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Exercise 1.1 (Final Size of Outbreak)

(a) Solve the final size equation 1 − τ = exp(−R0τ) numerically (with the
largest solution for τ ∈ [0, 1]) as a function of R0 and plot the function for
R0 ∈ [0, 5].
(b) Now suppose there is a fraction r of initially immune, then the final
fraction infected among the initially susceptible, solves 1− τ = exp(−R0(1−
r)τ). As in part (a), plot the overall fraction infected, as the function of R0

in [0, 5] for r = 30%, 50%, 70%.

Exercise 1.2 (Deterministic and Stochastic SIR Model)

(a) Consider a continuous-time deterministic SIR model in a closed and
homogeneous mixing population of size N = 10 000, with rate of contact
β = 0.75 and rate of recovery γ = 0.25. Let S(t), I(t) and R(t) be the number
of susceptibles, infectives and recovered respectively, so we have S(t)+I(t)+
R(t) = N at all times. In this model, individuals can only make two moves:
from S to I and from I to R. If there is a new infection, S is reduced by one
and I is increased by one. I is decreased by one, when there is a recovery. The
epidemic stops when there is no infectives. Since we have S(t)+I(t)+R(t) =
N all the times, it is actually sufficient to keep track of S(t) and I(t). Then
we have the following SIR differential equation system:

dS(t)
dt

= − β
N
∗ S(t) ∗ I(t),

dI(t)
dt

= β
N
∗ S(t) ∗ I(t)− γ ∗ I(t).

1



with initial conditions: S(0) = N − 1, I(0) = 1. Solve the above ODE using
R command:
library(deSolve)

lsoda(y= ..., #initial conditions

times= ...., #times at which explicit estimates for y are desired

func= ..., #an R-function that computes the values of derivatives

in the ODE

parms= ... #vector or list of parameters used in func)

Moreover, plot the curves of S(t), I(t) and R(t) over time t ∈ [0, 100].
(b) Now fix γ = 0.25, but choose different values of β = 1, 0.75 and 0.25. In
each case, solve the SIR differential equation system with initial conditions:
S(0) = N − 1, I(0) = 1. Plot the curves of I(t) over time t ∈ [0, 100]. and
compare them.
(c) Take β = 0.75 and γ = 0.25(implying that R0 = 3). There is one way to
reduce R0, which is reducing the number of contacts made by individuals, i.e.
reducing β. We pursue a very simple strategy, where the rate β depends on
time when different measures take place. Within some time between t1 and
t2, there are large reduction of contacts, and then the control measures(e.g.
social distancing interventions) are slightly relaxed. To be more precise, we
have

β(t) =


β0 ,if t ≤ t1,

β1 ,if t1 < t ≤ t2,

β2 ,if t > t2,

with β0 the ordinary contact rate, β1 < β2 < β0. Here we use β1 = r1β0
and β2 = r2β0 with r1 ≤ r2. Take r1 = 0.65, r2 = 0.75, t1 = 14(days), t2 =
28(days). Assuming that size N = 10 000 and there is one initial infective,
plot the deterministic curve of I(t) over time t ∈ [0, 100]. Compare it with
the one in standard deterministic SIR model with β = 0.75 and γ = 0.25.
(d) Here we turn our focus to simulate a Markovian stochastic SIR model
with population size N. Assume that there are fraction c = 10% of initial
infectives. There are two possible events: one is from S to I, which occurs
at rate β

N
∗ S(t) ∗ I(t) and another is from I to R, which occurs at rate

γ ∗ I(t). The algorithm to decide which event occurs first is as follows. From
those two rates, we draw two exponential random numbers for each possible
event. Then determine the event with the smaller random number. Finally,
record the event time and update the number of S and I according to the
event type. Take β = 0.75 and γ = 0.25(implying that R0 = 3). Plot I(t)
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for one (typical) simulated stochastic epidemic and deterministic limit over
t ∈ [0, 50], for different size of population N = 100, 1000 and 10 000.
(e) Let β = 0.375 and γ = 0.25(implying that R0 = 1.5), do 5000 stochastic
simulations in three cases when the size of populationN = 500, 1000 and 5000
with one initial infective. In each simulation, keep track of the final size, i.e.
the number of individuals who have been infected at the end of epidemic.
Make a histogram of the final size in each case. Give your comments.

Exercise 1.3 (SEIR Model with fixed and time-varying
transmission rate)

(a) In this exercise, we consider the SEIR (Susceptible→Exposed→Infectious
→Recovered) model in a closed population with size N = 100, rate of contact
β = 0.4, rate of recovery γ = 1/7 and the rate for the E → I transition is
ρ = 1/5, implying a latency period with mean 5 days. Write up the ordinary
differential equation system for the above SEIR model. Assume that there
is one initial infective, i.e. I(0) = 1 and find a numerical approximation for
I(t), S(t) and E(t) using R command lsoda. Show a plot of S(t), E(t) and
I(t) for time t ∈ [0, 100].
(b) Now we modify the SEIR model such that β(t) becomes a time-dependent
function, which is β0 until time t1 − w, is β1 after time t1 + w, and changes
linearly from β0 to β1 between t1 − w and t1 + w. The we have the full β(t)
as follows.

β(t) =


β0 ,if t ≤ t1 − w,
β0 + β1−β0

2w
t− β1−β0

2w
(t1 − w) ,if t1 − w < t ≤ t1 + w,

β1 ,if t > t1 + w.

Take t1 = 30, w = 5, β0 = 0.4 and β1 = 0.12, solve the ODE system for
the SEIR model with time-varying transmission rate in part (b) numerically
using R command lsoda and plot S(t), E(t) and I(t) for t ∈ [0, 100].
(c) Now for N = 100, 1000 and 10 000, do one simulation of the stochastic
SEIR epidemic starting from fraction infected with exponentially distributed
incubation period with mean 5 days and the above time-changing rate β(t).
Overlay it on the plot of the deterministic curve for I(t) for t ∈ [0, 100] as
done in Exercise 1.2.
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