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Sources of Data

Phenotype Mendel’s peas
Blood groups

DNA Restriction sites, RFLPs
Length variants, VNTRs, STRs
SNPs
Nucleotide sequences
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Mendel’s Data

Dominant Form Recessive Form

Seed characters
5474 Round 1850 Wrinkled
6022 Yellow 2001 Green

Plant characters
705 Grey-brown 224 White
882 Simply inflated 299 Constricted
428 Green 152 Yellow
651 Axial 207 Terminal
787 Long 277 Short
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ABO System

Human ABO blood groups discovered in 1900. ABO gene on

human chromosome 9 has 3 alleles: A, B, O. Six genotypes but

only four phenotypes (blood groups):

Genotypes Phenotype

AA, AO A
BB, BO B

AB AB
OO O
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Charlie Chaplin and ABO Testing

Relationship Person Blood Group Genotype

Mother Joan Berry A AA or AO
Child Carol Ann Berry B BB or BO
Alleged Father Charles Chaplin O OO

The obligate paternal allele was B, so the true father must have

been of blood group B or AB.

Berry v. Chaplin, 74 Cal. App. 2d 652
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Electrophoretic Detection

Charge differences among alleles (“allozymes”) of soluble pro-

teins lead to separation on electrophoretic gels. Protein loaded

at one end of a slab gel and an electric current is passed through

the gel. Allozymes migrate according to their net charge: sep-

aration of alleles depends on how far they migrate in a given

amount of time.

This techniques was the first to allow large-scale collection of

genetic marker data. The data in this case reflected variation in

the amino acid sequences of soluble proteins.
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Alec Jeffreys

For forensic applications, the work of Alec Jeffreys with on Re-

striction Fragment Length Polymorphisms (RFLPs) or Variable

Number of Tandem Repeats (VNTRs) also used electrophore-

sis. Different alleles now represented different numbers of repeat

units and therefore different length molecules. Smaller molecules

move faster through a gel and so move further in a given amount

of time.

Initial work was on mini-satellites, where repeat unit lengths were

in the tens of bases and fragment lengths were in thousands of

bases. Jeffrey’s multi-locus probes detected regions from several

pats of the genome and resulted in many detectable fragments

per individual. This gave high discrimination but difficulty in

assigning numerical strength to matching profiles.

Jeffreys et al. 1985. Nature 316:76-79 and 317: 818-819.
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Single-locus Probes

Next development for gel-electrophoresis used probes for single

mini-satellites. Only two fragments were detected per individ-

ual, but there was difficulty in determining when two profiles

matched.

The technology also required “large” amounts of DNA and was

not suitable for degraded samples.
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PCR-based STR Markers

The ability to increase the amount of DNA in a sample by the

Polymerase Chain Reaction (PCR) was of substantial benefit to

forensic science. The typing technology changed to the use of

capillary tube electrophoresis, where the time taken by a DNA

molecule to pass a fixed point was measured and used to infer

the number of repeat units in an allele.

A good source is “Following multiplex PCR amplification, DNA

samples containing the length-variant STR alleles are typically

separated by capillary electrophoresis and genotyped by compar-

ison to an allelic ladder supplied with a commercial kit. ”

Butler JM. Short tandem repeat typing technologies used in hu-

man identity testing. BioTechniques 43:Sii-Sv (October 2007)

doi 10.2144/000112582
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STR markers: CTT set

(http://www.cstl.nist.gov/biotech/strbase/seq info.htm)

Usual No.
Locus Structure Chromosome of repeats

CSF1PO [AGAT]n 5q 6–16
TPOX [AATG]n 2p 5–14
TH01∗ [AATG]n 11p 3–14

∗ “9.3” is [AATG]6ATG[AATG]3

Length variants detected by capillary electrophoresis.
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“CTT” Data - Forensic Frequency Database

CSF1P0 TPOX TH01
11 12 8 11 7 8
11 13 8 8 6 7
11 12 8 11 6 7
10 12 8 8 6 9
11 12 8 12 9 9.3
10 12 9 11 6 7
10 13 8 11 6 6
11 12 8 8 6 9.3
9 10 8 9 7 9.3
11 12 8 8 6 8
11 13 8 11 7 9
11 12 8 11 6 9.3
10 11 8 8 7 9.3
10 10 8 11 7 9.3
9 10 8 8 6 9.3
11 12 9 11 9 9.3
9 11 9 11 9 9.3
11 12 8 8 6 7
10 10 9 11 6 9.3
10 13 8 8 8 9.3
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Sequencing of STR Alleles

“STR typing in forensic genetics has been performed traditionally

using capillary electrophoresis (CE). Massively parallel sequenc-

ing (MPS) has been considered a viable technology in recent

years allowing high-throughput coverage at a relatively afford-

able price. Some of the CE-based limitations may be overcome

with the application of MPS ... generate reliable STR profiles

at a sensitivity level that competes with current widely used CE-

based method.”

Zeng XP, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sa-

jantila A, Patel J, Storts DR, Budowle B. 2015. High sensitivity

multiplex short tandem repeat loci analyses with massively par-

allel sequencing. Forensic Science International: Genetics 16:38-

47.
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Single Nucleotide Polymorphisms (SNPs)

“Single nucleotide polymorphisms (SNPs) are the most frequently

occurring genetic variation in the human genome, with the total

number of SNPs reported in public SNP databases currently ex-

ceeding 9 million. SNPs are important markers in many studies

that link sequence variations to phenotypic changes; such studies

are expected to advance the understanding of human physiology

and elucidate the molecular bases of diseases. For this reason,

over the past several years a great deal of effort has been devoted

to developing accurate, rapid, and cost-effective technologies for

SNP analysis, yielding a large number of distinct approaches. ”

Kim S. Misra A. 2007. SNP genotyping: technologies and

biomedical applications. Annu Rev Biomed Eng. 2007;9:289-

320.
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Phase 3 1000Genomes Data

• 84.4 million variants

• 2504 individuals

• 26 populations

www.1000Genomes.org
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Whole-genome Sequence Studies

One current study is the NHLBI Trans-Omics for Precision Medicine

(TOPMed) project. www.nhlbiwgs.org

In the first data freeze of Phase 1 of this study:

Abecasis et al. 2016. ASHG Poster
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Probability Theory

We wish to attach probabilities to different kinds of events (or

hypotheses or propositions):

• Event A: the next card is an Ace.

