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Sources of Data

Phenotype Mendel’s peas
Blood groups

DNA Restriction sites, RFLPs
Length variants, VNTRs, STRs
SNPs
Nucleotide sequences
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Mendel’s Data

Dominant Form Recessive Form

Seed characters
5474 Round 1850 Wrinkled
6022 Yellow 2001 Green

Plant characters
705 Grey-brown 224 White
882 Simply inflated 299 Constricted
428 Green 152 Yellow
651 Axial 207 Terminal
787 Long 277 Short
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ABO System

Human ABO blood groups discovered in 1900. ABO gene on

human chromosome 9 has 3 alleles: A, B, O. Six genotypes but

only four phenotypes (blood groups):

Genotypes Phenotype

AA, AO A
BB, BO B

AB AB
OO O
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Charlie Chaplin and ABO Testing

Relationship Person Blood Group Genotype

Mother Joan Berry A AA or AO
Child Carol Ann Berry B BB or BO
Alleged Father Charles Chaplin O OO

The obligate paternal allele was B, so the true father must have

been of blood group B or AB.

Berry v. Chaplin, 74 Cal. App. 2d 652
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Electrophoretic Detection

Charge differences among alleles (“allozymes”) of soluble pro-

teins lead to separation on electrophoretic gels. Protein loaded

at one end of a slab gel and an electric current is passed through

the gel. Allozymes migrate according to their net charge: sep-

aration of alleles depends on how far they migrate in a given

amount of time.

This techniques was the first to allow large-scale collection of

genetic marker data. The data in this case reflected variation in

the amino acid sequences of soluble proteins.
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Alec Jeffreys

For forensic applications, the work of Alec Jeffreys with on Re-

striction Fragment Length Polymorphisms (RFLPs) or Variable

Number of Tandem Repeats (VNTRs) also used electrophore-

sis. Different alleles now represented different numbers of repeat

units and therefore different length molecules. Smaller molecules

move faster through a gel and so move further in a given amount

of time.

Initial work was on mini-satellites, where repeat unit lengths were

in the tens of bases and fragment lengths were in thousands of

bases. Jeffrey’s multi-locus probes detected regions from several

pats of the genome and resulted in many detectable fragments

per individual. This gave high discrimination but difficulty in

assigning numerical strength to matching profiles.

Jeffreys et al. 1985. Nature 316:76-79 and 317: 818-819.
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Single-locus Probes

Next development for gel-electrophoresis used probes for single

mini-satellites. Only two fragments were detected per individ-

ual, but there was difficulty in determining when two profiles

matched.

The technology also required “large” amounts of DNA and was

not suitable for degraded samples.
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PCR-based STR Markers

The ability to increase the amount of DNA in a sample by the

Polymerase Chain Reaction (PCR) was of substantial benefit to

forensic science. The typing technology changed to the use of

capillary tube electrophoresis, where the time taken by a DNA

molecule to pass a fixed point was measured and used to infer

the number of repeat units in an allele.

A good source is “Following multiplex PCR amplification, DNA

samples containing the length-variant STR alleles are typically

separated by capillary electrophoresis and genotyped by compar-

ison to an allelic ladder supplied with a commercial kit. ”

Butler JM. Short tandem repeat typing technologies used in hu-

man identity testing. BioTechniques 43:Sii-Sv (October 2007)

doi 10.2144/000112582
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STR markers: CTT set

(http://www.cstl.nist.gov/biotech/strbase/seq info.htm)

Usual No.
Locus Structure Chromosome of repeats

CSF1PO [AGAT]n 5q 6–16
TPOX [AATG]n 2p 5–14
TH01∗ [AATG]n 11p 3–14

∗ “9.3” is [AATG]6ATG[AATG]3

Length variants detected by capillary electrophoresis.
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“CTT” Data - Forensic Frequency Database

CSF1P0 TPOX TH01
11 12 8 11 7 8
11 13 8 8 6 7
11 12 8 11 6 7
10 12 8 8 6 9
11 12 8 12 9 9.3
10 12 9 11 6 7
10 13 8 11 6 6
11 12 8 8 6 9.3
9 10 8 9 7 9.3
11 12 8 8 6 8
11 13 8 11 7 9
11 12 8 11 6 9.3
10 11 8 8 7 9.3
10 10 8 11 7 9.3
9 10 8 8 6 9.3
11 12 9 11 9 9.3
9 11 9 11 9 9.3
11 12 8 8 6 7
10 10 9 11 6 9.3
10 13 8 8 8 9.3
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Sequencing of STR Alleles

“STR typing in forensic genetics has been performed traditionally

using capillary electrophoresis (CE). Massively parallel sequenc-

ing (MPS) has been considered a viable technology in recent

years allowing high-throughput coverage at a relatively afford-

able price. Some of the CE-based limitations may be overcome

with the application of MPS ... generate reliable STR profiles

at a sensitivity level that competes with current widely used CE-

based method.”

Zeng XP, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sa-

jantila A, Patel J, Storts DR, Budowle B. 2015. High sensitivity

multiplex short tandem repeat loci analyses with massively par-

allel sequencing. Forensic Science International: Genetics 16:38-

47.
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Single Nucleotide Polymorphisms (SNPs)

“Single nucleotide polymorphisms (SNPs) are the most frequently

occurring genetic variation in the human genome, with the total

number of SNPs reported in public SNP databases currently ex-

ceeding 9 million. SNPs are important markers in many studies

that link sequence variations to phenotypic changes; such studies

are expected to advance the understanding of human physiology

and elucidate the molecular bases of diseases. For this reason,

over the past several years a great deal of effort has been devoted

to developing accurate, rapid, and cost-effective technologies for

SNP analysis, yielding a large number of distinct approaches. ”

Kim S. Misra A. 2007. SNP genotyping: technologies and

biomedical applications. Annu Rev Biomed Eng. 2007;9:289-

320.

14



Phase 3 1000Genomes Data

• 84.4 million variants

• 2504 individuals

• 26 populations

www.1000Genomes.org
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Whole-genome Sequence Studies

One current study is the NHLBI Trans-Omics for Precision Medicine

(TOPMed) project. www.nhlbiwgs.org

In the first data freeze of Phase 1 of this study:

Abecasis et al. 2016. ASHG Poster
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Probability Theory

We wish to attach probabilities to different kinds of events (or

hypotheses or propositions):

• Event A: the next card is an Ace.

• Event R: it will rain tomorrow.

• Event C: the suspect left the crime stain.
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Probabilities

Assign probabilities to events: Pr(A) or pA or even p means “the

probability that event A is true.” All probabilities are conditional,

so should write Pr(A|E) for “the probability that A is true given

that E is known.”

No matter how probabilities are defined, they need to follow some

mathematical laws in order to lead to consistent theories.
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First Law of Probability

0 ≤ Pr(A|E) ≤ 1

Pr(A|A) = 1

If A is the event that a die shows an even face (2, 4, or 6), what

is E? What is Pr(A|E)?

19



Second Law of Probability

If A, B are mutually exclusive given E

Pr(A or B|E) = Pr(A|E) + Pr(B|E)

so Pr(Ā|E) = 1 − Pr(A|E)

(Ā means not-A).

If A is the event that a die shows an even face, and B is the

event that the die shows a 1, verify the Second Law.
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Third Law of Probability

Pr(A and B|E) = Pr(A|B, E)× Pr(B|E)

If A is event that die shows an even face, and B is the event that

the die shows a 1, verify the Third Law.
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Independent Events

Events A and B are independent if knowledge of one does not

affect probability of the other:

Pr(A|B) = Pr(A)

Pr(B|A) = Pr(B)

Therefore, for independent events

Pr(A and B) = Pr(A)Pr(B)

This may be written as

Pr(AB) = Pr(A)Pr(B)

22



Law of Total Probability

Because B and B̄ are mutually exclusive and exhaustive:

Pr(A) = Pr(A|B)Pr(B) + Pr(A|B̄)Pr(B̄)

If A is the event that die shows a 3, B is the event that the die

shows an even face, and B̄ the event that the die shows an odd

face, verify the Law of Total Probability.

IF B1, B2, B3 are mutually exclusive and exhaustive:

Pr(A) = Pr(A|B1)Pr(B1) + Pr(A|B2)Pr(B2)

+ Pr(A|B3)Pr(B3)
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Odds

The odds O(A) of an event A are the probability of the event

being true divided by the probability of the event not being true:

O(A) =
Pr(A)

Pr(Ā)

This can be rearranged to give

Pr(A) =
O(A)

1 + O(A)

Odds of 10 to 1 are equivalent to a probability of 10/11.

24



Bayes’ Theorem

The third law of probability can be used twice to reverse the

order of conditioning:

Pr(E|A) =
Pr(E and A)

Pr(A)

=
Pr(A|E)Pr(E)

Pr(A)
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Odds Form of Bayes’ Theorem

From the third law of probability

Pr(E|A) = Pr(A|E)Pr(E)/Pr(A)

Pr(Ē|A) = Pr(A|Ē)Pr(Ē)/Pr(A)

Taking the ratio of these two equations:

Pr(E|A)

Pr(Ē|A)
=

Pr(A|E)

Pr(A|Ē)
× Pr(E)

Pr(Ē)

Posterior odds = likelihood ratio × prior odds.
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AIDS Example

Suppose the event E of AIDS occurs 1 in 10,000 people chosen

at random.

Suppose a test procedure has two outcomes: A (positive) and B

(negative). The probability of a positive result is 0.99 if the per-

son has AIDS, and 0.05 if the person does not have AIDS. What

is the probability that a person has AIDS if she tests positive?
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AIDS Example

The problem is to determine Pr(E|A) when Pr(A|E) is known.

This requires Bayes’ theorem, and the term Pr(A) follows from

the Law of Total Probability.

Pr(E) =

Pr(Ē) =

Pr(A|E) =

Pr(A|Ē) =

Pr(A) =

Pr(E|A) =

28



Birthday Problem

Forensic scientists in Arizona looked at the 65,493 profiles in the

Arizona database and reported that two profiles matched at 9

loci out of 13. They reported a “match probability” for those 9

loci of 1 in 754 million. Are the numbers 65,493 and 754 million

inconsistent?

(Troyer et al., 2001. Proc Promega 12th Int Symp Human Iden-

tification.)

To begin to answer this question suppose that every possible

profile has the same profile probability P and that there are N

profiles in a database (or in a population). The probability of at

least one pair of matching profiles in the database is one minus

the probability of no matches.
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Birthday Problem

Choose profile 1. The probability that profile 2 does not match

profile 1 is (1−P ). The probability that profile 3 does not match

profiles 1 or 2 is (1−2P ), etc. So, the probability PM of at least

one matching pair is

PM = 1 − {1(1 − P )(1 − 2P ) · · · [1 − (N − 1)P ]}

≈ 1 −
N−1
∏

i=0

e−iP ≈ 1 − e−N2P/2

If P = 1/365 and N = 23, then PM = 0.51. So, approximately,

in a room of 23 people there is greater than a 50% probability

that two people have the same birthday.
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Birthday Problem

If P = 1/(754 million) and N = 65,493, then PM = 0.98 so it is

highly probable there would be a match. There are other issues,

having to do with the four non-matching loci, and the possible

presence of relatives in the database.

If P = 10−16 and N = 300 million, then PM = is essentially 1. It

is almost certain that two people in the US have the same rare

DNA profile.
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Statistics

• Probability: For a given model, what do we expect to see?

• Statistics: For some given data, what can we say about the

model?

• Example: A marker has an allele A with frequency pA.

– Probability question: If pA = 0.5, and if alleles are inde-

pendent, what is the probability of AA?

