline{X} , will be **approximately normal** with means μ and variance σ^2/n .

n large
$$\rightarrow \overline{\mathbf{X}} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

- In general, this applies for $n \ge 30$.
- •As n increases, the normal approximation improves.

In applications we can address:

What is the probability of obtaining a sample with mean larger (smaller) than T (some constant) when sampling from a population with mean μ and variance σ^2 ?

Transform to Standard Normal

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

random variable = \overline{X} distribution of sample mean \approx Normal expected value of sample mean = μ standard deviation of sample mean = $\frac{\sigma}{\sqrt{n}}$

Distribution of the Sample Mean

EXAMPLE:

Suppose that for Seattle sixth grade students the mean number of missed school days is 5.4 days with a standard deviation of 2.8 days. What is the probability that a random sample of size 49 (say Ridgecrest's 6th graders) will have a mean number of missed days greater than 6 days?

Random Variable

Distribution

Parameters

Question

Find the probability that a random sample of size 49 from this population will have a mean greater than 6 days.

$$\mu = 5.4 \text{ days}$$

 $\sigma = 2.8 \text{ days}$
 $n = 49$

$$\sigma_{\overline{X}} = \sigma / \sqrt{n} = 2.8 / \sqrt{49} = 0.4$$
$$\mu_{\overline{X}} = 5.4$$
$$P(\overline{X} > 6) = P\left(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} > \frac{6 - 5.4}{0.4}\right)$$
$$= P(Z > 1.5) = 0.0668$$

Summer 2016

Summer Institute in Statistical Genetics

145

What is the probability that a random sample (size 49) from this population has a mean between 4 and 6 days? Check that

 $P(4 \le \overline{X} \le 6) = P(-3.5 \le Z \le 1.5)$ = $P(Z \le 1.5) - P(Z \le -3.5)$ = .933

Confidence Intervals

Q: When we do not know the population parameter, how can we use the sample to estimate the population mean, and use our knowledge of probability to give a range of values consistent with the data?

Parameter: µ

Estimate: \overline{X}

Given a normal population, or large sample size, we can state:

$$P\left[-1.96 \le \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \le +1.96\right] = 0.95$$

Summer 2016

Confidence Intervals

$$P\left[-1.96 \le \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \le +1.96\right] = 0.95$$

We can do some rearranging:

 $P\left[-1.96\sigma/\sqrt{n} \le \overline{X} - \mu \le +1.96\sigma/\sqrt{n}\right] = 0.95$ $P\left[-\overline{X} - 1.96\sigma/\sqrt{n} \le -\mu \le -\overline{X} + 1.96\sigma/\sqrt{n}\right] = 0.95$ $P\left[\overline{X} - 1.96\sigma/\sqrt{n} \le \mu \le \overline{X} + 1.96\sigma/\sqrt{n}\right] = 0.95$

The interval

$$\left(\overline{X}-1.96\sigma/\sqrt{n}, \overline{X}+1.96\sigma/\sqrt{n}
ight)$$

is called a 95% confidence interval for μ .

Normal Quantiles

Go back to Rosner, table 3

Notice that we can use the table two ways:

(1) Given a particular x value (the <u>quantile</u>) we can look up the probability:

Confidence Intervals

 σ known

When σ is known we can construct a confidence interval for the population mean, μ , for any given confidence level, $(1 - \alpha)$. Instead of using 1.96 (as with 95% CI's) we simply use a different constant that yields the right probability.

So if we desire a $(1 - \alpha)$ confidence interval we can derive it based on the statement

$$P\left[Q_{Z}^{\left(\frac{\alpha}{2}\right)} < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < Q_{Z}^{\left(1 - \frac{\alpha}{2}\right)}\right] = 1 - \alpha$$

That is, we find constants $Q_Z^{\left\lfloor \frac{\alpha}{2} \right\rfloor}$ and $Q_Z^{\left\lfloor 1-\frac{\alpha}{2} \right\rfloor}$ that have exactly (1 - α) probability between them.

A (1 - α) Confidence Interval for the Population Mean

$$\left(\overline{X} + Q_Z^{\left(\frac{\alpha}{2}\right)} \times \frac{\sigma}{\sqrt{n}}, \overline{X} + Q_Z^{\left(1-\frac{\alpha}{2}\right)} \times \frac{\sigma}{\sqrt{n}}\right)$$

Summer 2016

Confidence Intervals σ known - EXAMPLE

Suppose gestational times are normally distributed with a standard deviation of 6 days. A sample of 30 second time mothers yield a mean pregnancy length of 279.5 days. Construct a 90% confidence interval for the mean length of second pregnancies based on this sample.