• Event R: it will rain tomorrow.

• Event C: the suspect left the crime stain.
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Probabilities

Assign probabilities to events: Pr(A) or pA or even p means “the

probability that event A is true.” All probabilities are conditional,

so should write Pr(A|E) for “the probability that A is true given

that E is known.”

No matter how probabilities are defined, they need to follow some

mathematical laws in order to lead to consistent theories.
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First Law of Probability

0 ≤ Pr(A|E) ≤ 1

Pr(A|A) = 1

If A is the event that a die shows an even face (2, 4, or 6), what

is E? What is Pr(A|E)?
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Second Law of Probability

If A, B are mutually exclusive given E

Pr(A or B|E) = Pr(A|E) + Pr(B|E)

so Pr(Ā|E) = 1 − Pr(A|E)

(Ā means not-A).

If A is the event that a die shows an even face, and B is the

event that the die shows a 1, verify the Second Law.
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Third Law of Probability

Pr(A and B|E) = Pr(A|B, E)× Pr(B|E)

If A is event that die shows an even face, and B is the event that

the die shows a 1, verify the Third Law.
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Independent Events

Events A and B are independent if knowledge of one does not

affect probability of the other:

Pr(A|B) = Pr(A)

Pr(B|A) = Pr(B)

Therefore, for independent events

Pr(A and B) = Pr(A)Pr(B)

This may be written as

Pr(AB) = Pr(A)Pr(B)
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Law of Total Probability

Because B and B̄ are mutually exclusive and exhaustive:

Pr(A) = Pr(A|B)Pr(B) + Pr(A|B̄)Pr(B̄)

If A is the event that die shows a 3, B is the event that the die

shows an even face, and B̄ the event that the die shows an odd

face, verify the Law of Total Probability.

IF B1, B2, B3 are mutually exclusive and exhaustive:

Pr(A) = Pr(A|B1)Pr(B1) + Pr(A|B2)Pr(B2)

+ Pr(A|B3)Pr(B3)
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Odds

The odds O(A) of an event A are the probability of the event

being true divided by the probability of the event not being true:

O(A) =
Pr(A)

Pr(Ā)

This can be rearranged to give

Pr(A) =
O(A)

1 + O(A)

Odds of 10 to 1 are equivalent to a probability of 10/11.
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Bayes’ Theorem

The third law of probability can be used twice to reverse the

order of conditioning:

Pr(E|A) =
Pr(E and A)

Pr(A)

=
Pr(A|E)Pr(E)

Pr(A)
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Odds Form of Bayes’ Theorem

From the third law of probability

Pr(E|A) = Pr(A|E)Pr(E)/Pr(A)

Pr(Ē|A) = Pr(A|Ē)Pr(Ē)/Pr(A)

Taking the ratio of these two equations:

Pr(E|A)

Pr(Ē|A)
=

Pr(A|E)

Pr(A|Ē)
×

Pr(E)

Pr(Ē)

Posterior odds = likelihood ratio × prior odds.
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AIDS Example

Suppose the event E of AIDS occurs 1 in 10,000 people chosen

at random.

Suppose a test procedure has two outcomes: A (positive) and B

(negative). The probability of a positive result is 0.99 if the per-

son has AIDS, and 0.05 if the person does not have AIDS. What

is the probability that a person has AIDS if she tests positive?
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AIDS Example

The problem is to determine Pr(E|A) when Pr(A|E) is known.

This requires Bayes’ theorem, and the term Pr(A) follows from

the Law of Total Probability.

Pr(E) =

Pr(Ē) =

Pr(A|E) =

Pr(A|Ē) =

Pr(A) =

Pr(E|A) =
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Birthday Problem

Forensic scientists in Arizona looked at the 65,493 profiles in the

Arizona database and reported that two profiles matched at 9

loci out of 13. They reported a “match probability” for those 9

loci of 1 in 754 million. Are the numbers 65,493 and 754 million

inconsistent?

(Troyer et al., 2001. Proc Promega 12th Int Symp Human Iden-

tification.)

To begin to answer this question suppose that every possible

profile has the same profile probability P and that there are N

profiles in a database (or in a population). The probability of at

least one pair of matching profiles in the database is one minus

the probability of no matches.
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Birthday Problem

Choose profile 1. The probability that profile 2 does not match

profile 1 is (1−P ). The probability that profile 3 does not match

profiles 1 or 2 is (1−2P ), etc. So, the probability PM of at least

one matching pair is

PM = 1 − {1(1 − P )(1 − 2P ) · · · [1 − (N − 1)P ]}

≈ 1 −
N−1∏

i=0

e−iP ≈ 1 − e−N2P/2

If P = 1/365 and N = 23, then PM = 0.51. So, approximately,

in a room of 23 people there is greater than a 50% probability

that two people have the same birthday.
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Birthday Problem

If P = 1/(754 million) and N = 65,493, then PM = 0.98 so it is

highly probable there would be a match. There are other issues,

having to do with the four non-matching loci, and the possible

presence of relatives in the database.

If P = 10−16 and N = 300 million, then PM = is essentially 1. It

is almost certain that two people in the US have the same rare

DNA profile.
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Statistics

• Probability: For a given model, what do we expect to see?

• Statistics: For some given data, what can we say about the

model?

• Example: A marker has an allele A with frequency pA.

– Probability question: If pA = 0.5, and if alleles are inde-

pendent, what is the probability of AA?