– Statistics question: If a sample of 100 individuals has 23

AA’s, 48 Aa’s and 29 aa’s, what is an estimate of pA?
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Binomial distribution

Imagine tossing a coin n times, when every toss has the same

chance p of giving a head:

The probability of x heads in a row is

p × p × . . . × p = px

The probability of n − x tails in a row is

(1 − p) × (1 − p) × . . . × (1 − p) = (1 − p)n−x

The number of ways of ordering x heads and n − x tails among

n outcomes is n!/[x!(n − x)!].
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Binomial distribution

Combining the probabilities of x successive heads, n−x successive

trials, and the number of ways of ordering x heads and n−x tails:

the binomial probability of x successes (heads) in n trials (tosses)

is

Pr(x|p) =
n!

x!(n − x)!
px(1 − p)n−x
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Binomial distribution

The probabilities of x heads in n = 4 tosses of a coin when the

chance of a head is 1/2 at each toss:

No. heads Probability
x Pr(x|p)
0 1/16
1 4/16
2 6/16
3 4/16
4 1/16

Note that 0! = 1 and p0 = 1.
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Binomial distribution

Find the binomial probabilities, for a sample of size n = 4 alleles,

when the chance that each allele is of type A is 1/10.

No. A’s Probability

0
1
2
3
4
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TRANSFER EVIDENCE

Relevant Evidence

Rule 401 of the US Federal Rules of Evidence:

“Relevant evidence” means evidence having any tendency to

make the existence of any fact that is of consequence to the

determination of the action more probable or less probable than

it would be without the evidence.

37



Single Crime Scene Stain

Suppose a blood stain is found at a crime scene, and it must

have come from the offender. A suspect is identified and pro-

vides a blood sample. The crime scene sample and the suspect

have the same (DNA) “type.”

The prosecution subsequently puts to the court the proposition

(or hypothesis or explanation):

Hp: The suspect left the crime stain.

The symbol Hp is just to assist in the formal analysis. It need

not be given in court.
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Transfer Evidence Notation

GS, GC are the DNA types for suspect and crime sample. GS =

GC. I is non-DNA evidence.

Before the DNA typing, probability of Hp is conditioned on I.

After the typing, probability of Hp is conditioned on GS, GC , I.
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Updating Uncertainty

Method of updating uncertainty, or changing Pr(Hp|I) to Pr(Hp|GS , GC, I

uses Bayes’ theorem:

Pr(Hp|GS, GC , I) =
Pr(Hp, GS, GC|I)

Pr(GS, GC|I)

=
Pr(GS, GC|Hp, I) Pr(Hp|I)

Pr(GS, GC |I)
We can’t evaluate Pr(GS, GC|I) without additional information,

and we don’t know Pr(Hp|I).

Can proceed by introducing alternative to Hp.
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First Principle of Evidence Interpretation

To evaluate the uncertainty of a proposition, it is necessary to

consider at least one alternative proposition.

The simplest alternative explanation for a single stain is:

Hd: Some other person left the crime stain.

41



Updating Odds

From the odds form of Bayes’ theorem:

Pr(Hp|GS, GC , I)

Pr(Hd|GS , GC, I)
=

Pr(GS, GC |Hp, I)

Pr(GS, GC|Hd, I)
× Pr(Hp|I)

Pr(Hd|I)

i.e. Posterior odds = LR × Prior odds

where

LR =
Pr(GS, GC|Hp, I)

Pr(GS, GC |Hd, I)
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Questions for a Court to Consider

The trier of fact needs to address questions of the kind

• What is the probability that the prosecution proposition is

true given the evidence,

Pr(Hp|GC , GS, I)?

• What is the probability that the defense proposition is true

given the evidence,

Pr(Hd|GC , GS, I)?
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Questions for Forensic Scientist to Consider

The forensic scientist must address different questions:

• What is the probability of the DNA evidence if the prosecu-

tion proposition is true,

Pr(GC , GS|Hp, I)?

• What is the probability of the DNA evidence if the defense

proposition is true,

Pr(GC , GS|Hd, I)?

Important to articulate Hp, Hd. Also important not to confuse

the difference between these two sets of questions.
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Second Principle of Evidence Interpretation

Evidence interpretation is based on questions of the kind ‘What

is the probability of the evidence given the proposition.’

This question is answered for alternative explanations, and the

ratio of the probabilities presented. It is not necessary to use the

words “likelihood ratio”. Use phrases such as:

‘The probability that the crime scene DNA type is the same as

the suspect’s DNA type is one million times higher if the suspect

left the crime sample than if someone else left the sample.’
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Third Principle of Evidence Interpretation

Evidence interpretation is conditioned not only on the alternative

propositions, but also on the framework of circumstances within

which they are to be evaluated.

The circumstances may simply be the population to which the

offender belongs so that probabilities can be calculated. Forensic

scientists must be clear in court about the nature of the non-

DNA evidence I, as it appeared to them when they made their

assessment. If the court has a different view then the scientist

must review the interpretation of the evidence.
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Example

“In the analysis of the results I carried out I considered two alter-

natives: either that the blood samples originated from Pengelly

or that the . . . blood was from another individual. I find that the

results I obtained were at least 12,450 times more likely to have

occurred if the blood had originated from Pengelly than if it had

originated from someone else.”
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Example

Question:“Can you express that in another way?”

Answer:“It could also be said that 1 in 12,450 people would have

the same profile . . . and that Pengelly was included in that num-

ber . . . very strongly suggests the premise that the two blood

stains examined came from Pengelly.”

[Testimony of M. Lawton in R. v Pengelly 1 NZLR 545 (CA),

quoted by Robertson & Vignaux, “Interpreting Evidence”, Wiley

1995.]
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Likelihood Ratio

LR =
Pr(GC, GS|Hp, I)

Pr(GC , GS|Hd, I)

Apply laws of probability to change this into

LR =
Pr(GC |GS, Hp, I)Pr(GS|Hp, I)

Pr(GC |GS, Hd, I)Pr(GS|Hd, I)
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Likelihood Ratio

Whether or not the suspect left the crime sample (i.e. whether or

not Hp or Hd is true) provides no information about his genotype:

Pr(GS|Hp, I) = Pr(GS|Hd, I) = Pr(GS|I)

so that

LR =
Pr(GC|GS, Hp, I)

Pr(GC |GS, Hd, I)

50



Likelihood Ratio

LR =
Pr(GC|GS, Hp, I)

Pr(GC |GS, Hd, I)

When GC = GS, and when they are for the same person (Hp is

true):

Pr(GC|GS , Hp, I) = 1

so the likelihood ratio becomes

LR =
1

Pr(GC |GS, Hd, I)

This is the reciprocal of the probability of the match probability,

the probability of profile GC, conditioned on having seen profile

GS in a different person (i.e. Hd) and on I.
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Likelihood Ratio

LR =
1

Pr(GC |GS, Hd, I)

The next step depends on the circumstances I. If these say that

knowledge of the suspect’s type does not affect our uncertainty

about the offender’s type when they are different people (i.e.

when Hd is true):

Pr(GC |GS, Hd, I) = Pr(GC |Hd, I)

and then likelihood ratio becomes

LR =
1

Pr(GC |Hd, I)

The LR is now the reciprocal of the profile probability of profile

GC.
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Profile and Match Probabilities

Dropping mention of the other information I, the quantity Pr(GC)

is the probability that a person randomly chosen from a popula-

tion will have profile type GC. This profile probability usually very

small and, although it is interesting, it is not the most relevant

quantity.

Of relevance is the match probability, the probability of seeing

the profile in a randomly chosen person after we have already

seen that profile in a typed person (the suspect). The match

probability is bigger than the profile probability. Having seen a

profile once there is an increased chance we will see it again.

This is the genetic essence of DNA evidence.
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Likelihood Ratio

The estimated probability in the denominator of LR is determined

on the basis of judgment, informed by I. Therefore the nature of

I (as it appeared to the forensic scientist at the time of analysis)

must be explained in court along with the value of LR. If the

court has a different view of I, then the scientist will need to

review the interpretation of the DNA evidence.
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Random Samples

The circumstances I may define a population or racial group.

The probability is estimated on the basis of a sample from that

population. If the probability is written as P , then the likelihood

ratio is 1/P . If P is estimated to be 1 in a million, then LR is 1

million.

When we talk about DNA types, by “selecting a man at random”

we mean choosing him in such a way as to be as uncertain as

possible about his DNA type.
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Convenience Samples

The problem with a formal approach is that of defining the pop-

ulation: if we mean the population of a town, do we mean every

person in the town at the time the crime was committed? Do

we mean some particular area of the town? One sex? Some age

range?

It seems satisfactory instead to use a convenience sample, i.e. a

set of people from whom it is easy to collect biological material

in order to determine their DNA profiles. These people are not

a random sample of people, but they have not been selected on

the basis of their DNA profiles.
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Meaning of Likelihood Ratios

There is a personal element to interpreting DNA evidence, and

there is no “right” value for the LR. (There is a right answer

to the question of whether the suspect left the crime stain, but

that is not for the forensic scientist to decide.)

The denominator for LR is conditioned on the stain coming from

an unknown person, and “unknown” may be hard to define. A

relative? Someone in that town? Someone in the same racial

group? (What is a race?)
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Errors and Fallacies

Once the numerical strength of the evidence has been calculated,

it is important that it be presented in a way that does not distort

its meaning.

There are a series of common fallacies that can be avoided by

careful application of the Principles of Evidence Interpretation.
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Transposed conditional

Correct: The evidence is 1000 times more likely if the suspect

left the crime stain than if some unknown person left it.

Incorrect: It is 1000 times more likely that the suspect left the

crime stain than some unknown person.

The second statement is true only if the prior odds are 1.
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Prosecution Fallacy

From the O.J. Simpson trials:

“You testify that there is . . . a 1 in 71 chance that a pair of

contributors at random could have left the stain.” (Defense at-

torney at transcript p. 33,242.)

“The chances are at least 1-in-170 million that anybody else’s

DNA besides Simpson’s could be contained in a blood drop found

near the bodies of Nicole Brown Simpson and Ronald Goldman,

testified Robin Cotton, director of Cellmark Diagnostics in Mary-

land.” (Associated Press, 11/14/96)
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Defense Fallacy

The matching DNA profile has a probability of 1 in 100,000.

The crime was committed in a city of 1,000,000 people.

Correct: Therefore 10 people in the city are expected to have

that profile.

Incorrect: Therefore the suspect (who has the profile) has a

probability of 1 in 10 of being guilty.
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Defense Fallacy

The fallacy is to assign equal (prior) probabilities to all 10 people

who are expected to have the profile. Also note that the actual

number of people in the city with the profile could be any number

from 0 to 1,000,000. Expected numbers are not actual numbers.
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Uniqueness Fallacy

The matching DNA profile has a probability of 1 in 1,000,000.

The crime was committed in a city of 1,000,000 people.

Correct: Therefore 1 person in the city is expected to have that

profile.

Incorrect: Therefore the suspect (who has the profile) is the

guilty person.
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Uniqueness Fallacy

The fallacy is not to recognize that the actual number of peo-

ple in the city with the profile could be any number from 0 to

1,000,000.

Expected numbers are not actual numbers.
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Database Fallacy

Probabilities needed in LR are estimated on the basis of a sample

from a population. Ideally this sample is drawn from the popu-

lation defined by Hd and I. This is not practical.

If Hd is true, the racial background of the suspect does not de-

fine the population to be sampled. Do not need a database of

(exactly) the same ethnicity as the suspect.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

The laboratory results and the expert’s testimony were described

in 12 cases.

1. Ross v. State of Indiana (Indiana Court of Appeal, May 13,

1996). The DNA expert knew that the frequency of the DNA

profile found in the vaginal swab sample and in the suspect’s

blood sample was 1 in 80,000. He said that Ross was the source

of the seminal fluid.

