

The ideas in hypothesis testing are based on **deductive reasoning** - we assume that some probability model is true and then ask "What are the chances that these observations came from that probability model?".

IN DEDUCTIVE REASONING, WE REASON FROM A HYPOTHESIS TO A CONCLUSION: "IF LORD FASTBACK COMMITTED MURDER, THEN HE WOULD WIPE THE FINGER-PRINTS OFF THE GUN." INDUCTIVE REASONING, BY CONTRAST, ARGUES BACKWARD FROM A SET OF OBSERVATIONS TO A REASONABLE HYPOTHESIS:

- •Null Hypothesis
- •Alternative Hypothesis
- •Significance level
- •Statistically significant
- •Critical value
- •Acceptance / rejection region
- •p-value
- •power
- •Types of errors: Type I (α), Type II (β)
- •One-sided (one-tailed) test
- •Two-sided (two-tailed) test

Hypothesis Testing Motivation

1. Is the chance of getting a cold different when subjects take vitamin C than when they take placebo? (Pauling 1971 data).

2. Suppose that 6 out of 15 students in a gradeschool class develop influence, whereas 20% of grade-school children nationwide develop influenza. Is there evidence of an excessive number of cases in the class?

Hypothesis Testing Motivation

- 3. In a study of 25 hypertensive men we find a mean serum-cholesterol level of 220 mg/ml. In the 20-74 year-old male population the mean serum cholesterol is 211 mg/ml with standard deviation of 46 mg/ml.
- Is the mean for the population of hypertensive men also 211 mg/ml?
- Is the data consistent with that model?
- What if X = 230 mg/ml?
- What if $\overline{X} = 250 \text{ mg/ml}?$
- What if the sample was of 100 instead of 25?

Define:

 $\mu = \underline{\text{population}} \text{mean serum cholesterol for}$ male hypertensives

Hypothesis:

1. <u>Null Hypothesis</u>: Generally, the hypothesis that the unknown parameter equals a fixed value.

H₀: $\mu = 211 \text{ mg/ml}$

2. <u>Alternative Hypothesis</u>: contradicts the null hypothesis.

 H_A : $\mu \neq 211 \text{ mg/ml}$

Decision / Action:

We assume that either H_0 or H_A is true. Based on the data we will choose one of these hypotheses.

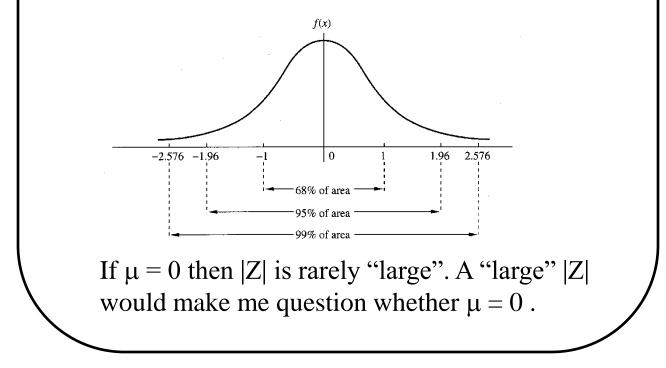
	H ₀ Correct	H _A Correct
Decide H ₀	1-α	β
Decide H _A	α	1-β

 $\alpha = significance \ level$ 1 - $\beta = power$

Let's fix α , for example, $\alpha = 0.05$. $0.05 = \alpha = P[\text{ choose } H_A | H_0 \text{ true }]$ $\alpha = P[\text{ reject } H_0 | H_0 \text{ true }]$

Q: How to construct a procedure that makes this error with only 0.05 probability?

A: Suppose we assume H_0 is true and suppose that, using that assumption, the data should give us a standard normal, Z.



Therefore, we reject H_0 if |Z| > 1.96.

 $\alpha = P[reject H_0 | H_0 true] = 0.05$

Then if we do find a large value of |Z| we can claim that:

•**Either** H_0 is true and something unusual happened (with probability α)...

•or, H_0 is not true.

Given α and H_0 we can construct a test of H_0 with a specified significance level. But remember, we start by assuming that H_0 is true we haven't proved it is true. Therefore, we usually say

- |Z| > 1.96 then we **reject** H₀.
- |Z| < 1.96 then we **fail to reject** H₀.

Cholesterol Example:

Let μ be the mean serum cholesterol level for male hypertensives. We observe

 $\overline{X} = 220 \text{ mg/ml}$

Also, we are told that for the general population...

 μ_0 = mean serum cholesterol level for males = 211 mg/ml

 σ = std. dev. of serum cholesterol for males = 46 mg/ml

NULL HYPOTHESIS: mean for male hypertensives is the same as the general male population.

ALTERNATIVE HYPOTHESIS: mean for male hypertensives is different than the mean for the general male population.

$$H_0: \mu = \mu_0 = 211 \text{ mg/ml}$$

$$H_A: \mu \neq \mu_0 \ (\mu \neq 211 \text{ mg/ml})$$

Cholesterol Example:

Test H_0 with significance level α .

