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Overview

The ability to combine information from multiple sources is a

strength of Bayesian statistics;

• Use of prior information + study data

• Combining multiple studies’ data, in a meta-analysis

Meta-analysis was briefly introduced in Lecture 8 (GLMs) – here

we give a more general approach, and a first look at mixed

models, which are also natural in Bayesian approaches.
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Overview

• Test association of disease (Y ) with genotype (X = 0/1/2)

– is there a signal? (If so, learn new biology)

• Tiny effects, so combine multiple studies – meta-analysis
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Overview

  

Genome-wide association study identifies new
susceptibility loci for Crohn disease and implicates
autophagy in disease pathogenesis

• Test association of disease (Y ) with genotype (X = 0/1/2)

– is there a signal? (If so, learn new biology)

• Tiny effects, so combine multiple studies – meta-analysis
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Meta-analysis: default approaches

Approximate the data from study i as

β̂i ∼ N(βi, σ
2
i ),

where each study is big enough that uncertainty about σi is

negligible.

One very simple model assumes homogeneity, i.e.

βi = β0

and, with a flat prior on common parameter β0 provides

β̂F = E[β0|data ] =
k∑
i=1

1
σ2
i∑k

i=1
1
σ2
i

β̂i,

Var[ β̂F ] = Var[β0|data ] =
1∑k

i=1
1
σ2
i

.
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Meta-analysis: default approaches

This is known as the fixed-effect or common-effect approach,

and β̂F is the inverse-variance weighted or precision-weighted

estimate

• Under true homogeneity, just as efficient as pooling all the

data and adjusting for study (Lin & Zeng, 2010)

• Under true homogeneity, Uniformly Most Powerful Unbiased

(i.e. best) estimate of β0

But

• True homogeneity is not generally plausible – perhaps in lab

replicates, perhaps if all βi = 0

• Not learning about heterogeneity – which may be important

in practice

5
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Meta-analysis: under heterogeneity

To help think about βi 6= β0, consider data from three studies;
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G=0 G=1
Study #1 Study #2 Study #3

Sample size n1 Sample size n2 Sample size n3

Information n1/σ1
2 Information n2/σ2

2 Information n3/σ3
2

β̂1

G=0 G=1
Study #1 Study #2 Study #3

Sample size n1 Sample size n2 Sample size n3

Information n1/σ1
2 Information n2/σ2

2 Information n3/σ3
2

β̂2

G=0 G=1
Study #1 Study #2 Study #3

Sample size n1 Sample size n2 Sample size n3

Information n1/σ1
2 Information n2/σ2

2 Information n3/σ3
2

β̂3

Each ni = 200 here. We assume all σ2
i known ...can relax this.
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Meta-analysis: under heterogeneity

Parameters those 3 studies are estimating;
D

en
si

ty
 o

f o
ut

co
m

es
, Y

G=0 G=1
Pop'n #1 Pop'n #2 Pop'n #3

Information φ1 Information φ2 Information φ3

β1

G=0 G=1
Pop'n #1 Pop'n #2 Pop'n #3

Information φ1 Information φ2 Information φ3

β2

G=0 G=1
Pop'n #1 Pop'n #2 Pop'n #3

Information φ1 Information φ2 Information φ3

β3

Differences in means (βi) and information per observation (φi)
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Meta-analysis: under heterogeneity

One overall population we might learn about;
D

en
si

ty
 o

f o
ut

co
m

es
, Y

βcombine

G=0 G=1
Combining #1 and #2 and #3

Mean difference, with each sub-population represented equally.
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Meta-analysis: under heterogeneity

Another overall population we might learn about;
D

en
si

ty
 o

f o
ut

co
m

es
, Y

G=0 G=1
Proportion η1 Proportion η2 Proportion η3

Information φ1 Information φ2 Information φ3

β1

G=0 G=1
Proportion η1 Proportion η2 Proportion η3

Information φ1 Information φ2 Information φ3

β2

G=0 G=1
Proportion η1 Proportion η2 Proportion η3

Information φ1 Information φ2 Information φ3

β3

Weights here are 2/7/1, not 1/1/1 as before.
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Meta-analysis: under heterogeneity

Another overall population we might learn about;
D

en
si

ty
 o

f o
ut

co
m

es
, Y

βcombine

G=0 G=1
Combining #1 and #2 and #3, in proportions η1,η2,η3

Still an average effect, but closer to β2 than before.
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Meta-analysis: under heterogeneity