2. State of Washington v. Gentry (125 Wash. 2d 570, 888 P.2d

1105 (1995)]. The matching DNA profile had a frequency of

0.18%. The expert said that the percentage of the population

from which the blood found on the defendant’s shoelaces could

have originated is 0.18%.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

3. R v. Deen (Court of Appeal, Criminal Division, December

21, 1993). The matching DNA profile had a frequency of 1 in

3 million. The Prosecutor and Expert had this exchange: Q

(Prosecutor) “So the likelihood of this being any other man but

Andrew Deen is one in 3 million?” A (Expert): ”In 3 million,

yes.” Q: “On the figure which you have established according to

your research, the probability of it being anybody else being one

in 3 million what is your conclusion?” Expert: “My conclusion

is that the semen originated from Andrew Deen.” Q. Are you

sure of that?” A. “Yes.”
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Aitken and Taroni, Science and Justice 1998;
38:165–177

4. U.S. v. Jakobetz [955 F. 2d 786 (2nd Cir. 1992)]. In that

case the FBI expert knew that the frequency of the matching

DNA profile in the population is 1 in 300 million. The expert

testified that the DNA profiles from the two samples constituted

a match and calculated there was one chance in 300 million that

the DNA from the semen sample could have come from someone

in the Caucasian sample other than Jakobetz.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

5. Gordon (Court of Appeal, November 22, 1993, April 22, May

26, 1994). The DNA profile had a frequency of 1 in 10,500,000.

The expert agreed that there was a visual match between the

critical samples and the appellant’s sample which showed a like-

lihood that the appellant was the rapist in each case.

6. Lonsdale (Court of Appeal, March 9, 16 1995.) The DNA

profile frequency was 1 in 1,000,000. The expert said that the

chances of a sample from another Afro-Caribbean (the relevant

population) matching the crime sample were one in a million.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

7. U.S. v. Bonds [12 F. 3d 540 (6th Cir. 1993)] The DNA profile

frequency was 1 in 270,000. The FBI calculated a probability

of 1 in 270,000 that an unrelated individual selected randomly

from the Caucasian population (the relevant population) would

have a DNA profile matching that of Bonds.

8. U.S. v. Martinez [13 F.3d 1191 (8th Cir. 1993)] The FBI

expert knew that the population frequency of the matching DNA

profile is 1 in 2,600. The expert testified that only 1 in 2,600

American Indians (relevant population) would be expected to

produce the identical genetic characteristics as Martinez.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

9. Arizona v. Johnson [905 P. 2d 1002; 192 Ariz. Rep. 19

91995)] The expert knew that the matching DNA profile has

a frequency of 1 in 312 million. The expert testified that the

victim’s shirt was examined and found to contain human blood

and semen. Testing performed showed that DNA extracted from

these stains matched Johnson’s blood at five different chromo-

some locations or loci. The expert testified that the possibility

of a random match - two unrelated individuals having the same

DNA pattern across five loci - was 1 in 312 million.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

10. Ross v. State [B14-90-00659 (Tex. App. Feb. 13, 1992)]

The DNA profile frequency was 1 in 209,100,000. The expert

said that he has a database of blood samples from all over the

country and he asks the question “How many people would we

have to look at before we saw another person like this?” The

answer is 209,100,000.

11. Harrison v. Indiana [Supreme Court of Indiana (Jan. 4,

1995)] The DNA profile frequency was 7.4 in 100. The expert

said that although 92.6% of all white males could be excluded

as the source of the specimen, the defendant had not been ex-

cluded. She acknowledged that for 13,000 white men (the size

of the city where the crime was committed) the specimen could

have come from any 962 [7.4% of 13,000] of them. Hence, the

suspect is one of 962 men who might have committed the crime.
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Aitken and Taroni, Science and Justice 1998;
38:165–177

12. R v. Montella [1 NZLR High Court (1992) 63-68]. The

DNA profile frequency was 8.06 ×10−5. The expert said “A

DNA profiling examination of the samples strongly supports a

contention that the semen stain on the underpants of the com-

plainants came from the accused. It is said that the likelihood

of obtaining such DNA profiling results is at least 12,400 times

greater if the semen stain originated from the accused than from

another individual.”
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Nevada v Troy Brown

In the early morning hours of January 29, 1994, Jane Doe was

sexually assaulted in the bedroom of her trailer home at 1637

Pruett Street in Carlin. Jane Doe and her four-year-old sister

were home alone while their mother, Pam, was drinking at a

bar, and their step-father, Wayne, was working the night shift at

his job. Troy was arrested, tried, and convicted for the crime.
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Nevada v Troy Brown

At trial, Renee Romero testified that she had conducted a DNA

test on stains found on Jane Doe’s underwear. Romero explained

in detail what DNA is and how it is tested. Romero testified that

the DNA sample tested from Jane Doe’s underwear matched

Troy’s and that only 1 in 3,000,000 people had the same DNA

code as the one tested. Troy’s counsel cross-examined Romero

regarding how she conducted the tests, the amount of DNA

required to run the tests, and the databases against which the

DNA tests were compared to determine the statistical probability

that others would have the same DNA code. However, Troy’s

counsel did not call his own expert DNA witness even though

the court provided funds for such a witness.
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Nevada Supreme Court, February 26, 1997

Appellant Troy Brown was tried and convicted of sexually as-

saulting Jane Doe, a nine-year-old girl. Troy was convicted of

two counts of sexual assault of a child under fourteen years of

age, and one count of child abuse by sexual abuse. He was

acquitted of one count of attempted murder. Troy claims on

appeal that (1) he was improperly denied bail; (2) the DNA ev-

idence was improperly admitted because no evidentiary hearing

was held; (3) sufficient evidence did not exist to support his

conviction; (4) double jeopardy barred his convictions for both

sexual assault and child abuse by sexual abuse; and (5) the dis-

trict judge abused his discretion during the sentencing phase of

the trial.
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Nevada Supreme Court, February 26, 1997

We conclude that the district judge properly denied bail for Troy,

that the DNA evidence was properly admitted at trial, and that

sufficient evidence existed to support Troy’s conviction. How-

ever, we conclude that Troy’s conviction for both sexual assault

and child abuse by sexual abuse violated the double jeopardy pro-

vision of the Constitution and that the conviction for child abuse

must be vacated. Finally, we conclude that the district judge

abused his discretion during the sentencing phase of the trial

and the case must be remanded to the district court for a new

sentencing hearing on the remaining sexual assault conviction.
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US District Court, February 6, 2004

On February 6, 2004, Troy filed his federal petition for writ

of habeas corpus pursuant to 28 U.S.C. 2254, arguing, inter

alia, violations of due process and ineffective assistance of coun-

sel. Judge Pro permitted Troy to expand the record, admitting,

among other things, an uncontested report discrediting Romero’s

testimony by Dr. Laurence Mueller (the “Mueller Report”), a

professor of Ecology and Evolutionary Biology at the University

of California, Irvine.
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US District Court, February 6, 2004

The district court granted Troy’s petition. First, the district

court concluded that, in light of the Mueller Report, Romero’s

testimony was unreliable. Absent that testimony, no rational

trier of fact could conclude beyond a reasonable doubt that Troy

was guilty of each and every element of the offenses with which

he was charged. The district court also concluded that Troy’s

attorney’s failure to diligently defend against Respondents’ DNA

testimony, as well as his failure to investigate the alibi of Henle, a

potential suspect, amounted to ineffective assistance of counsel.

Respondents [the State of Nevada] timely appealed.
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US Court of Appeals, May 8, 2008

At trial, Respondents presented the testimony of DNA expert

Renee Romero of the Washoe County Sheriff’s Office Crime

Lab. Romero testified that, among other things, there was a

99.99967 percent chance that Troy was the assailant.

At Petitioner Troy Brown’s trial for sexual assault, the Warden

and State’s (“Respondents”) deoxyribonucleic acid (“DNA”) ex-

pert provided critical testimony that was later proved to be in-

accurate and misleading. Respondents have conceded at least

twice that, absent this faulty DNA testimony, there was not suf-

ficient evidence to sustain Troy’s conviction. In light of these

extraordinary circumstances, we agree with District Judge Philip

M. Pro’s conclusions that Troy was denied due process, and we

affirm the district court’s grant of Troy’s petition for writ of

habeas corpus.
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US Court of Appeals, May 8, 2008

Troy asserts that there was insufficient evidence to convict him.

His argument rests on the admission of Romero’s later discred-

ited testimony regarding the DNA evidence, which was intro-

duced without rebuttal at trial. Respondents have conceded that

absent introduction of Romero’s DNA evidence, the remaining

evidence is insufficient to sustain Troy’s conviction. Having re-

viewed the record ourselves, we affirm the district court’s conclu-

sion that, had Romero’s inaccurate and unreliable testimony on

the DNA evidence been excluded, there would have been insuffi-

cient evidence to convict Troy on each essential element of the

offenses beyond a reasonable doubt. We further agree with the

district court’s conclusion that the Nevada Supreme Court’s de-

cision was both “contrary to” and an “unreasonable application

of” established United States Supreme Court precedent.
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US Court of Appeals, May 8, 2008

Here, Romero initially testified that Troy’s DNA matched the

DNA found in Jane’s underwear, and that 1 in 3,000,000 peo-

ple randomly selected from the population would also match the

DNA found in Jane’s underwear (random match probability). Af-

ter the prosecutor pressed her to put this another way, Romero

testified that there was a 99.99967 percent chance that the DNA

found in Jane’s underwear was from Troy’s blood (source proba-

bility). This testimony was misleading, as it improperly conflated

random match probability with source probability. In fact, the

former testimony (1 in 3,000,000) is the probability of a match

between an innocent person selected randomly from the popula-

tion; this is not the same as the probability that Troy’s DNA was

the same as the DNA found in Jane’s underwear, which would

prove his guilt. Statistically, the probability of guilt given a DNA

match is based on a complicated formula known as Bayes’s The-

orem, see id. at 170-71 n. 2, and the 1 in 3,000,000 probability

described by Romero is but one of the factors in this formula.
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US Court of Appeals, May 8, 2008

Because we affirm the district court’s grant of Troy Brown’s

habeas petition on due process grounds, we need not reach his

arguments regarding ineffective assistance of counsel. The dis-

trict court’s grant of Troy’s petition for writ of habeas corpus

and reversal of his conviction is AFFIRMED. Respondents shall

retry Troy within 180 days or shall release him from custody.
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US Supreme Court, January 11, 2010

The prosecutor’s fallacy is the assumption that the random match

probability is the same as the probability that the defendant was

not the source of the DNA sample. In other words, if a ju-

ror is told the probability a member of the general population

would share the same DNA is 1 in 10,000 (random match prob-

ability), and he takes that to mean there is only a 1 in 10,000

chance that someone other than the defendant is the source of

the DNA found at the crime scene (source probability), then he

has succumbed to the prosecutors fallacy. It is further error to

equate source probability with probability of guilt, unless there is

no explanation other than guilt for a person to be the source of

crime-scene DNA. This faulty reasoning may result in an erro-

neous statement that, based on a random match probability of

1 in 10,000, there is a .01% chance the defendant is innocent or

a 99.99% chance the defendant is guilty.
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US Supreme Court, January 11, 2010

In sum, the two inaccuracies upon which this case turns are testi-

mony equating random match probability with source probability,

and an underestimate of the likelihood that one of Troys brothers

would also match the DNA left at the scene.

We have stated before that “DNA testing can provide powerful

new evidence unlike anything known before.”

The State acknowledges that Romero committed the prosecu-

tor’s fallacy. Regardless, ample DNA and non-DNA evidence in

the record adduced at trial supported the jury’s guilty verdict.

Accordingly, the judgment of the Court of Appeals is reversed,

and the case is remanded for further proceedings consistent with

this opinion.
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Hierarchy of Propositions

(Evett et al., 2002. Journal of Forensic Sciences 47:520–523.)

Third level: Offense level propositions:

The defendant raped the victim.

Some unknown person raped the victim.

Second level: Activity level propositions:

The defendant smashed the window.

The defendant has never been at the scene.

First level: Source level propositions:

The glass on the defendant’s clothing came from the broken

window.

The glass on the defendant’s clothing is from some other source.
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Meaning of Frequencies

What is meant by “the frequency of the matching profile is 1 in

57 billion”?