Confidence Intervals

 σ unknown

To get a CI for μ using the methods outlined above, we need \overline{X} and σ^2 . But usually, σ is **unknown** - we only have \overline{X} and s². It turns out that even though

$$\frac{(X-\mu)}{\sigma/\sqrt{n}}$$

is normally distributed,

$$\frac{(\overline{X}-\mu)}{s/\sqrt{n}}$$

is not (quite)!

W.S. Gosset worked for Guinness Brewing in Dublin, IR. He was forced to publish under the pseudonym "Student". In 1908 he derived the distribution of

$$\frac{(X-\mu)}{s/\sqrt{n}}$$

which is now known as Student's t-distribution.

Confidence Intervals σ² unknown **t Distribution**

When σ is unknown we replace it with the estimate, s, and use the t-distribution. The statistic

$$\frac{\overline{X} - \mu}{s / \sqrt{n}}$$

has a t-distribution with n-1 degrees of freedom.

We can use this distribution to obtain a confidence interval for μ even when σ is not known.

See Rosner, table 5 or display tprob(df,t)

A (1- α) Confidence Interval for the Population Mean when σ is unknown

$$\overline{X} + Q_{t(n-1)}^{\left(\frac{\alpha}{2}\right)} \times s / \sqrt{n}, \ \overline{X} + Q_{t(n-1)}^{\left(1-\frac{\alpha}{2}\right)} \times s / \sqrt{n}$$

Confidence Intervals - σ² unknown t Distribution - EXAMPLE

Given our 30 moms with a mean gestation of 279.5 days and a variance of 28.3 days², we can now compute a 95% confidence interval for the mean length of pregnancies for second time mothers:

Confidence Intervals sample variance

Q: Can we derive a confidence interval for the sample variance?

A: Yes. We'll need the Chi-square distribution

Definition: The sum of squared independent standard normal random is a random variable with a **Chi-square** distribution with n degrees of freedom.

Let Z_i be standard normals, N(0,1). Let

$$X = Z_1^2 + Z_2^2 + \ldots + Z_n^2 = \sum_{i=1}^n Z_i^2$$

X has a $\chi^2(n)$ distribution

Chi-square Distribution

Properties of χ^2 (n): Let X ~ χ^2 (n).

 $1.X \ge 0$

2.E[X] = n

3.V[X] = 2n

4. **n**, the parameter of the distribution is called *the degrees of freedom*.

Chi-square Distribution Sample Variance

The Chi-square distribution describes the distribution of the sample variance. Recall

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

and
$$(n-1)\frac{s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2$$

Now the right side almost looks like

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

which would be $\chi^2(n)$.

Since μ is estimated by \overline{X} one degree of freedom is

lost leading to ... $(n-1)\frac{s^2}{\sigma^2} \sim \chi^2$ with n-1 degrees of freedom

Chi-square Distribution Confidence Interval for σ^2

We can use the Chi-square distribution to obtain a $(1 - \alpha)$ confidence interval for the **population** variance.

$$P\left[Q_{\chi^2(n-1)}^{\left(\frac{\alpha}{2}\right)} < (n-1)\frac{s^2}{\sigma^2} < Q_{\chi^2(n-1)}^{\left(1-\frac{\alpha}{2}\right)}\right] = 1 - \alpha$$

Now, inverting this statement yields:

$$P\left[s^{2} \times (n-1)/Q_{\chi^{2}(n-1)}^{\left(1-\frac{\alpha}{2}\right)} < \sigma^{2} < s^{2} \times (n-1)/Q_{\chi^{2}(n-1)}^{\left(\frac{\alpha}{2}\right)}\right] = 1 - \alpha$$

Therefore,

A $(1 - \alpha)$ Confidence Interval for the Population Variance

$$\int s^2 \times (n-1) / Q_{\chi^2(n-1)}^{\left(1-\frac{\alpha}{2}\right)}, s^2 \times (n-1) / Q_{\chi^2(n-1)}^{\frac{\alpha}{2}}$$

Chi-square Distribution Confidence Interval for σ^2 - EXAMPLE

Suppose for the second time mothers were not happy using the standard deviation of 6 days since it was based on the population of all mothers regardless of parity. The sample variance was 28.3 days². What is a 95% confidence interval for the variance of the length of second pregnancies?

Summary

- General (1α) Confidence Intervals.
- CI for μ , σ assumed known \rightarrow Z.
- CI for μ , σ unknown \rightarrow T.
- CI for $\sigma^2\!\rightarrow\chi^2$
- \uparrow confidence \rightarrow wider interval
- \uparrow sample size \rightarrow narrower interval