– Statistics question: If a sample of 100 individuals has 23

AA’s, 48 Aa’s and 29 aa’s, what is an estimate of pA?
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Binomial distribution

Imagine tossing a coin n times, when every toss has the same

chance p of giving a head:

The probability of x heads in a row is

p × p × . . . × p = px

The probability of n − x tails in a row is

(1 − p) × (1 − p) × . . . × (1 − p) = (1 − p)n−x

The number of ways of ordering x heads and n − x tails among

n outcomes is n!/[x!(n − x)!].
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Binomial distribution

Combining the probabilities of x successive heads, n−x successive

trials, and the number of ways of ordering x heads and n−x tails:

the binomial probability of x successes (heads) in n trials (tosses)

is

Pr(x|p) =
n!

x!(n − x)!
px(1 − p)n−x
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Binomial distribution

The probabilities of x heads in n = 4 tosses of a coin when the

chance of a head is 1/2 at each toss:

No. heads Probability
x Pr(x|p)
0 1/16
1 4/16
2 6/16
3 4/16
4 1/16

Note that 0! = 1 and p0 = 1.
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Binomial distribution

Find the binomial probabilities, for a sample of size n = 4 alleles,

when the chance that each allele is of type A is 1/10.

No. A’s Probability

0
1
2
3
4
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TRANSFER EVIDENCE

Relevant Evidence

Rule 401 of the US Federal Rules of Evidence:

“Relevant evidence” means evidence having any tendency to

make the existence of any fact that is of consequence to the

determination of the action more probable or less probable than

it would be without the evidence.
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Single Crime Scene Stain

Suppose a blood stain is found at a crime scene, and it must

have come from the offender. A suspect is identified and pro-

vides a blood sample. The crime scene sample and the suspect

have the same (DNA) “type.”

The prosecution subsequently puts to the court the proposition

(or hypothesis or explanation):

Hp: The suspect left the crime stain.

The symbol Hp is just to assist in the formal analysis. It need

not be given in court.
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Transfer Evidence Notation

GS, GC are the DNA types for suspect and crime sample. GS =

GC. I is non-DNA evidence.

Before the DNA typing, probability of Hp is conditioned on I.

After the typing, probability of Hp is conditioned on GS, GC , I.
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Updating Uncertainty

Method of updating uncertainty, or changing Pr(Hp|I) to Pr(Hp|GS , GC, I

uses Bayes’ theorem:

Pr(Hp|GS, GC , I) =
Pr(Hp, GS, GC|I)

Pr(GS, GC|I)

=
Pr(GS, GC|Hp, I) Pr(Hp|I)

Pr(GS, GC |I)

We can’t evaluate Pr(GS, GC|I) without additional information,

and we don’t know Pr(Hp|I).

Can proceed by introducing alternative to Hp.
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First Principle of Evidence Interpretation

To evaluate the uncertainty of a proposition, it is necessary to

consider at least one alternative proposition.

The simplest alternative explanation for a single stain is:

Hd: Some other person left the crime stain.
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Updating Odds

From the odds form of Bayes’ theorem:

Pr(Hp|GS, GC , I)

Pr(Hd|GS , GC, I)
=

Pr(GS, GC |Hp, I)

Pr(GS, GC|Hd, I)
×

Pr(Hp|I)

Pr(Hd|I)

i.e. Posterior odds = LR × Prior odds

where

LR =
Pr(GS, GC|Hp, I)

Pr(GS, GC |Hd, I)
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Questions for a Court to Consider

The trier of fact needs to address questions of the kind

• What is the probability that the prosecution proposition is

true given the evidence,

Pr(Hp|GC , GS, I)?

• What is the probability that the defense proposition is true

given the evidence,

Pr(Hd|GC , GS, I)?
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Questions for Forensic Scientist to Consider

The forensic scientist must address different questions:

• What is the probability of the DNA evidence if the prosecu-

tion proposition is true,

Pr(GC , GS|Hp, I)?

• What is the probability of the DNA evidence if the defense

proposition is true,

Pr(GC , GS|Hd, I)?

Important to articulate Hp, Hd. Also important not to confuse

the difference between these two sets of questions.
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Second Principle of Evidence Interpretation

Evidence interpretation is based on questions of the kind ‘What

is the probability of the evidence given the proposition.’

This question is answered for alternative explanations, and the

ratio of the probabilities presented. It is not necessary to use the

words “likelihood ratio”. Use phrases such as:

‘The probability that the crime scene DNA type is the same as

the suspect’s DNA type is one million times higher if the suspect

left the crime sample than if someone else left the sample.’
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Third Principle of Evidence Interpretation

Evidence interpretation is conditioned not only on the alternative

propositions, but also on the framework of circumstances within

which they are to be evaluated.

The circumstances may simply be the population to which the

offender belongs so that probabilities can be calculated. Forensic

scientists must be clear in court about the nature of the non-

DNA evidence I, as it appeared to them when they made their

assessment. If the court has a different view then the scientist

must review the interpretation of the evidence.
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Example

“In the analysis of the results I carried out I considered two alter-

natives: either that the blood samples originated from Pengelly

or that the . . . blood was from another individual. I find that the

results I obtained were at least 12,450 times more likely to have

occurred if the blood had originated from Pengelly than if it had

originated from someone else.”
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Example

Question:“Can you express that in another way?”

Answer:“It could also be said that 1 in 12,450 people would have

the same profile . . . and that Pengelly was included in that num-

ber . . . very strongly suggests the premise that the two blood

stains examined came from Pengelly.”