It is an estimated probability, obtained by multiplying together

the allele frequencies, and refers to an infinite random mating

population. It has nothing to do with the size of the world’s

population.
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Meaning of Frequencies

With 13 STR loci having (at least) 10 alleles each, there are

5513 = 4.2 × 1022 possible genotypes, even though there are

only 6 billion people. The total world population is itself a sample

from all possible genotypes. Almost all the possible genotypes

are not in the present population, and have expected frequencies

that are very small: e.g. if all 26 alleles were independent, and

had frequency of 0.1, we could quote an estimated frequency of

8.2×10−23 for a completely heterozygous. We don’t expect that

anyone living will have that profile – but of course we know that

someone does.
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Meaning of Frequencies

The question is really whether we would see the profile in two

people, given that we have already seen it in one person. This

conditional probability may be very low, but has nothing to do

with the size of the population.
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ALLELIC INDEPENDENCE
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Testing for Allelic Independence

What is the probability a person has a particular DNA profile?

What is the probability a person has a particular profile if it has

already been seen once?

The first question is a little easier to think about, but difficult

to answer in practice: it is very unlikely that a profile will be

seen in any sample of profiles. Even for one STR locus with 10

alleles, there are 55 different genotypes and most of those will

not occur in a sample of a few hundred profiles.

For locus D3S1358 in the African American population, the FBI

frequency database shows that 31 of the 55 genotype counts are

zero. Estimating the population frequencies for these 31 types

as zero doesn’t seem sensible.
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D3S1358 Genotype Counts

Observed < 12 12 13 14 15 16 17 18 19 > 19

< 12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

> 19 0 0 0 0 1 0 0 0 0 0
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Hardy-Weinberg Law

A solution to the problem is to assume that the Hardy-Weinberg

Law holds. For a random mating population, expect that geno-

type frequencies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj
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D3S1358 Hardy-Weinberg Calculations

The allele counts for D3S1358 in the African-American sample

are:

Total

Allele < 12 12 13 14 15 16 17 18 19 > 19
Count 2 1 5 51 122 129 84 23 2 1 420

If the Hardy-Weinberg Law holds, then we would expect to see

np̃2
13 = 210 × (5/420)2 = 0.03 individuals of type 13,13 in a

sample of 210 individuals.

Also, we would expect to see 2np̃13p̃14 = 420×(5/420)×(51/420) =

0.61 individuals of type 13,14 in a sample of 210 individuals.

Other values are shown on the next slide.
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D3S1358 Observed and Expected Counts

< 12 12 13 14 15 16 17 18 19 > 19
< 12 Obs. 0

Exp. 0.0
12 Obs. 0 0

Exp. 0.0 0.0
13 Obs. 0 0 0

Exp. 0.0 0.0 0.0
14 Obs. 0 0 0 2

Exp. 0.2 0.1 0.6 3.1
15 Obs. 0 0 1 19 15

Exp. 0.6 0.3 1.5 14.8 17.7
16 Obs. 1 1 1 15 39 19

Exp. 0.6 0.3 1.5 15.7 37.5 19.8
17 Obs. 0 0 2 10 26 24 9

Exp. 0.4 0.2 1.0 10.2 24.4 25.8 8.4
18 Obs. 1 0 1 2 6 10 3 0

Exp. 0.1 0.1 0.3 2.8 6.7 7.1 4.6 0.6
19 Obs. 0 0 0 1 0 0 1 0 0

Exp. 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.1 0.0
> 19 Obs. 0 0 0 0 1 0 0 0 0 0

Exp. 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0
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Testing for Hardy-Weinberg Equilibrium

A test of the Hardy-Weinberg Law will somehow decide if the

observed and expected numbers are sufficiently similar that we

can proceed as though the law can be used.

In one of the first applications of Hardy-Weinberg testing in a

US forensic setting:

“To justify applying the classical formulas of population

genetics in the Castro case the Hispanic population must

be in Hardy-Weinberg equilibrium. Applying this test

to the Hispanic sample, one finds spectacular deviations

from Hardy-Weinberg equilibrium.”

E.S. Lander. 1989. DNA fingerprinting on trial. Nature 339:

501-505.
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VNTR “Coalescence”

Forensic DNA profiling initially used minisatellites, or VNTR loci,

with large numbers of alleles. Heterozygotes would be scored as

homozygotes if the two alleles were so similar in length that they

coalesced into one band on an autoradiogram. Small alleles often

not detected at all, and this is the cause of Lander’s finding.

Considerable debate in early 1990s on alternative “binning” strate-

gies for reducing the number of alleles (Science 253:1037-1041,

1991).

Typing has moved to microsatellites with fewer and more easily

distinguished alleles, but testing for Hardy-Weinberg equilibrium

continues. There are still reasons why the law may not hold.
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Population Structure can Cause Departure from
HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Structure

Effect of population structure taken into account with the “theta-

correction.” Matching probabilities allow for a variance in allele

frequencies among subpopulations.

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

where pA is the average allele frequency over all subpopulations.

We will come back to this expression.
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Population Admixture

A population might represent the recent admixture of two parental

populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marrieages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25
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Exact HWE Test

The preferred test for HWE is an “exact” one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2
A

etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Exact HWE Test

Putting these together gives the conditional probability of the

genotypic data given the allelic data and given HWE:

Pr(nAA, nAa, naa|nA, na,HWE) =

n!
nAA!nAa!naa!

(p2
A)nAA(2pApa)nAa(p2

a)
naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this probability is un-

usually small.
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Exact HWE Test Example

Reject the HWE hypothesis if the probability of the genotypic

array, conditional on the allelic array, is among the smallest prob-

abilities for all the possible sets of genotypic counts for those

allele counts.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAA, nAa, naa|nA, na,HWE)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data on the previous slide, conditional on

the allele frequencies and on HWE, is 1/99 = 0.01. This is less

than the conventional 5% significance level.

In general, the p-value is the (conditional) probability of the data

plus the probabilities of all the less-probable datasets. The prob-

abilities are all calculated assuming HWE is true.
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Exact HWE Test

Still in the two-allele case, for a sample of size n = 100 with

minor allele frequency of 0.07, there are only 8 sets of genotype

counts:

Exact
nAA nAa naa Prob. p-value

93 0 7 0.0000 0.0000∗
92 2 6 0.0000 0.0000∗
91 4 5 0.0000 0.0000∗
90 6 4 0.0002 0.0002∗
89 8 3 0.0051 0.0053∗
88 10 2 0.0602 0.0654
87 12 1 0.3209 0.3863
86 14 0 0.6136 1.0000

So, for a nominal 5% significance level, the actual significance

level is 0.0053 for an exact test that rejects when nAa ≤ 8.
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.
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Permutation Test

Mark a set of five index cards to represent five genotypes:

Card 1: A A

Card 2: A A

Card 3: A A

Card 4: a a

Card 5: a a

Tear the cards in half to give a deck of 10 cards, each with

one allele. Shuffle the deck and deal into 5 pairs, to give five

genotypes.
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Permutation Test

The permuted set of genotypes fall into one of four types:

AA Aa aa Number of times

3 0 2

2 2 1

1 4 0
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Permutation Test

Check the following theoretical values for the proportions of each

of the three types, from the expression:

n!

nAA!nAa!naa!
× 2nAanA!na!

(2n)!

AA Aa aa Conditional Probability

3 0 2 1
21 = 0.048

2 2 1 12
21 = 0.571

1 4 0 8
21 = 0.381

These should match the proportions found by repeating shuf-

flings of the deck of 10 allele cards.
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Permutation Test for D3S1358

For a STR locus, where {ng} are the genotype counts and n =
∑

g ng is the sample size, and {na} are the alleles counts with

2n =
∑

a na, the exact test statistic is

Pr({ng}|{na},HWE) =
n!2H ∏

a na!
∏

g ng!(2n)!

where H is the count of heterozygotes.

This probability for the African American genotypic counts at

D3S1358 is 0.6163 × 10−13, which is a very small number. But

it is not unusually small if HWE holds: a proportion 0.81 of 1000

permutations have an even small probability.
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Linkage Disequilibrium

This term is generally reserved for association between pairs of

alleles – one at each of two loci. In the present context, it

may simply mean some lack of independence of profile or match

probabilities at different loci.

Unlinked loci are expected to be almost independent.

111



Human Populations: History and Structure

In the paper

Novembre J, Johnson, Bryc K, Kutalik Z, Boyko AR, Auton

A, Indap A, King KS, Bergmann A, Nelson MB, Stephens M,

Bustamante CD. 2008. Genes mirror geography within Europe.

Nature 456:98

there is quite dramatic evidence that our genetic profiles contain

information about where we live, suggesting that these profiles

reflect the history of our populations.

The authors collected “SNP” (single nucleotide polymorphism)

data on over people living in Europe. Either the country of origin

of the people’s grandparents or their own country of birth was

known. On the next slide, these geographic locations were used

to color the location of each of 1,387 people in “genetic space.”

Instead of latitude and longitude on a geographic map, their

first two principal components were used: these components

summarize the 500,000 SNPs typed for each person.
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Novembre et al., 2008
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Novembre et al., 2008

As a follow-up, the authors took the genetic profile of each per-

son and used it to predict their latitude and longitude, and plot-

ted these on a geographic map. These predicted positions are

colored by the country of origin of each person.
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Y SNP Data Haplogroups

Another set of SNP data, this time from around the world, is

available for the Y chromosome. These data were collected

for the 1000 Genomes project (http://www.1000genomes.org/):

there are 26 populations:

East Asia: CDX. Chinese Dai in Xishuangbanna; CHB. Han Chi-

nese in Beijing; JPT. Japanese in Tokyo; KHV. Kinh in Ho Chi

Minh City; CHS. Southern Han Chinese.

South Asian: BEB. Bengali in Bangladesh; GIH. Gujarati Indian

in Houston; ITU. India Telugi in UK; PJL. Punjabi in Lahore;

STU. Sri Lankan Tamil in UK.
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Y SNP Data Haplogroups

African: ASW. African Ancestry in Southwest US; ACB. African

Caribbean in Barbados; ESN. Esan in Nigeria; GWD. Gambian

in the Gambia; LWK. Luthya in Kenya; MSL. Mende in Sierra

Leone; YRI. Yoruba in Nigeria.

European: GBR. British in UK; FIN. Finnish in Finland; IBS.

Iberian in Spain; TSI. Toscani in Italy; CEU. Utah residents with

European ancestry.

Americas: CLM. Columbian in Medellin; MXL. Mexican in Los

Angeles; PEL. Peruvian in Lima, PUR. Puerto Rican in Puerto

Rico.
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Y SNP Data Haplogroups
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Migration History of Early Humans

An interesting video of the migration of early humans is available

at:

http://www.bradshawfoundation.com/journey/

118



Migration Map of Early Humans

https://genographic.nationalgeographic.com/human-journey/

This map summarizes the migration patterns of early humans.
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Migration Map of Early Humans

The map on the next slide, based on mitochondrial genetic pro-

files, is taken from:

Oppenheimer S. 2012. Out-of-Africa, the peopling of continents

and islands: tracing uniparental gene trees across the map. Phil.

Trans. R. Soc. B (2012) 367, 770-784 doi:10.1098/rstb.2011.0306.

The first two pages of this paper give a good overview, and they

contain this quote: “The finding of a greater genetic diversity

within Africa, when compared with outside, is now abundantly

supported by many genetic markers; so Africa is the most likely

geographic origin for a modern human dispersal.”
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Migration Map of Early Humans
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Forensic Implications

What does the theory about the spread of modern humans tell

us about how to interpret matching profiles?

Matching probabilities should be bigger within populations, and

more similar among populations that are closer together in time.

Forensic allele frequencies are consistent with the theory of hu-

man migration patterns.
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Forensic STR PCA Map

A large collection of forensic STR allele frequencies was used

to construct the principal component map on the next page.

Also shown are some data collected by forensic agencies in the

Caribbean, and by the FBI. The Bermuda police has been using

FBI data - does this seem to be reasonable?
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Forensic STR PCA Map
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Genetic Distances

Forensic allele frequencies were collected from 21 populations.

The next slides list the populations and show allele frequencies

for the Gc marker. This has only three alleles, A, B, C.