Under H₀ we know:

$$\frac{\overline{X} - \mu_o}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Therefore,

•**Reject** H_0 if $\left|\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}\right| > 1.96$ gives an $\alpha = 0.05$ test. •**Reject** H_0 if

$$\overline{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}}$$
 or
 $\overline{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}}$

Cholesterol Example:

TEST: **Reject** H_0 if

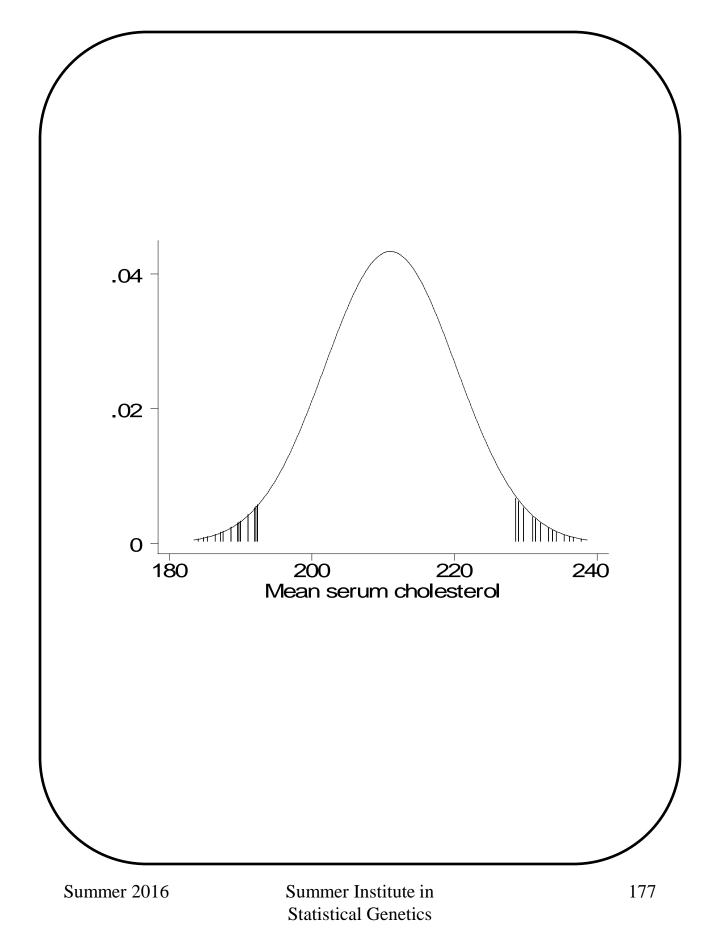
$$\overline{X} > 211 + 1.96 \frac{46}{\sqrt{25}}$$
 or
 $\overline{X} < 211 - 1.96 \frac{46}{\sqrt{25}}$

 $\overline{X} > 228.03$ or $\overline{X} < 192.97$

In terms of Z ...

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

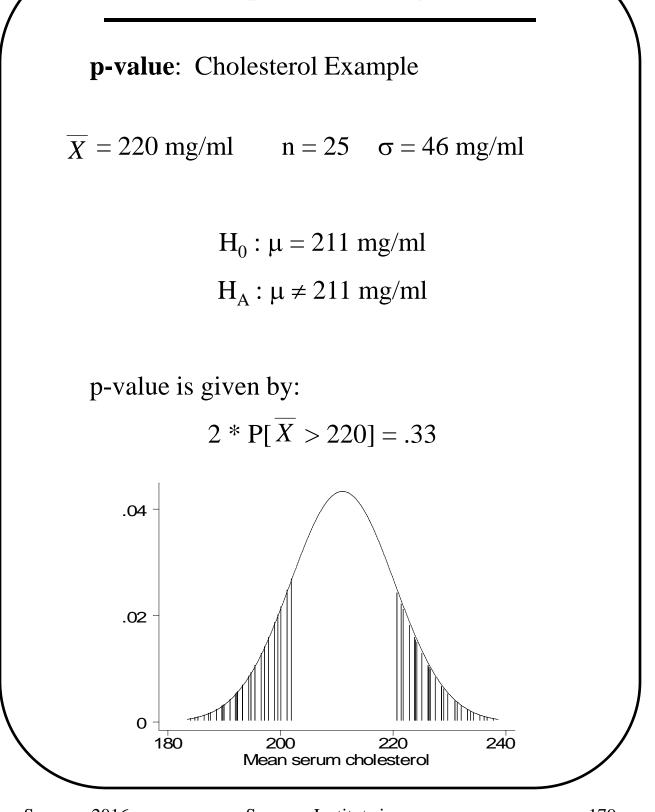
Reject H₀ if Z<-1.96 or Z> 1.96



p-value:

- smallest possible α for which the observed sample would still reject H₀.
- probability of obtaining a result as extreme or more extreme than the actual sample (give H₀ true).

NOTE: probability calculations are <u>always</u> based on a model.



Determination of Statistical Significance for Results from Hypothesis Tests

Either of the following methods can be used to establish whether results from hypothesis tests are statistically significant:

(1) The test statistic Z can be computed and compared with the critical value $Q_z^{(\Gamma-\alpha/2)}$ at an α level of .05. Specifically, if H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ are being tested and |Z| > 1.96, then H_0 is rejected and the results are declared *statistically significant* (i.e., p < .05). Otherwise, H_0 is accepted and the results are declared *not statistically significant* (i.e., p ≥ .05). We refer to this approach as the

critical-value method.