[Testimony of M. Lawton in R. v Pengelly 1 NZLR 545 (CA),

quoted by Robertson & Vignaux, “Interpreting Evidence”, Wiley

1995.]
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Likelihood Ratio

LR =
Pr(GC, GS|Hp, I)

Pr(GC , GS|Hd, I)

Apply laws of probability to change this into

LR =
Pr(GC |GS, Hp, I)Pr(GS|Hp, I)

Pr(GC |GS, Hd, I)Pr(GS|Hd, I)
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Likelihood Ratio

Whether or not the suspect left the crime sample (i.e. whether or

not Hp or Hd is true) provides no information about his genotype:

Pr(GS|Hp, I) = Pr(GS|Hd, I) = Pr(GS|I)

so that

LR =
Pr(GC|GS, Hp, I)

Pr(GC |GS, Hd, I)

50



Likelihood Ratio

LR =
Pr(GC|GS, Hp, I)

Pr(GC |GS, Hd, I)

When GC = GS, and when they are for the same person (Hp is

true):

Pr(GC|GS , Hp, I) = 1

so the likelihood ratio becomes

LR =
1

Pr(GC |GS, Hd, I)

This is the reciprocal of the probability of the match probability,

the probability of profile GC, conditioned on having seen profile

GS in a different person (i.e. Hd) and on I.
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Likelihood Ratio

LR =
1

Pr(GC |GS, Hd, I)

The next step depends on the circumstances I. If these say that

knowledge of the suspect’s type does not affect our uncertainty

about the offender’s type when they are different people (i.e.

when Hd is true):

Pr(GC |GS, Hd, I) = Pr(GC |Hd, I)

and then likelihood ratio becomes

LR =
1

Pr(GC |Hd, I)

The LR is now the reciprocal of the profile probability of profile

GC.
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Profile and Match Probabilities

Dropping mention of the other information I, the quantity Pr(GC)

is the probability that a person randomly chosen from a popula-

tion will have profile type GC. This profile probability usually very

small and, although it is interesting, it is not the most relevant

quantity.

Of relevance is the match probability, the probability of seeing

the profile in a randomly chosen person after we have already

seen that profile in a typed person (the suspect). The match

probability is bigger than the profile probability. Having seen a

profile once there is an increased chance we will see it again.

This is the genetic essence of DNA evidence.
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Likelihood Ratio

The estimated probability in the denominator of LR is determined

on the basis of judgment, informed by I. Therefore the nature of

I (as it appeared to the forensic scientist at the time of analysis)

must be explained in court along with the value of LR. If the

court has a different view of I, then the scientist will need to

review the interpretation of the DNA evidence.
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Random Samples

The circumstances I may define a population or racial group.

The probability is estimated on the basis of a sample from that

population. If the probability is written as P , then the likelihood

ratio is 1/P . If P is estimated to be 1 in a million, then LR is 1

million.

When we talk about DNA types, by “selecting a man at random”

we mean choosing him in such a way as to be as uncertain as

possible about his DNA type.
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Convenience Samples

The problem with a formal approach is that of defining the pop-

ulation: if we mean the population of a town, do we mean every

person in the town at the time the crime was committed? Do

we mean some particular area of the town? One sex? Some age

range?

It seems satisfactory instead to use a convenience sample, i.e. a

set of people from whom it is easy to collect biological material

in order to determine their DNA profiles. These people are not

a random sample of people, but they have not been selected on

the basis of their DNA profiles.

56



Meaning of Likelihood Ratios

There is a personal element to interpreting DNA evidence, and

there is no “right” value for the LR. (There is a right answer

to the question of whether the suspect left the crime stain, but

that is not for the forensic scientist to decide.)

The denominator for LR is conditioned on the stain coming from

an unknown person, and “unknown” may be hard to define. A

relative? Someone in that town? Someone in the same racial

group? (What is a race?)
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Errors and Fallacies

Once the numerical strength of the evidence has been calculated,

it is important that it be presented in a way that does not distort

its meaning.

There are a series of common fallacies that can be avoided by

careful application of the Principles of Evidence Interpretation.
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Transposed conditional

Correct: The evidence is 1000 times more likely if the suspect

left the crime stain than if some unknown person left it.

Incorrect: It is 1000 times more likely that the suspect left the

crime stain than some unknown person.

The second statement is true only if the prior odds are 1.
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Prosecution Fallacy

From the O.J. Simpson trials:

“You testify that there is . . . a 1 in 71 chance that a pair of

contributors at random could have left the stain.” (Defense at-

torney at transcript p. 33,242.)

“The chances are at least 1-in-170 million that anybody else’s

DNA besides Simpson’s could be contained in a blood drop found

near the bodies of Nicole Brown Simpson and Ronald Goldman,

testified Robin Cotton, director of Cellmark Diagnostics in Mary-

land.” (Associated Press, 11/14/96)
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Defense Fallacy

The matching DNA profile has a probability of 1 in 100,000.

The crime was committed in a city of 1,000,000 people.

Correct: Therefore 10 people in the city are expected to have

that profile.

Incorrect: Therefore the suspect (who has the profile) has a

probability of 1 in 10 of being guilty.
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Defense Fallacy

The fallacy is to assign equal (prior) probabilities to all 10 people

who are expected to have the profile. Also note that the actual

number of people in the city with the profile could be any number

from 0 to 1,000,000. Expected numbers are not actual numbers.
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Uniqueness Fallacy

The matching DNA profile has a probability of 1 in 1,000,000.

The crime was committed in a city of 1,000,000 people.

Correct: Therefore 1 person in the city is expected to have that

profile.

Incorrect: Therefore the suspect (who has the profile) is the

guilty person.
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Uniqueness Fallacy

The fallacy is not to recognize that the actual number of peo-

ple in the city with the profile could be any number from 0 to

1,000,000.

Expected numbers are not actual numbers.
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Database Fallacy

Probabilities needed in LR are estimated on the basis of a sample

from a population. Ideally this sample is drawn from the popu-

lation defined by Hd and I. This is not practical.

If Hd is true, the racial background of the suspect does not de-

fine the population to be sampled. Do not need a database of

(exactly) the same ethnicity as the suspect.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

The laboratory results and the expert’s testimony were described

in 12 cases.

1. Ross v. State of Indiana (Indiana Court of Appeal, May 13,

1996). The DNA expert knew that the frequency of the DNA

profile found in the vaginal swab sample and in the suspect’s

blood sample was 1 in 80,000. He said that Ross was the source

of the seminal fluid.