The matching proportions within each population, and between

each pair of populations, were calculated. These allow distances

(“theta” or βij) to be calculated for each pair of populations i, j:

β̂ij = (M̃i + M̃j − 2M̃Bij)/[2(1 − M̃Bij)].
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Genetic Distances
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� 	

132



Genetic Distances
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Worldwide Survey of STR Data

Published allele frequencies for 24 STR loci were obtained for

446 populations. For each population i, the within-population

matching proportion M̃i was calculated. Also the average M̃B of

all the between-population matching proportions. The “θ” for

each population is calculated as β̂i = (M̃i−M̃B)/(1−M̃B). These

are shown on the next slide, ranked from smallest to largest and

colored by continent.

Africa: black; America: red; South Asia: orange; East Asia:

yellow; Europe: blue; Latino: turquoise; Middle East: grey;

Oceania: green.
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Worldwide Survey of STR Data
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Allelic Matching
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Within-population Matching

The key forensic genetic issue is that of matching profiles. What

is the probability that two people have the same STR profile?

We can get some empirical estimate of this when we have a set

of profiles. For the African -American sample of 210 profiles for

D3S1358, how many pairs of profiles match? Only those geno-

types that occur more than once in the sample provide matches.

To simplify this initial discussion, consider the following data for

the Y-STR locus DYS390 from the NIST database:
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Allele Counts in NIST Data for DYS390

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

20 4 1 1 0 6
21 176 4 17 1 198
22 43 45 14 17 119
23 36 116 50 17 219
24 56 145 129 21 351
25 23 46 21 36 126
26 3 2 2 4 11
27 0 0 2 0 2

Total 341 359 236 96 1032
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Within- and Between-population Matching for DYS390

Within the African-American sample there are 341×340 = 115,940

pairs of profiles and the number of matches is

4×3+176×175+43×42+36×35+56×55+23×22+3×2 = 37,470

so the within-population matching proportion is 37,470/115,940 =

0.323.

Between the African-American and Caucasian samples, there are

341×359 = 122,419 pairs of profiles and the number of matches

is

4×1+176×4+43×45+36×116+56×145+23×4+3×2 = 12,403

so the between-population matching proportion is 12,403/122,419 =

0.101.
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Allele Counts in NIST Data for DYS391

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

7 0 0 1 0 1
8 0 1 0 1 2
9 2 12 16 3 33
10 238 162 128 79 607
11 93 175 89 13 370
12 7 9 2 0 18
13 1 0 0 0 1

Total 341 359 236 96 1032

The within-population matching proportion for the African-American

sample is 65,006/115,940=0.561.

The between-population matching proportion for the African-

American and Caucasian samples is 54,918/122,419=0.449.
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Two-locus counts in NIST African-American Data
for DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 34 1122
22 11 9 72
24 10 15 210
24 11 39 1482
24 12 1 0
24 9 1 0
23 10 19 342
23 11 14 182
23 12 3 6
21 10 157 24492
21 11 15 210
21 12 2 2
21 9 1 0
21 13 1 0
25 10 11 110
25 11 12 132
26 10 1 0
26 11 2 2
20 10 1 0
20 11 2 2
20 12 1 0
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Two-locus counts in NIST Caucasian Data for
DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 43 1806
22 11 1 0
22 9 1 0
24 10 48 2256
24 11 88 7656
24 12 4 12
24 9 5 20
23 10 50 2450
23 11 60 3540
23 12 2 2
23 9 3 6
23 8 1 0
21 10 3 6
21 11 1 0
25 10 18 306
25 11 22 462
25 12 3 6
25 9 3 6
26 11 2 2
20 11 1 0
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Two-locus Matches

The within-population matching proportion for the African-American

sample is 28,366/115,940=0.245.

The within-population matching proportion for the Caucasian

sample is 18,536/128,522=0.144.

The between-population matching proportion for the African-

American and Caucasian samples is 8,347/122,419=0.068.

There is a clear decrease in matching between populations from

within populations. We can establish some theory that describes

these proportions.
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Partial Matching

For autosomal markers, two profiles may be:

Match: AA, AA or AB, AB

Partially Match: AA, AB or AB, AC

Mismatch: AA, BB or AA,BC or AB, CD

How likely are each of these?

149



Database Matching

If every profile in a database is compared to every other profile,

each pair can be characterized as matching, partially matching

or mismatching without regard to the particular alleles. We find

the probabilities of these events by adding over all allele types.

The probability P2 that two profiles match (at two alleles) is

P2 =
∑

A

Pr(AA, AA) +
∑

A 6=B

Pr(AB, AB)

=

∑

A pA[θ + (1 − θ)pA][2θ + (1 − θ)pA][3θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

+
2
∑

A 6=B[θ + (1 − θ)pA][θ + (1 − θ)pB]

(1 + θ)(1 + 2θ)
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Database Matching

This approach leads to probabilities P2, P1, P0 of matching at

2,1,0 alleles:

P2 =
1

D
[6θ3 + θ2(1 − θ)(2 + 9S2) + 2θ(1 − θ)2(2S2 + S3)

+ (1 − θ)3(2S2
2 − S4)]

P1 =
1

D
[8θ2(1 − θ)(1 − S2) + 4θ(1 − θ)2(1 − S3)

+ 4(1 − θ)3(S2 − S3 − S2
2 + S4)]

P0 =
1

D
[θ2(1 − θ)(1 − S2) + 2θ(1 − θ)2(1 − 2S2 + S3)

+ (1 − θ)3(1 − 4S2 + 4S3 + 2S2
2 − 3S4)]

where D = (1 + θ)(1 + 2θ), S2 =
∑

A p2
A, S3 =

∑

A p3
A, S4 =

∑

A p4
A. For any value of θ we can predict the matching, partially

matching and mismatching proportions in a database.
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FBI Caucasian Matching Counts

One-locus matches in FBI Caucasian data (18,721 pairs of 13-

locus profiles).

θ
Locus Observed .000 .001 .005 .010 .030

D3S1358 .077 .075 .075 .077 .079 .089
vWA .063 .062 .063 .065 .067 .077
FGA .036 .036 .036 .038 .040 .048
D8S1179 .063 .067 .068 .070 .072 .083
D21S11 .036 .038 .038 .040 .042 .051
D18S51 .027 .028 .029 .030 .032 .040
D5S818 .163 .158 .159 .161 .164 .175
D13S317 .076 .085 .085 .088 .090 .101
D7S820 .062 .065 .066 .068 .070 .080
CSF1PO .122 .118 .119 .121 .123 .134
TPOX .206 .195 .195 .198 .202 .216
THO1 .074 .081 .082 .084 .086 .096
D16S539 .086 .089 .089 .091 .094 .105
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FBI Database Matching Counts

Matching Number of Partially Matching Loci
loci θ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 Obs. 0 3 18 92 249 624 1077 1363 1116 849 379 112 25

.000 0 2 19 90 293 672 1129 1403 1290 868 415 134 26

.010 0 2 14 70 236 566 992 1289 1241 875 439 148 30

1 Obs. 0 12 48 203 574 1133 1516 1596 1206 602 193 43 3
.000 0 7 50 212 600 1192 1704 1768 1320 692 242 51 5
.010 0 5 40 178 527 1094 1637 1779 1393 767 282 62 6

2 Obs. 0 7 61 203 539 836 942 807 471 187 35 2
.000 1 9 56 210 514 871 1040 877 511 196 45 5
.010 1 8 50 193 494 875 1096 969 593 239 57 6

3 Obs. 0 6 33 124 215 320 259 196 92 16 1
.000 1 7 36 116 243 344 334 220 94 23 3
.010 0 6 35 117 256 380 387 268 120 32 4

4 Obs. 1 5 17 29 54 82 67 16 6 0
.000 0 3 15 40 70 81 61 29 8 1
.010 0 3 15 44 81 98 78 40 12 1

5 Obs. 0 1 2 6 12 14 6 5 0
.000 0 1 4 9 13 11 6 2 0
.010 0 1 4 11 16 15 9 3 0

6 Obs. 0 1 0 2 2 0 0 0
.000 0 0 1 1 1 1 0 0
.010 0 0 1 2 2 1 1 0
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Predicted Matches when n = 65,493

Matching Number of partially matching loci
loci 0 1 2 3 4 5 6 7
6 4,059 37,707 148,751 322,963 416,733 319,532 134,784 24,125
7 980 7,659 24,714 42,129 40,005 20,061 4,150
8 171 1,091 2,764 3,467 2,153 530
9 21 106 198 163 50
10 2 7 8 3
11 0 0 0
12 0 0
13 0
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Y-chromosome Profiles

[Work of Taryn Hall, University of Washington.]

The Y-chromosome also has several STR markers that are use-

ful in forensic science. In one respect, the profiles are easier

to interpret as each man has only one allele at an STR locus.

Otherwise interpretation is made more complicated by the lack

of recombination on the Y chromosome, meaning that alleles at

different loci are not independent. Or are they?

We expect that mutations act independently at different loci and

this may counter the lack of recombination to some extent.
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Y-STR Databases

There are three public databases of Y-STR profiles:

• Y-Chromosome Haplotype Reference Database (YHRD)

• Human Genome Diversity Project (HGDP)

• Data published by Xu et al. (XU)
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Two-locus LD for Y-STR Loci
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Entropy

How do we measure independence among loci? The traditional

measures of linkage disequilibrium don’t work very well for mul-

tiple loci.

Instead we turn to entropy. For a single locus l, with alleles of

type u having sample frequencies p̃ul, the entropy is

Hl = −
∑

u
p̃ul ln(p̃ul)

How does this quantity behave? If there is only one allele, u =

1, p̃1l
= 1 then Hl = 0. If there are m equally frequent alleles

p̃ul = 1/m,u = 1,2, . . . m then Hl = − ln(1/m) = ln(m) and this

gets larger as m gets larger. Entropy therefore indicates the

amount of variation at the locus.
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Two-locus Entropy

For haplotypes uv for alleles u, v at loci l, l′ with sample frequen-

cies p̃ulvl′, the entropy is

Hll′ = −
∑

u

∑

v
p̃ulvl′ ln(p̃ulvl′)

If the two loci are independent: p̃ulvl′ = p̃ulp̃vl′ so, in this case,

Hll′ = Hl + Hl′

If the two loci are completely dependent: p̃ulvl′ = p̃ul = p̃vl′ so, in

this case,

Hll′ = Hl = Hl′
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Three-locus Entropy

For haplotypes uvw for alleles u, v, w at loci l, l′, l′′ with sample

frequencies p̃ulvl′wl′′, the entropy is

Hll′l′′ = −
∑

u

∑

v

∑

w
p̃ulvl′wl′′ ln(p̃ulvl′wl′′)

If the third locus is independent of the first two loci: p̃ulvl′wl′′ =

p̃ulvl′p̃wl′′ so, in this case,

Hll′l′ = Hll′ + Hl′′

If the third locus is completely dependent on the first two loci:

p̃ulvl′wl′′ = p̃ulvl′ = p̃wl′′ so, in this case,

Hll′l′ = Hll′ = Hl′′
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Conditional Entropy

The conditional entropy for locus l′ given loci l is

Hl′|l = Hll′ − Hl =

{

Hl′ l, l′ independent
0 l, l′ dependent

The conditional entropy for locus l′′ given loci l, l′ is

Hl′′|ll′ = Hll′l′′ − Hll′ =

{

Hl′′ ll′, l′′ independent
0 ll′, l′′ dependent

A locus independent of the haplotype of the previous loci adds

its own entropy to the entropy of the haplotype of previous loci.

A locus completely dependent of the previous loci adds nothing

to the haplotype of the previous loci.
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Constructing Y-STR Haplotypes

Entropy values let us build up haplotypes by adding the most

informative loci first: i.e. add loci to maximize the entropy at

each stage.

If we have a haplotype with L loci, add the next locus with

the maximum entropy conditional on the haplotype. Need to

consider all possible haplotypes for a specific set of loci.
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Constructing Haplotypes with Maximum Entropy

For each Y-STR marker l with allele ul sample frequencies p̃ul

form the entropies Hl = −∑

u p̃ul ln(p̃ul). Find the largest of

these, and choose that marker (“1”) to be the first one. Its

entropy is H1.