(2) The exact p-value can be computed, and if p < .05, then H_0 is rejected and the results are declared *statistically significant*. Otherwise, if $p \ge .05$ then H_0 is accepted and the results are declared *not statistically significant*. We will refer to this approach as the **p-value method**.

Guidelines for Judging the Significance of p-value (Rosner pg 200)

If $.01 \le p < .05$, then the results are *significant*.

If $.001 \le p < .01$, then the results are *highly significant*.

If p < .001, then the results are *very highly significant*.

If p > .05, then the results are considered *not statistically significant* (sometimes denoted by NS).

However, if $.05 \le p < .10$, then a trend toward statistically significance is sometimes noted.

Hypothesis Testing and Confidence Intervals

Hypothesis Test: <u>Fail to reject</u> H_0 if $\overline{X} < \mu_0 + Q_Z^{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$ and $\overline{X} > \mu_0 - Q_Z^{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

Confidence Interval: Plausible values for μ are given by

 \sim

$$\mu < \overline{X} + Q_Z^{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

and $\mu > \overline{X} - Q_Z^{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

Hypothesis Testing "how many sides?"

Depending on the alternative hypothesis a test may have a **one-sided alternative** or a **twosided alternative**. Consider

 $H_0 : \mu = \mu_0$

We can envision (at least) three possible alternatives

 $H_{A} : \mu \neq \mu_{0}$ (1) $H_{A} : \mu < \mu_{0}$ (2) $H_{A} : \mu > \mu_{0}$ (3)

(1) is an example of a "two-sided alternative"

(2) and (3) are examples of "one-sided alternatives"

The distinction impacts

- Rejection regions
- p-value calculation

Hypothesis Testing "how many sides?"

Cholesterol Example: Instead of the two-sided alternative considered earlier we may have only been interested in the alternative that hypertensives had a higher serum cholesterol.

$$H_0 : \mu = 211$$

 $H_A : \mu > 211$

Given this, an $\alpha = 0.05$ test would reject when

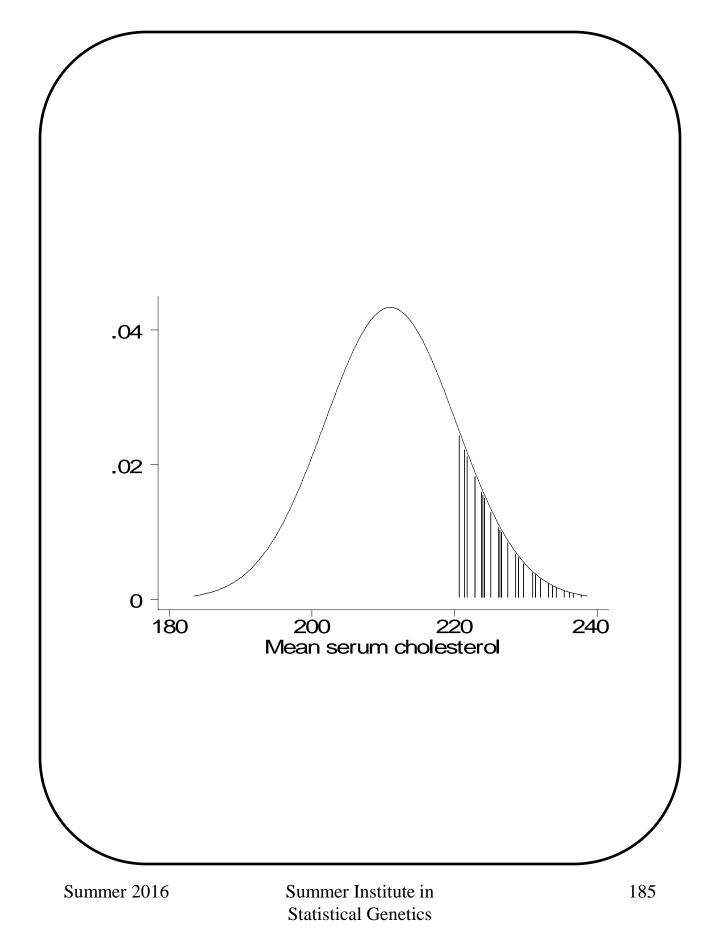
$$\frac{X - \mu_0}{\sigma / \sqrt{n}} = Z > Q_Z^{(1 - 0.05)} = 1.65$$

We put all the probability on "one-side".

The <u>p-value</u> would be half of the previous,

p-value = P[
$$\overline{X} > 220$$
]

= .163



Through this worked example we have seen the basic components to the statistical test of a scientific hypothesis.

Summary

- 1. Identify H_0 and H_A
- 2. Identify a test statistic
- 3. Determine a significance level, $\alpha = 0.05$, $\alpha = 0.01$
- 4. Critical value determines rejection / acceptance region
- 5. p-value
- 6. Interpret the result