2. State of Washington v. Gentry (125 Wash. 2d 570, 888 P.2d

1105 (1995)]. The matching DNA profile had a frequency of

0.18%. The expert said that the percentage of the population

from which the blood found on the defendant’s shoelaces could

have originated is 0.18%.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

3. R v. Deen (Court of Appeal, Criminal Division, December

21, 1993). The matching DNA profile had a frequency of 1 in

3 million. The Prosecutor and Expert had this exchange: Q

(Prosecutor) “So the likelihood of this being any other man but

Andrew Deen is one in 3 million?” A (Expert): ”In 3 million,

yes.” Q: “On the figure which you have established according to

your research, the probability of it being anybody else being one

in 3 million what is your conclusion?” Expert: “My conclusion

is that the semen originated from Andrew Deen.” Q. Are you

sure of that?” A. “Yes.”
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Aitken and Taroni, Science and Justice 1998;
38:165–177

4. U.S. v. Jakobetz [955 F. 2d 786 (2nd Cir. 1992)]. In that

case the FBI expert knew that the frequency of the matching

DNA profile in the population is 1 in 300 million. The expert

testified that the DNA profiles from the two samples constituted

a match and calculated there was one chance in 300 million that

the DNA from the semen sample could have come from someone

in the Caucasian sample other than Jakobetz.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

5. Gordon (Court of Appeal, November 22, 1993, April 22, May

26, 1994). The DNA profile had a frequency of 1 in 10,500,000.

The expert agreed that there was a visual match between the

critical samples and the appellant’s sample which showed a like-

lihood that the appellant was the rapist in each case.

6. Lonsdale (Court of Appeal, March 9, 16 1995.) The DNA

profile frequency was 1 in 1,000,000. The expert said that the

chances of a sample from another Afro-Caribbean (the relevant

population) matching the crime sample were one in a million.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

7. U.S. v. Bonds [12 F. 3d 540 (6th Cir. 1993)] The DNA profile

frequency was 1 in 270,000. The FBI calculated a probability

of 1 in 270,000 that an unrelated individual selected randomly

from the Caucasian population (the relevant population) would

have a DNA profile matching that of Bonds.

8. U.S. v. Martinez [13 F.3d 1191 (8th Cir. 1993)] The FBI

expert knew that the population frequency of the matching DNA

profile is 1 in 2,600. The expert testified that only 1 in 2,600

American Indians (relevant population) would be expected to

produce the identical genetic characteristics as Martinez.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

9. Arizona v. Johnson [905 P. 2d 1002; 192 Ariz. Rep. 19

91995)] The expert knew that the matching DNA profile has

a frequency of 1 in 312 million. The expert testified that the

victim’s shirt was examined and found to contain human blood

and semen. Testing performed showed that DNA extracted from

these stains matched Johnson’s blood at five different chromo-

some locations or loci. The expert testified that the possibility

of a random match - two unrelated individuals having the same

DNA pattern across five loci - was 1 in 312 million.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

10. Ross v. State [B14-90-00659 (Tex. App. Feb. 13, 1992)]

The DNA profile frequency was 1 in 209,100,000. The expert

said that he has a database of blood samples from all over the

country and he asks the question “How many people would we

have to look at before we saw another person like this?” The

answer is 209,100,000.

11. Harrison v. Indiana [Supreme Court of Indiana (Jan. 4,

1995)] The DNA profile frequency was 7.4 in 100. The expert

said that although 92.6% of all white males could be excluded

as the source of the specimen, the defendant had not been ex-

cluded. She acknowledged that for 13,000 white men (the size

of the city where the crime was committed) the specimen could

have come from any 962 [7.4% of 13,000] of them. Hence, the

suspect is one of 962 men who might have committed the crime.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

12. R v. Montella [1 NZLR High Court (1992) 63-68]. The

DNA profile frequency was 8.06 ×10−5. The expert said “A

DNA profiling examination of the samples strongly supports a

contention that the semen stain on the underpants of the com-

plainants came from the accused. It is said that the likelihood

of obtaining such DNA profiling results is at least 12,400 times

greater if the semen stain originated from the accused than from

another individual.”
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Nevada v Troy Brown

In the early morning hours of January 29, 1994, Jane Doe was

sexually assaulted in the bedroom of her trailer home at 1637

Pruett Street in Carlin. Jane Doe and her four-year-old sister

were home alone while their mother, Pam, was drinking at a

bar, and their step-father, Wayne, was working the night shift at

his job. Troy was arrested, tried, and convicted for the crime.
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Nevada v Troy Brown

At trial, Renee Romero testified that she had conducted a DNA

test on stains found on Jane Doe’s underwear. Romero explained

in detail what DNA is and how it is tested. Romero testified that

the DNA sample tested from Jane Doe’s underwear matched

Troy’s and that only 1 in 3,000,000 people had the same DNA

code as the one tested. Troy’s counsel cross-examined Romero

regarding how she conducted the tests, the amount of DNA

required to run the tests, and the databases against which the

DNA tests were compared to determine the statistical probability

that others would have the same DNA code. However, Troy’s

counsel did not call his own expert DNA witness even though

the court provided funds for such a witness.
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Nevada Supreme Court, February 26, 1997

Appellant Troy Brown was tried and convicted of sexually as-

saulting Jane Doe, a nine-year-old girl. Troy was convicted of

two counts of sexual assault of a child under fourteen years of

age, and one count of child abuse by sexual abuse. He was

acquitted of one count of attempted murder. Troy claims on

appeal that (1) he was improperly denied bail; (2) the DNA ev-

idence was improperly admitted because no evidentiary hearing

was held; (3) sufficient evidence did not exist to support his

conviction; (4) double jeopardy barred his convictions for both

sexual assault and child abuse by sexual abuse; and (5) the dis-

trict judge abused his discretion during the sentencing phase of

the trial.
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Nevada Supreme Court, February 26, 1997