For each of the other L−1 markers form the two-locus entropies

H1l with the two-locus haplotype u1vl frequencies p̃u1vl:

H1l = −
∑

u

∑

v
p̃u1vl ln(p̃u1vl)

and then form the L − 1 conditional entropies Hl|1 = H1l − H1.

Choose the marker “2” with the largest conditional entropy to

be the second one selected. The combined entropy is H12

H12 = −
∑

u

∑

v
p̃u1v2 ln(p̃u1v2)
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Constructing Haplotypes with Maximum Entropy

For each of the L − 2 remaining markers form the three-locus

entropies H12l with the three-locus haplotype u1v2wl frequencies

p̃u1v2wl:

H12l = −
∑

u

∑

v

∑

w
p̃u1v2wl ln(p̃u1v2wl)

and then form the L − 2 conditional entropies

Hl|12 = H12l − H12

Choose the marker “3” with the largest conditional entropy to

be the third one selected. The combined entropy is H123

H123 = −
∑

u

∑

v

∑

w
p̃u1v2w3 ln(p̃u1v2w3)

etc.
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Examples
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Examples
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Counting Method

The problem is that, with 10 or more alleles at a locus, the

number of possible profiles quickly exceeds the database size as

the number of loci increases. It is not uncommon for a profile of

interest not to appear in a database, although some profiles do

reach appreciable numbers as is shown for 12-locus profiles on

the next slide. Eventually, however, the number of loci makes it

likely that a profile occurs once or not all in a database unless

profiles from close relatives such as father-son or brothers are

present.
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Counting Method: 12-locus Profiles
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Exact Confidence Intervals

Exact confidence limits follow from the binomial distribution.

For events with low probabilities p, how large could p be for

there to be at least a 5% chance of seeing no more than x (i.e.

0,1,2, . . . x) occurrences of that event among n events. If this

upper bound is pU ,

x
∑

k=0

Pr(k) ≥ 0.05

x
∑

k=0

(

n

k

)

pk
U(1 − pU)n−k ≥ 0.05

If x = 0, then (1 − pU)n ≥ 0.05 or pU ≤ 1 − 0.051/n and this is

0.0295 if n = 100. More generally pU ≈ 3/n when x = 0, but the

same result holds if the profile is based on 7 or 17 or 27 loci.
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Sampling Effects

To illustrate the behavior of the sample proportion of a haplotype

in samples of n haplotypes from populations of N haplotypes, we

simulated a finite random-mating population of N haplotypes.

The founding population consisted of N unique haplotypes. The

subsequent loss of variation was countered by stepwise mutation,

one repeat unit in each direction. Loci were completely linked,

but underwent mutation independently. Loci were completely

linked, but underwent mutation independently.

On the next slides we show results for N = 1000 and n = 100.

There were 10 loci, each with mutation rate µ = 5× 10−4. The

migration rate was either m = 0 or m = 0.1.
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Sampling Effects
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Brenner’s Method

Brenner (2010) proposed the use of the proportion κ of profiles

that occurred only once in a database that had been augmented

by the evidentiary profile. His approach did not require a ge-

netic model, although κ values can be predicted for some genetic

models. The probability of a person taken randomly from a pop-

ulation would have the same profile as the evidentiary type when

that type was not present in a sample of size (n − 1) (i.e. oc-

curred once in the sample augmented by the evidentiary profile)

was given by (1 − κ)/n.

For profiles that occur p times in the augmented sample (those

with “popularity” p), Brenner suggested a modification to p(1−
κ)/n that approaches the sample proportion p̃ when the propor-

tion of singletons in the database becomes small.
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Brenner’s Method

Here we compare Brenner’s estimates for every profile in the

augmented database with the proportion of profiles of that type

in the population from which the sample was drawn. Brenner’s

values appear better than the sample proportions for profiles

not seen in the sample before it was augmented, as desired by

Brenner. The quality decreases as the sample proportion of the

evidentiary profile increases.
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Genetic Model

A genetic approach can be built on the notion of identity by de-

scent. For large numbers of loci, profiles of the same type are

likely to match because they have a common ancestral haplo-

type. If θi is the probability of identity by descent of two random

haplotypes in population i, the probability a random profile in

population i is of type A given the evidentiary profile, also from

population i, is that type is Pr(A|A)i = θi + (1 − θi)pAi.

As profile proportions pAi become small the matching probabil-

ities approach θi. These quantities, in turn, decrease as the

number of loci increases. Kimura and Ohta (1968) showed that,

for single-step mutations, STR loci have predicted θ values of

1/
√

1 + 4Nµ. For L loci undergoing independent mutation we

could replace µ by 1 − (1 − µ)L ≈ Lµ.
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Y-STR Matches

The chance of a random man having Y-STR haplotype A is

written as pA, the profile probability.

The chance that two men have haplotype A is written as PAA.

The chance that a man has haplotype A given that another man

has been seen to have that profile is PA|A, the match probability.

The three quantities are related by PA|A = PAA/pA.

A major difficulty is that we generally do not have samples from

the relevant (sub)population to give us estimates of pA or PAA.

Instead we have a database of profiles that may represent a larger

population.
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Interpreting Evidence

Two hypotheses for observed match between suspect and evi-

dence:

HP : Suspect is source of evidence.

HD: Suspect is not source of evidence.

Then

Pr(HP |Match)

Pr(HD|Match)
=

Pr(Match|HP )

Pr(Match|HD)
× Pr(HP )

Pr(HD)
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Interpreting Evidence

Suppose matching Y-STR profile is type A. The likelihood ratio

reduces to

Pr(Match|HP )

Pr(Match|HD)
=

Pr(A|A, HP )

Pr(A|A, HD)

=
1

Pr(A|A)

A population genetic model introduces the quantity θ:

Pr(AA) = θpA + (1 − θ)p2
A

Pr(A|A) = θ + (1 − θ)pA

where θ is the probability that two profiles are identical by de-

scent.
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Sample Within-population Matching

If the sample from population i has nAi copies of allele (or hap-

lotype) A, and these sum to ni, the sample within-population

matching proportion for this population is

M̃i =
1

ni(ni − 1)

∑

A

nAi(nAi − 1)

=
ni

ni − 1

∑

A

nAi

ni

(

nAi

ni
− 1

ni

)

=
ni

ni − 1





∑

A

p̃2
Ai −

1

ni





Averaging over populations:

M̃W =
1

r

r
∑

i=1

M̃i
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Sample Between-population Matching

The sample between-population matching proportion for popu-

lations i and j is

M̃ij =
1

ninj

∑

A

nAinAj

=
∑

A

nAi

ni

nAj

nj

=
∑

A

p̃Aip̃Aj

Averaging over pairs of populations:

M̃B =
1

r(r − 1)

r
∑

i 6=j

M̃ij
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One-locus NIST Y-STR Estimates

Locus M̃W M̃B β̂W

DYS19 0.32571062 0.24309148 0.10915340
DYS385a/b 0.07982377 0.04427420 0.03719640
DYS389I 0.41279418 0.38319082 0.04799436
DYS389II 0.26072434 0.23741323 0.03056847
DYS390 0.28981997 0.18813203 0.12525182
DYS391 0.52191425 0.48517426 0.07136392
DYS392 0.39961865 0.35168087 0.07394164
DYS393 0.50285122 0.48769253 0.02958906
DYS437 0.46400112 0.38595032 0.12710828
DYS438 0.36817530 0.23212655 0.17717601
DYS439 0.35507469 0.34990863 0.00794667
DYS448 0.30091326 0.22640195 0.09631787
DYS456 0.33444029 0.32578009 0.01284478
DYS458 0.21642167 0.19701369 0.02416976
DYS481 0.18867019 0.14121936 0.05525373
DYS533 0.39365769 0.37177174 0.03483757
DYS549 0.33976578 0.30691346 0.04740003
DYS570 0.21298105 0.20775666 0.00659442
DYS576 0.20955290 0.18125443 0.03456321
DYS635 0.27720127 0.20653182 0.08906400
DYS643 0.28394262 0.20058158 0.10427710
Y-GATA-H4 0.40667782 0.39899963 0.01277568
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Multiple-locus US-YSTR Estimates

No. Loci Added Locus M̃W M̃B β̂W

1 DYS 438 0.37903281 0.27283973 0.14603806
2 DYS 392 0.22353526 0.10233258 0.13501958
3 DYS 19 0.11294942 0.05471374 0.06160639
4 DYS 390 0.05923470 0.02393636 0.03616398
5 DYS 643 0.04798422 0.02456341 0.02401059
6 YGATA C4 0.03119210 0.01541060 0.01602851
7 DYS 533 0.01979150 0.00777794 0.01210774
8 DYS 393 0.01482393 0.00650531 0.00837309
9 DYS 456 0.01073170 0.00396487 0.00679377
10 DYS 438 0.00889934 0.00287761 0.00603912
11 DYS 549 0.00524369 0.00123093 0.00401770
12 DYS 481 0.00317518 0.00055413 0.00262250
13 DYS 389I 0.00240161 0.00031517 0.00208710
14 DYS 391 0.00200127 0.00017039 0.00183119
15 DYS 576 0.00106995 0.00005877 0.00101124
16 DYS 389II 0.00089896 0.00004205 0.00085695
17 DYS 385 0.00065020 0.00002729 0.00062293
18 YGATA H4 0.00063652 0.00002427 0.00061227
19 DYS 448 0.00055062 0.00000713 0.00054349
20 DYS 458 0.00051100 0.00000423 0.00050677
21 DYS 570 0.00043010 0.00000423 0.00042587
22 DYS 439 0.00038612 0.00000423 0.00038189
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Y-STR Match Probabilities

Within subpopulation i, if we knew the haplotype frequencies and

if we assumed random mating, the chance that two unrelated

men have haplotype A is p2
Ai and the match probability is just

the profile probability pAi.

If we allow for the evolutionary variation that led to the current

subpopulation, then the total population allele frequencies pA

can be used when the specific population frequencies pAi are not

known:

PAAi = θipA + (1 − θi)p
2
A
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Estimating Match Proportions

To take account of what
∑

A p̃2
A is actually estimating, we form

an estimate of the within subpopulation matching as

M̂W = βW + (1 − βW)
∑

A

p̃2
A

where

βW =
θW − θB

1 − θB

This is the “theta” for the “theta-correction” expression for

match probabilities.

When there are data from the subpopulations, it has a simple

estimate:

β̂W =
M̃W − M̃B

1 − M̃B
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Inbreeding and Relatedness

Matching probabilities for DNA evidence can be affected quite

substantially when the people whose profile are (or may be) re-

lated.

To begin to consider how to approach this question, we start by

thinking about inbreeding.
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Inbreeding

Inbreeding occurs when a person receives (copies of) the same

allele from the same ancestral allele. The most likely example in

people is for children of marriages between first cousins. First

cousins have parents who are siblings, so they have two grand-

parents in common, and they might pass on the same one of the

four alleles these two grandparents have to their child.
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Cousin Marriages

“The United States has the only bans on cousin marriage in

the Western world. As of February 2010, 30 U.S. states prohibit

most or all marriages between first cousins, and a bill is pending in

Maryland which would prohibit most first cousins from marrying

there. Six states prohibit first-cousin-once-removed marriages.

Some states prohibiting cousin marriage recognize cousin mar-

riages performed in other states, but despite occasional claims

that this holds true in general, laws also exist that explicitly void

all foreign cousin marriages or marriages conducted by state res-

idents out of state.”

Wikipedia, “Cousin Marriages”
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Cousin Marriages

“Twenty-five states prohibit marriages between first cousins. Six

states allow first cousin marriage under certain circumstances,

and North Carolina allows first cousin marriage but prohibits

double-cousin marriage. States generally recognize marriages of

first cousins married in a state where such marriages are legal.”

http://www.ncsl.org/research/human-services/state-laws-regarding-

marriages-between-first-cousi.aspx
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Offspring of First cousins
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I

X, Y are first cousins. J, K are full sibs. C, D are the grandparents

in common to X, Y . Because X, Y are related, individual I is

inbred.

The next slide shows a possible set of genotypes for this pedigree.
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Offspring of First cousins
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a5a5

Individual I in this case has received two (identical) copies of the

same allele a5.

In general, each of the child’s two alleles has descended from

one of 8 grandparental alleles: 64 possible combinations. Of

these combinations, 4 involve two copies of the same allele. The

probability the child is inbred is 4/64=1/16.
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Cousin Marriage Inbreeding Coefficient

Using the grandparental alleles as numbered on the previous slide

(but ignoring all the other genotypes shown there) the 64 allelic

combinations have 4 that involve an identical pair. Such a pair

are identical by descent (ibd). Inbreeding coefficient F is proba-

bility of ibd.

First allele
a1 a2 a3 a4 a5 a6 a7 a8

a5 − − − − ibd − − −
a6 − − − − − ibd − −
a7 − − − − − − ibd −

Second a8 − − − − − − − ibd
allele a9 − − − − − − − −

a10 − − − − − − − −
a11 − − − − − − − −
a12 − − − − − − − −

190



Coancestry

The inbreeding coefficient of an individual is the probability that

the two alleles going to that individual are ibd. The inbreeding

coefficient of individual I is written as FI

In other words, the two alleles coming from the two parents are

ibd. The probability that two alleles, one chosen randomly from

each of two individuals, are ibd is the coancestry of those two

individuals. The coancestry of individuals X and Y is written as

θXY .
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Relatedness

The inbreeding coefficient of an individual is the coancestry of

its parents; FI = θXY .

X Y

I
(a,b)
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a b

192



Path Counting

A
↘ ↙ ↘ ↙

... ...

... ...
↘ ↓ ↓ ↙

X Y
↘ ↙

I

Identify the path linking the parents of I to their common an-

cestor(s).
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Path Counting

If the parents X,Y of an individual I have ancestor A in common,

and if there are n individuals (including X, Y ) in the path linking

the parents through A, then the inbreeding coefficient of I, or

the coancestry of X and Y , is

FI = θXY =

(

1

2

)n
(1 + FA)

If there are several paths to an ancestor, sum over all paths.

If there are several ancestors, this expression is summed over all

the ancestors.
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Parent-Child

Y

X
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The common ancestor of parent X and child Y is X. The path

linking X, Y to their common ancestor is Y X and this has n = 2

individuals. Therefore

θXY =

(

1

2

)2

=
1

4
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Grandparent-grandchild
Y

V

X
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The common ancestor of grandparent X and grandchild Y is X.

The path linking X, Y to their common ancestor is Y V X and this

has n = 3 individuals. Therefore

θXY =

(

1

2

)3

=
1

8
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Half sibs
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The common ancestor of half sibs X and Y is V . The path

linking X, Y to their common ancestor is XV Y and this has n = 3

individuals. Therefore

θXY =

(

1

2

)3

=
1

8
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Full sibs
U V
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The common ancestors of full sibs X and Y are U and V . The

paths linking X,Y to their common ancestors are XUY and XV Y

and these each have n = 3 individuals. Therefore

θXY =

(

1

2

)3

+

(

1

2

)3

=
1

4
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First cousins
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The common ancestors of cousins X and Y are C and D. The

paths linking X, Y to their common ancestors are XJCKY and

XJDKY and these each have n = 5 individuals. Therefore

θXY =

(

1

2

)5

+

(

1

2

)5

=
1

16
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Double First Cousins

If two brothers C, D marry two sisters G, H, their children X, Y

are both maternal and paternal first cousins: i.e. they are double

first cousins. What is the coancestry coefficient of double first

cousins?
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a c b d
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Siblings whose Parents are Cousins

If two first cousins, A,B, marry and have two children X, Y , what

is the coancestry coefficient of those children?

G(i,j) H(k,l)
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a dc b

X(a,b) Y(c,d)
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Genotype frequencies

Suppose individuals in a population all have inbreeding coeffi-

cients F . The probability an individual has two ibd alleles is

F , and the probability of two non-ibd alleles is (1 − F ). The

probability that any allele is type A is pA, the population allele

frequency. So, the probability an individual is homozygous is

PAA = F × pA + (1 − F ) × p2
A
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Genotype frequencies

To emphasize the difference from Hardy-Weinberg:

PAA = p2
A + FpA(1 − pA)

Because heterozygous individuals must have non-ibd alleles:

PAa = 2(1 − F )pApa

= 2pApa − 2FpApa

These are profile probabilities, not match probabilities. The

quantity F is not the θ in the match probability equations.
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First Cousin Example

If every person in the population had parents who were first

cousins, F = 1/16 = 0.0625. For a locus with allele frequencies

{pi} that were all 0.10:

Pii = (0.1)2 + 0.0625(0.1)(0.10) = 0.015625

Pij = 2(0.1)(0.1) − 2(0.0625)(0.1)(0.1) = 0.018750
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Probabilities of Pairs of Relatives

The inbreeding coefficient F is a statement about a pair of alleles,

and it provides genotypic frequencies – the frequencies of pairs

of alleles.

What about pairs of individuals? Their joint genotypic frequen-

cies must involve four-allele analogs of F .
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Nine-parameter IBD Set

Solid lines join pairs of ibd alleles: top row is the pair of alleles

for X, bottom row the pair of alleles for Y .
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Non-inbred Relatives

There is a reduction when neither individual is inbred, as then

neither a, b nor c, d are ibd. There are then only three states and

the three probabilities are often written as k2 = ∆7, k1 = ∆8 or

k0 = ∆9 to indicate the number of pairs of ibd alleles carried by

the two individuals. Examples follow:
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Parent-Child
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Pr(c ≡ a) = 0.5, Pr(c ≡ b) = 0.5, k1 = 1
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Grandparent-grandchild
Y(ab)

V

X(cd)
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Pr(c ≡ a) = 0.25, Pr(c ≡ b) = 0.25, k1 = 0.5&k0 = 0.5
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Half sibs

U V(ef) W

X Y
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0.5 0.5
c ≡ e c ≡ f

0.5 b ≡ e 0.25 0.25
0.5 b ≡ f 0.25 0.25

Therefore k1 = 0.5 so k0 = 0.5.
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Full sibs
U(ef) V(gh)
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a b c d

0.5 0.5
b ≡ d b 6 ≡d

0.5 a ≡ c 0.25 0.25
0.5 a 6 ≡c 0.25 0.25

k0 = 0.25, k1 = 0.50, k2 = 0.25

211



First cousins
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Double First Cousins
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Non-inbred Relatives

Values of the three probabilities for some common relationships

between non-inbred relatives are:

Relationship k2 k1 k0 θ = 1
2k2 + 1

4k1

Identical twins 1 0 0 1
2

Full sibs 1
4

1
2

1
4

1
4

Parent-child 0 1 0 1
4

Double first cousins 1
16

3
8

9
16

1
8

Half sibs∗ 0 1
2

1
2

1
8

First cousins 0 1
4

3
4

1
16

Unrelated 0 0 1 0
∗ Also grandparent-grandchild and avuncular (e.g. uncle-niece).
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Joint genotypic probabilities

For any specific pair of genotypes, the ∆’s or k’s describe the

identity-by-descent classes. For two AiAi:

• with probability k2 there are two pairs of ibd alleles, sotwo

independent Ai alleles. These Ai with probability p2
i .

• with probability k1 there is one pair of ibd alleles, so three

independent Ai alleles. These are Ai with probability p3
i .

• with probability k0 the no ibd alleles, so four independent Ai

alleles. These are all Ai with probability p4
i .

Pr(AiAi, AiAi) = k2p2
i + k1p3

i + k2p4
i
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Joint genotypic probabilities

Genotypes Probability

ii, ii k2p2
i + k1p3

i + k0p4
i

ii, jj k0p2
i p2

j

ii, ij k1p2
i pj + 2k0p3

i pj

ii, jk 2k0p2
i pjpk

ij, ij 2k2pipj + k1pipj(pi + pj) + 4k0p2
i p2

j

ij, ik k1pipjpk + 4k0p2
i pjpk

ij, kl 4k0pipjpkpl
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Example: Non-inbred full sibs

Genotypes Probability

ii, ii p2
i (1 + pi)

2/4

ii, jj p2
i p2

j /4

ii, ij pipj(pi + pj)/2

ii, jk p2
i pjpk/2

ij, ij pipj(1 + pi + pj + 2pipj)/2

ij, ik pipjpk(1 + 2pi)/2

ij, kl pipjpkpl
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“It was my brother.”

The defense hypothesis may be that the source of an evidentiary

stain was a relative of the defendant. For example

Hp: the defendant is the source of the crime stain.

Hd: (an untyped) brother of the defendant is the source

of the crime stain.
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“It was my brother.”

If the evidence profile is E : AB and the defendant has genotype

GS : AB, then the likelihood ratio is

LR =
Pr E|Hp)

Pr(E|Hd)

=
1

Pr(AB|brother of AB person)

=
1

Pr(AB, AB|brothers)/Pr(AB)

=
1

[pApB(1 + pA + pB + 2pApB)/2]/(2pApB)

=
4

1 + pA + pB + 2pApB

219



Are These People Related?

Remains identification often involves the comparison of two pro-

files and comparing the hypotheses:

H1: These profiles are from two people with a specific

relationship.

H2: These profiles are from two unrelated people.

If the profiles have genotypes ab and cd at a locus, then the

likelihood ratio is

LR =
Pr(ab, cd|H1)

Pr(ab, cd|H2)
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Example: Full sibs vs Unrelated

Suppose two samples X, Y have genotypes AA and AB at a locus.

For

Hp: X, Y are from full-sibs

Hd: X, Y are from unrelated individuals

The likelihood ratio is

LR =
Pr(AA, AB|Full sibs)

Pr(AA,AB|Unrelated)

=
k1p2

ApB + k02p3
ApB|k1 = 0.5, k0 = 0.25)

k1p2
ApB + k02p3

ApB|k1 = 0.0, k0 = 1.00)

=
p2
ApB + p3

ApB

4p3
ApB

=
1 + pA

4pA
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Example: Full sib vs Half sibs

Suppose two samples X, Y have genotypes AB and AB at a locus.

For

Hp: X, Y are from full-sibs

Hd: X, Y are from half-sibs

The likelihood ratio is

LR =
Pr(AA, AB|Full sibs)

Pr(AA, AB|Half sibs)

=
21
4pApB + 1

2pApB(pA + pB) + 41
4p2

Ap2
B

1
2pApB(pA + pB) + 41

2p2
Ap2

B

=
pApB + pApB(pA + pA) + 2p2

Ap2
B

pApB(pA + pB) + 2p2
Ap2

B

=
1 + pA + pB + 2pApB

pA + pB + 2pApB
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Match Probabilities for Relatives

For relatives, described by k0, k1, k2 in a structured population described by θ:

Pr(AuAu, AuAu) = k0 Pr(AuAuAuAu) + k1 Pr(AuAuAu) + k2 Pr(AuAu)

Pr(AuAv, AuAv) = 4k0 Pr(AuAuAvAv) + k1[Pr(AuAuAv) + Pr(AuAvAv)]

+ 2k2 Pr(AuAv), u 6= v.

The allelic-set probabilities in these equations refer to the generation to which
the relatives’ most recent common ancestors belong. The match probabilities
become

Pr(AuAv|AuAv) =











































k0
[2θ + (1 − θ)pu][3θ + (1 − θ)pu]

(1 + θ)(1 + 2θ)

+ k1
2θ + (1 − θ)pu

1 + θ
+ k2, u = v,

k0
2[θ + (1 − θ)pu][θ + (1 − θ)pv]

(1 + θ)(1 + 2θ)

+ k1
2θ + (1 − θ)(pu + pv)

2(1 + θ)
+ k2, u 6= v

Parameters pu and θ are assumed to have the same value in successive gen-

erations.
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Relatedness and Matching

What is the chance that two relatives, with relationship described by k0, k1, k2,
match?