We conclude that the district judge properly denied bail for Troy,

that the DNA evidence was properly admitted at trial, and that

sufficient evidence existed to support Troy’s conviction. How-

ever, we conclude that Troy’s conviction for both sexual assault

and child abuse by sexual abuse violated the double jeopardy pro-

vision of the Constitution and that the conviction for child abuse

must be vacated. Finally, we conclude that the district judge

abused his discretion during the sentencing phase of the trial

and the case must be remanded to the district court for a new

sentencing hearing on the remaining sexual assault conviction.
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US District Court, February 6, 2004

On February 6, 2004, Troy filed his federal petition for writ

of habeas corpus pursuant to 28 U.S.C. 2254, arguing, inter

alia, violations of due process and ineffective assistance of coun-

sel. Judge Pro permitted Troy to expand the record, admitting,

among other things, an uncontested report discrediting Romero’s

testimony by Dr. Laurence Mueller (the “Mueller Report”), a

professor of Ecology and Evolutionary Biology at the University

of California, Irvine.
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US District Court, February 6, 2004

The district court granted Troy’s petition. First, the district

court concluded that, in light of the Mueller Report, Romero’s

testimony was unreliable. Absent that testimony, no rational

trier of fact could conclude beyond a reasonable doubt that Troy

was guilty of each and every element of the offenses with which

he was charged. The district court also concluded that Troy’s

attorney’s failure to diligently defend against Respondents’ DNA

testimony, as well as his failure to investigate the alibi of Henle, a

potential suspect, amounted to ineffective assistance of counsel.

Respondents [the State of Nevada] timely appealed.
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US Court of Appeals, May 8, 2008

At trial, Respondents presented the testimony of DNA expert

Renee Romero of the Washoe County Sheriff’s Office Crime

Lab. Romero testified that, among other things, there was a

99.99967 percent chance that Troy was the assailant.

At Petitioner Troy Brown’s trial for sexual assault, the Warden

and State’s (“Respondents”) deoxyribonucleic acid (“DNA”) ex-

pert provided critical testimony that was later proved to be in-

accurate and misleading. Respondents have conceded at least

twice that, absent this faulty DNA testimony, there was not suf-

ficient evidence to sustain Troy’s conviction. In light of these

extraordinary circumstances, we agree with District Judge Philip

M. Pro’s conclusions that Troy was denied due process, and we

affirm the district court’s grant of Troy’s petition for writ of

habeas corpus.
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US Court of Appeals, May 8, 2008

Troy asserts that there was insufficient evidence to convict him.

His argument rests on the admission of Romero’s later discred-

ited testimony regarding the DNA evidence, which was intro-

duced without rebuttal at trial. Respondents have conceded that

absent introduction of Romero’s DNA evidence, the remaining

evidence is insufficient to sustain Troy’s conviction. Having re-

viewed the record ourselves, we affirm the district court’s conclu-

sion that, had Romero’s inaccurate and unreliable testimony on

the DNA evidence been excluded, there would have been insuffi-

cient evidence to convict Troy on each essential element of the

offenses beyond a reasonable doubt. We further agree with the

district court’s conclusion that the Nevada Supreme Court’s de-

cision was both “contrary to” and an “unreasonable application

of” established United States Supreme Court precedent.
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US Court of Appeals, May 8, 2008

Here, Romero initially testified that Troy’s DNA matched the

DNA found in Jane’s underwear, and that 1 in 3,000,000 peo-

ple randomly selected from the population would also match the

DNA found in Jane’s underwear (random match probability). Af-

ter the prosecutor pressed her to put this another way, Romero

testified that there was a 99.99967 percent chance that the DNA

found in Jane’s underwear was from Troy’s blood (source proba-

bility). This testimony was misleading, as it improperly conflated

random match probability with source probability. In fact, the

former testimony (1 in 3,000,000) is the probability of a match

between an innocent person selected randomly from the popula-

tion; this is not the same as the probability that Troy’s DNA was

the same as the DNA found in Jane’s underwear, which would

prove his guilt. Statistically, the probability of guilt given a DNA

match is based on a complicated formula known as Bayes’s The-

orem, see id. at 170-71 n. 2, and the 1 in 3,000,000 probability

described by Romero is but one of the factors in this formula.
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US Court of Appeals, May 8, 2008

Because we affirm the district court’s grant of Troy Brown’s

habeas petition on due process grounds, we need not reach his

arguments regarding ineffective assistance of counsel. The dis-

trict court’s grant of Troy’s petition for writ of habeas corpus

and reversal of his conviction is AFFIRMED. Respondents shall

retry Troy within 180 days or shall release him from custody.
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US Supreme Court, January 11, 2010

The prosecutor’s fallacy is the assumption that the random match

probability is the same as the probability that the defendant was

not the source of the DNA sample. In other words, if a ju-

ror is told the probability a member of the general population

would share the same DNA is 1 in 10,000 (random match prob-

ability), and he takes that to mean there is only a 1 in 10,000

chance that someone other than the defendant is the source of

the DNA found at the crime scene (source probability), then he

has succumbed to the prosecutors fallacy. It is further error to

equate source probability with probability of guilt, unless there is

no explanation other than guilt for a person to be the source of

crime-scene DNA. This faulty reasoning may result in an erro-

neous statement that, based on a random match probability of

1 in 10,000, there is a .01% chance the defendant is innocent or

a 99.99% chance the defendant is guilty.
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US Supreme Court, January 11, 2010

In sum, the two inaccuracies upon which this case turns are testi-

mony equating random match probability with source probability,

and an underestimate of the likelihood that one of Troys brothers

would also match the DNA left at the scene.

We have stated before that “DNA testing can provide powerful

new evidence unlike anything known before.”

The State acknowledges that Romero committed the prosecu-

tor’s fallacy. Regardless, ample DNA and non-DNA evidence in

the record adduced at trial supported the jury’s guilty verdict.

Accordingly, the judgment of the Court of Appeals is reversed,

and the case is remanded for further proceedings consistent with

this opinion.
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Hierarchy of Propositions

(Evett et al., 2002. Journal of Forensic Sciences 47:520–523.)

Third level: Offense level propositions:

The defendant raped the victim.

Some unknown person raped the victim.

Second level: Activity level propositions:

The defendant smashed the window.

The defendant has never been at the scene.

First level: Source level propositions:

The glass on the defendant’s clothing came from the broken

window.

The glass on the defendant’s clothing is from some other source.
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Meaning of Frequencies

What is meant by “the frequency of the matching profile is 1 in

57 billion”?

It is an estimated probability, obtained by multiplying together

the allele frequencies, and refers to an infinite random mating

population. It has nothing to do with the size of the world’s

population.
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Meaning of Frequencies

With 13 STR loci having (at least) 10 alleles each, there are

5513 = 4.2 × 1022 possible genotypes, even though there are

only 6 billion people. The total world population is itself a sample

from all possible genotypes. Almost all the possible genotypes

are not in the present population, and have expected frequencies

that are very small: e.g. if all 26 alleles were independent, and

had frequency of 0.1, we could quote an estimated frequency of

8.2×10−23 for a completely heterozygous. We don’t expect that

anyone living will have that profile – but of course we know that

someone does.
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Meaning of Frequencies

The question is really whether we would see the profile in two

people, given that we have already seen it in one person. This

conditional probability may be very low, but has nothing to do

with the size of the population.
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ALLELIC INDEPENDENCE
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Testing for Allelic Independence

What is the probability a person has a particular DNA profile?

What is the probability a person has a particular profile if it has

already been seen once?

The first question is a little easier to think about, but difficult

to answer in practice: it is very unlikely that a profile will be

seen in any sample of profiles. Even for one STR locus with 10

alleles, there are 55 different genotypes and most of those will

not occur in a sample of a few hundred profiles.

For locus D3S1358 in the African American population, the FBI

frequency database shows that 31 of the 55 genotype counts are

zero. Estimating the population frequencies for these 31 types

as zero doesn’t seem sensible.
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D3S1358 Genotype Counts

Observed < 12 12 13 14 15 16 17 18 19 > 19

< 12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

> 19 0 0 0 0 1 0 0 0 0 0

92



Hardy-Weinberg Law

A solution to the problem is to assume that the Hardy-Weinberg

Law holds. For a random mating population, expect that geno-

type frequencies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj
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D3S1358 Hardy-Weinberg Calculations

The allele counts for D3S1358 in the African-American sample

are:

Total

Allele < 12 12 13 14 15 16 17 18 19 > 19
Count 2 1 5 51 122 129 84 23 2 1 420

If the Hardy-Weinberg Law holds, then we would expect to see

np̃2
13 = 210 × (5/420)2 = 0.03 individuals of type 13,13 in a

sample of 210 individuals.

Also, we would expect to see 2np̃13p̃14 = 420×(5/420)×(51/420) =

0.61 individuals of type 13,14 in a sample of 210 individuals.

Other values are shown on the next slide.
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D3S1358 Observed and Expected Counts

< 12 12 13 14 15 16 17 18 19 > 19
< 12 Obs. 0

Exp. 0.0
12 Obs. 0 0

Exp. 0.0 0.0
13 Obs. 0 0 0

Exp. 0.0 0.0 0.0
14 Obs. 0 0 0 2

Exp. 0.2 0.1 0.6 3.1
15 Obs. 0 0 1 19 15

Exp. 0.6 0.3 1.5 14.8 17.7
16 Obs. 1 1 1 15 39 19

Exp. 0.6 0.3 1.5 15.7 37.5 19.8
17 Obs. 0 0 2 10 26 24 9

Exp. 0.4 0.2 1.0 10.2 24.4 25.8 8.4
18 Obs. 1 0 1 2 6 10 3 0

Exp. 0.1 0.1 0.3 2.8 6.7 7.1 4.6 0.6
19 Obs. 0 0 0 1 0 0 1 0 0

Exp. 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.1 0.0
> 19 Obs. 0 0 0 0 1 0 0 0 0 0

Exp. 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0
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Testing for Hardy-Weinberg Equilibrium

A test of the Hardy-Weinberg Law will somehow decide if the

observed and expected numbers are sufficiently similar that we

can proceed as though the law can be used.

In one of the first applications of Hardy-Weinberg testing in a

US forensic setting:

“To justify applying the classical formulas of population

genetics in the Castro case the Hispanic population must

be in Hardy-Weinberg equilibrium. Applying this test

to the Hispanic sample, one finds spectacular deviations

from Hardy-Weinberg equilibrium.”

E.S. Lander. 1989. DNA fingerprinting on trial. Nature 339:

501-505.
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VNTR “Coalescence”

Forensic DNA profiling initially used minisatellites, or VNTR loci,

with large numbers of alleles. Heterozygotes would be scored as

homozygotes if the two alleles were so similar in length that they

coalesced into one band on an autoradiogram. Small alleles often

not detected at all, and this is the cause of Lander’s finding.

Considerable debate in early 1990s on alternative “binning” strate-

gies for reducing the number of alleles (Science 253:1037-1041,

1991).

Typing has moved to microsatellites with fewer and more easily

distinguished alleles, but testing for Hardy-Weinberg equilibrium

continues. There are still reasons why the law may not hold.
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Population Structure can Cause Departure from
HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Structure

Effect of population structure taken into account with the “theta-

correction.” Matching probabilities allow for a variance in allele

frequencies among subpopulations.

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

where pA is the average allele frequency over all subpopulations.

We will come back to this expression.
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Population Admixture

A population might represent the recent admixture of two parental

populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marrieages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25
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Exact HWE Test

The preferred test for HWE is an “exact” one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2
A

etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Exact HWE Test

Putting these together gives the conditional probability of the

genotypic data given the allelic data and given HWE:

Pr(nAA, nAa, naa|nA, na,HWE) =

n!
nAA!nAa!naa!