Pr(Match) = k2 + k1[
∑

i

Pr(AiAiAi) +
∑

i

∑

j 6=i

Pr(AiAjAj)] + k0P2

= k2 + k1[θ + (1 − θ)S2] + k0P2

Pr(Partial Match) = k1[2
∑

i

∑

j 6=i

Pr(AiAiAj) +
∑

i

∑

j 6=i

∑

k 6=i,j

Pr(AiAjAk)]

+ k0P1

= k1(1 − θ)(1 − S2) + k0P1

Pr(Mismatch) = k0P0

where P2, P1, P0 are the match, partial match and mismatch probabilities for

unrelated people. Setting θ = 0 gives the results for unstructured popula-

tions.
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Relatedness and Matching Data

If θ = 0.03, using FBI allele frequencies for Caucasians.

Not First- Parent Full-
Locus related cousins -child sibs
D3S1358 .089 .124 .229 .387
vWA .077 .111 .213 .376
FGA .048 .078 .166 .345
D8S1179 .083 .119 .227 .384
D21S11 .051 .081 .172 .349
D18S51 .040 .068 .150 .335
D5S818 .175 .216 .339 .463
D13S317 .101 .139 .252 .401
D7S820 .080 .115 .219 .379
CSF1PO .134 .173 .288 .428
TPOX .216 .261 .397 .503
THO1 .096 .133 .241 .395
D16S539 .105 .143 .256 .404
Total 2 × 10−14 2 × 10−12 6 × 10−9 5 × 10−6
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Mixtures

There are many situations where the DNA person from more

than one person is present in an evidentiary sample:

• Rape: DNA from victim, assailant and possible consensual

partners.

• Murder: DNA from victim and assailant.

• Touch DNA: several people who touched a surface.
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Binary Model

The simplest approach is to examine the evidence profile and

determine which alleles are present.

For example, suppose locus D8S1179 is typed and alleles 12,13,14

are seen. What are the genotypes of possible contributors?
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Random Man Not Excluded/Inclusion Probability

The RMNE or CPI approach lists the genotypes that are not ex-

cluded, i.e. are included in the evidence profile. For the 12,13,14

example these are:

12,12; 12,13; 12,14; 13,13, 13,14, 14,14.

If all allele frequencies were 0.1, then these six genotypes have

(Hardy-Weinberg) probabilities

0.01; 0.02; 0.02; 0.01; 0.02; 0.01

so the probability that a “random man” would not be excluded

is 0.09.

What is wrong with this?
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Problem with RMNE

The problem with the RMNE approach is that it does not take

into account that there must be (at least) two contributors to

the profile 12,13,14. Some pairs of people could not be the con-

tributors:

12,12 and 12,12; 12,12 and 13,13; 12,12 and 14,14;

12,12 and 12,13; 12,12 and 12,14 etc.

229



Problem with RMNE

The possible pairs of random people who would produce a profile

of type 12,13,14 are:

12,12 12,13 12,14 13,13 13,14 14,14

12,12 no no no no yes no
12,13 no no yes no yes yes
12,14 no yes no yes yes no
13,13 no no yes no no no
13,14 yes yes yes no no no
14,14 no yes no no no no
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Problem with RMNE

Putting in the genotype probabilities for allele frequencies of

0.10:

12,12 12,13 12,14 13,13 13,14 14,14
0.01 0.02 0.02 0.01 0.02 0.01

12,12 0.01 0.0002
12,13 0.02 0.0004 0.0004 0.0002
12,14 0.02 0.0004 0.0002 0.0004
13,13 0.01 0.0002
13,14 0.02 0.0002 0.0004 0.0004
14,14 0.01 0.0002

The probability two random men have the profile 12,13,14 is

0.0036, which is less than the RMNE.
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Problem with RMNE

Another problem with RMNE is that it does not consider that

there may be a known contributor, e.g. the victim.

Suppose the evidence is the profile 12,13,14 and the victim is of

type 12,13. The other contributor must have an allele type 14.

Now suppose a suspect has type 13,14. He is not excluded as a

contributor. The two hypotheses may be:

Hp: the evidence is from the victim and the suspect.

Hd: the evidence is from the victim and an unknown man.

The probability of the evidence if Hp is true is 1.
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Problem with RMNE

If Hd is true, the unknown man must be of type 12,14 or 13,14

or 14,14 and these have probabilities 0.02, 0.02, 0.01 if the allele

frequencies are 0.1.

The likelihood ratio is

LR =
Pr(E|Hp)

Pr(E|Hd)
=

1.0

0.05
= 20

The RMNE approach would give a LR of 1/0.09= 11.1.
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Victim not included

If the evidence is not an intimate sample, the hypotheses may

be different:

Hp: the evidence is from the victim and the suspect.

Hd: the evidence is from two unknown men.

The probability of the evidence if Hp is true is still 1, but under

Hd it is 0.0036 and the LR is 1/0.0036=277.8

The RMNE is still 0.09 for this case. Clearly miss-states the

strength of the evidence.
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Semi-continuous Model

Allow for allelic drop-out and allelic drop-in.

C or C̄ are the probabilities an allele drops out, or does not drop

out.

D or D̄ are the probabilities an allele drops in, or does not drop

in. DpA is the probability an allele of type A drops in.
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Drop-out Example

• Evidence: E = 12,13,14.

• Victim: V = 12,13.

• Suspect: S = 14,15

If Hp is V, S and Hd is V, U then, under Hp, the allele 15 must

have dropped out of the evidence. Drop-out is not necessary

under Hd.

Pr(E|Hp) = C

Pr(E|Hd) = C[2p14p15] + C̄[p2
14 + 2p12p14 + 2p13p14]
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Drop-out and Drop-in Example

• Evidence: E = 12,13,14,16.

• Victim: V = 12,13.

• Suspect: S = 14,15

If Hp is V, S and Hd is V, U then, under Hp, the allele 15 must

have dropped out of the evidence, and allele 16 dropped into

the evidence. Drop-out is not necessary under Hd but drop-in is

necessary.

Pr(E|Hp) = CDp16

Pr(E|Hd) = C[2p14p15]Dp16 + C̄[p2
14 + 2p12p14 + 2p13p14]Dp16

+ 2p14p16D̄
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Peaks below threshold

When allelic peaks fall below a threshold, under the binary model

that locus is ignored. This has been thought to be conservative

but may actually be prejudicial if the alleles in question would

weaken the strength of the evidence against the suspect.

The semi-continuous model takes all peaks into account by in-

cluding for “drop-out” and “drop-in” probabilities in the calcu-

lations.

On the next slide are the profiles of the evidence, the victim and

a suspect in the case against Charles Richard Smith, Superior

Court of California, County of Sacramento, Number 06FO0122.

The prosecution presented a likelihood ratio of 96,000 and the

defense gave a value of 2. The defense expert, Professor David

Balding said “The treatment of the DNA evidence in this case

was the worst I’ve encountered.”
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California vs Smith

Likelihood ratio
Locus Evidence Victim Suspect Prosecution Defense∗

D8 12,13,16 13,16 12,13 4.0 4.5
D21 28 28,30 29,29 1 0.4
D7 – 8,10 9,10 1 1.1
CSF – 8,10 10,11 1 1.1
D3 16 14,16 16,17 4.3 1.4
TH01 7 7,7 9.3,9.3 1 0.4
D13 – 11,13 8,12 1 1.1
D16 12,13 12,13 11,12 4.0 0.9
D2 24 19,24 17,25 1 0.8
D19 12,13 12,13 13,15 6.5 1.1
vWA 18,20 18,20 19,20 18 1.4
TPO 9,11 9,9 11,12 7.0 1.3
D18 – 13,15 12,17 1 1.1
D5 8,11,12 8,12 11,13 1.7 0.9
FGA – 21,22 22,24 1 1.1
Product 96,000 2.0

∗ Dropout

prob = 0.5, homozygote drop out prob = 0.125, dropin prob = 0.05.

Balding and Buckleton, Forensic Science International: Genetics 4:1-10, 2009.
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Case in Lohmueller and Rudin

(Lohmueller and Rudin, Journal of Forensic Sciences 58:S243-

S249, 2012)

Female victim stabbed to death. Husband was suspect. Hus-

band’s girlfriend was an alternate suspect.

Agreement that victim was the major contributor to bloodstains.

For some loci, a complete analysis requires the probability of

allelic drop-out to be included in the calculations.

Leaving out loci with peaks below the threshold was prejudicial

to the suspect.
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Case in Lohmueller and Rudin

Panel A: D7S820 allele 9 was below detection threshold (so not

called) and was used to exclude alternate suspect.

Panel B: D2S1338 allele 16 was below the stutter threshold (so

regarded as stutter) and was used to exclude the alternate sus-

pect.
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Case in Lohmueller and Rudin

Evidence
Locus Major Minor Stutter Victim Suspect Alternate
D8 13,14 15 12 13,14 13,15 13,15
D21 30,31.2 32.2 29,30.2 30,31,2 30,31.2 30,32.2
D7 11,12 9 10 11,12 8,11 9,11
CSF 10,13 11,12 9 10,13 12,13 11,12
D3 15,17 16 14 15,17 15 16
TH01 7,8 9 6 7,8 8,9.3 8,9
D13 11 8,12 10 11 10,11 8,12
D16 11,13 9 10,12 11,13 11,14 9,11
D2 17,21 19 16,20 17,21 17,26 16,19
D19 13 14 12 13 13 13,14
vWA 17 15,18 16 17 17 15,18
TPO 8,9 10 8,9 9,11 9,10
D18 13,17 12,16 13,17 13,17 17
D5 11,12 10 11,12 11 11,12
FGA 20,21 24 19 20,21 21,24 19,24

Greater LR for Hp: Victim + Alternate vs Hd: Victim + Unknown

than for Hp: Victim + Suspect vs Hd: Victim + Unknown.
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Continuous Model

The “binary model” analyses ignore features of the electrophero-

grams - in particular, how much DNA is present for each allele.

A mixture profile may actually look like

(Source: Perlin and Sinelnikov, PLoS One 4:e837, 2009)
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Continuous Model

The mixture of alleles 12,13,14 from the previous slide; along

with the “peak heights” (amount of DNA) could be explained

as:

(Source: Perlin and Sinelnikov, PLoS One 4:e837, 2009) This

approach allows for different amounts of DNA from each con-

tributor – there may be more from the victim than the assailant.
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Continuous Model

Taking peak heights into account can also rule out some con-

tributors to the evidence profile. If the victim of type 13,14

is present, then only one of the possible second contributors is

consistent with the electropherogram:

(Source: Perlin and Sinelnikov, PLoS One 4:e837, 2009)
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Binary vs Continuous Model

To emphasize the difference between the binary and the con-

tinuous models, note that the binary model uses a threshold:

all peaks above that threshold are retained and are given equal

weight. Other peaks are discarded.
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Binary vs Continuous Model

Suppose the alleles 12,13,14 have frequencies of 0.10.

For the hypotheses Hp: Victim (13,14) plus Suspect (12,13)

versus Hd: Victim (13,14) plus Unknown:

the binary model allows the unknown contributor for Hd to be

12,12 or 12,13 or 12,14 and the LR is

LR =
1

Pr(1,12) + Pr(12,13) + Pr(12,14)
=

1

0.01 + 0.02 + 0.02
= 20

but the continuous model restricts the unknown contributor for

Hd to be 12,13 and the LR is

LR =
1

Pr(12,13)
=

1

0.02
= 50
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STRMix Continuous Model

Peak heights measuured as continous variables, not present/absent

binary variables. Calucations use probability densities rather than

probabilities.

All possible sets of contributors a for a mixture are considered,

and corresponding peak heights are simulated by varying some

parameters of the typing system to bring simulate heights close

to observed heights.

Parameters: molecular weight of allele, dose of allele (1 or

2), contributor amount of DNA, degradation, amplification effi-

ciency, replicate, allele vs stutter, ...
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