(p2
A)nAA(2pApa)nAa(p2

a)
naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this probability is un-

usually small.
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Exact HWE Test Example

Reject the HWE hypothesis if the probability of the genotypic

array, conditional on the allelic array, is among the smallest prob-

abilities for all the possible sets of genotypic counts for those

allele counts.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAA, nAa, naa|nA, na,HWE)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data on the previous slide, conditional on

the allele frequencies and on HWE, is 1/99 = 0.01. This is less

than the conventional 5% significance level.

In general, the p-value is the (conditional) probability of the data

plus the probabilities of all the less-probable datasets. The prob-

abilities are all calculated assuming HWE is true.
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Exact HWE Test

Still in the two-allele case, for a sample of size n = 100 with

minor allele frequency of 0.07, there are only 8 sets of genotype

counts:

Exact
nAA nAa naa Prob. p-value

93 0 7 0.0000 0.0000∗

92 2 6 0.0000 0.0000∗

91 4 5 0.0000 0.0000∗

90 6 4 0.0002 0.0002∗

89 8 3 0.0051 0.0053∗

88 10 2 0.0602 0.0654
87 12 1 0.3209 0.3863
86 14 0 0.6136 1.0000

So, for a nominal 5% significance level, the actual significance

level is 0.0053 for an exact test that rejects when nAa ≤ 8.
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.
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Permutation Test

Mark a set of five index cards to represent five genotypes:

Card 1: A A

Card 2: A A

Card 3: A A

Card 4: a a

Card 5: a a

Tear the cards in half to give a deck of 10 cards, each with

one allele. Shuffle the deck and deal into 5 pairs, to give five

genotypes.
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Permutation Test

The permuted set of genotypes fall into one of four types:

AA Aa aa Number of times

3 0 2

2 2 1

1 4 0
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Permutation Test

Check the following theoretical values for the proportions of each

of the three types, from the expression:

n!

nAA!nAa!naa!
×

2nAanA!na!

(2n)!

AA Aa aa Conditional Probability

3 0 2 1
21 = 0.048

2 2 1 12
21 = 0.571

1 4 0 8
21 = 0.381

These should match the proportions found by repeating shuf-

flings of the deck of 10 allele cards.
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Permutation Test for D3S1358

For a STR locus, where {ng} are the genotype counts and n =
∑

g ng is the sample size, and {na} are the alleles counts with

2n =
∑

a na, the exact test statistic is

Pr({ng}|{na},HWE) =
n!2H ∏

a na!
∏

g ng!(2n)!

where H is the count of heterozygotes.

This probability for the African American genotypic counts at

D3S1358 is 0.6163 × 10−13, which is a very small number. But

it is not unusually small if HWE holds: a proportion 0.81 of 1000

permutations have an even small probability.
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Linkage Disequilibrium

This term is generally reserved for association between pairs of

alleles – one at each of two loci. In the present context, it

may simply mean some lack of independence of profile or match

probabilities at different loci.

Unlinked loci are expected to be almost independent.
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Allelic Matching
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Within-population Matching

The key forensic genetic issue is that of matching profiles. What

is the probability that two people have the same STR profile?

We can get some empirical estimate of this when we have a set

of profiles. For the African -American sample of 210 profiles for

D3S1358, how many pairs of profiles match? Only those geno-

types that occur more than once in the sample provide matches.

To simplify this initial discussion, consider the following data for

the Y-STR locus DYS390 from the NIST database:
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Allele Counts in NIST Data for DYS390

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

20 4 1 1 0 6
21 176 4 17 1 198
22 43 45 14 17 119
23 36 116 50 17 219
24 56 145 129 21 351
25 23 46 21 36 126
26 3 2 2 4 11
27 0 0 2 0 2

Total 341 359 236 96 1032
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Within- and Between-population Matching for DYS390

Within the African-American sample there are 341×340 = 115,940

pairs of profiles and the number of matches is

4×3+176×175+43×42+36×35+56×55+23×22+3×2 = 37,470

so the within-population matching proportion is 37,470/115,940 =

0.323.

Between the African-American and Caucasian samples, there are

341×359 = 122,419 pairs of profiles and the number of matches

is

4×1+176×4+43×45+36×116+56×145+23×4+3×2 = 12,403

so the between-population matching proportion is 12,403/122,419 =

0.101.
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Allele Counts in NIST Data for DYS391

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

7 0 0 1 0 1
8 0 1 0 1 2
9 2 12 16 3 33
10 238 162 128 79 607
11 93 175 89 13 370
12 7 9 2 0 18
13 1 0 0 0 1

Total 341 359 236 96 1032

The within-population matching proportion for the African-American

sample is 65,006/115,940=0.561.

The between-population matching proportion for the African-

American and Caucasian samples is 54,918/122,419=0.449.
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Two-locus counts in NIST African-American Data
for DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 34 1122
22 11 9 72
24 10 15 210
24 11 39 1482
24 12 1 0
24 9 1 0
23 10 19 342
23 11 14 182
23 12 3 6
21 10 157 24492
21 11 15 210
21 12 2 2
21 9 1 0
21 13 1 0
25 10 11 110
25 11 12 132
26 10 1 0
26 11 2 2
20 10 1 0
20 11 2 2
20 12 1 0
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Two-locus counts in NIST Caucasian Data for
DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 43 1806
22 11 1 0
22 9 1 0
24 10 48 2256
24 11 88 7656
24 12 4 12
24 9 5 20
23 10 50 2450
23 11 60 3540
23 12 2 2
23 9 3 6
23 8 1 0
21 10 3 6
21 11 1 0
25 10 18 306
25 11 22 462
25 12 3 6
25 9 3 6
26 11 2 2
20 11 1 0
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Two-locus Matches

The within-population matching proportion for the African-American

sample is 28,366/115,940=0.245.

The within-population matching proportion for the Caucasian

sample is 18,536/128,522=0.144.

The between-population matching proportion for the African-

American and Caucasian samples is 8,347/122,419=0.068.

There is a clear decrease in matching between populations from

within populations. We can establish some theory that describes

these proportions.
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