And another; (obviously, there are unlimited possibilities)
D

en
si

ty
 o

f o
ut

co
m

es
, Y

G=0 G=1
Proportion η1 Proportion η2 Proportion η3

Information φ1 Information φ2 Information φ3

β1

G=0 G=1
Proportion η1 Proportion η2 Proportion η3

Information φ1 Information φ2 Information φ3

β2

G=0 G=1
Proportion η1 Proportion η2 Proportion η3

Information φ1 Information φ2 Information φ3

β3

Weights here are 7/1/2.
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Meta-analysis: under heterogeneity

And another; (obviously, there are unlimited possibilities)
D

en
si

ty
 o

f o
ut

co
m

es
, Y

βcombine

G=0 G=1
Combining #1 and #2 and #3, in proportions η1,η2,η3

Weights here are 7/1/2 – smaller average effect, closer to β1
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Meta-analysis: under heterogeneity

With a flat prior, among all the weighted averages which has
smallest variance? The answer may look familiar;

βF =
k∑
i=1

1
σ2
i∑k

i=1
1
σ2
i

βi

... for which the posterior mean is β̂F , as before – with the same
variance estimate.

• Known as the fixed-effectS approach (note the plural) –
it assumes one fixed effect for each study, we estimate an
average
• ... the average the data tells us most about

A single estimator can have more than one valid

justification. If this applies to your estimator,

state why you are using it.
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Meta-analysis: under heterogeneity

Those justifications again;

Name: Common effect Fixed effectS

Assumptions:

All βi = β0 βi unrestricted
Plausible? Seldom Often

β̂F estimates: Single β0 An average, βF
Valid estimate? Yes Yes
Var[ β̂F ] valid? ≈Yes∗ ≈Yes∗

• When testing, only care if all βi = 0, when common-
effect=fixed-effects
• This area is surprisingly controversial...

* negligible error in σi matters

12



Meta-analysis: under heterogeneity

Q. Can I use β̂F under heterogeneity?
A. It depends who you ask (!)

... it is no longer an estimate of any parameter, nor can its
standard error or associated confidence interval be found

Whitehead & Whitehead, SiM

The assumption should thus be viewed as
a potentially useful approximation

Greenland & Rothman, Modern Epi, pg 270

... it does not, however, implicitly assume that the
true effect of treatment is the same in each trial

Peto et al, e.g. Lancet, 1998

Following common advice, many users are reluctant to report β̂F
alone under heterogeneity.

13
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Meta-analysis: under heterogeneity

Letting an average (e.g. βF ) tell the whole story is the ‘flaw of
averages’;

• Average effect βF answers one question
• This does not mean other questions aren’t interesting!

14



Meta-analysis: under heterogeneity

An obvious measure of ‘dispersion’, i.e. spread;

1

k

k∑
i=1

(βi − βF )2

But as with βF , we can learn more about a weighted average of

the deviations around βF , e.g.

ζ2 =
1∑k

i=1 ηiφi

k∑
i=1

ηiφi(βi − βF )2.

An empirical estimate of this quantity can be written

ζ̂2
∑k
i=1 σ

−2
i (βi − β̂F )2 − (k − 1)∑k

i=1 σ
−2
i

=
Q− (k − 1)∑k

i=1 σ
−2
i

where Q is a.k.a. Cochran’s Q, and I2 = 1 − (k − 1)/Q

(trunacted at zero) are standard non-Bayesian statistics for

testing homogeneity.
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Meta-analysis: exchangeability

As we’ve seen, no prior really says we ‘don’t know’ about a
parameter β. But for multiple parameters, we can (easily) state
that knowledge about them is symmetric;

−4 −2 0 2 4

−
4

−
2

0
2

4

β1

β 2

−4 −2 0 2 4

−
4

−
2

0
2

4

β1

β 2

The property p(β1, β2) = p(β2, β1) is called exchangeability.
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Meta-analysis: exchangeability

Exchangeability is a weaker statement than p(β1, β2) = p(β1)p(β2),

a.k.a. independence(see previous slide) and a stronger statement

than having identical distributions (see below).

−4 −2 0 2 4

−
4

−
2

0
2

4

β1

β 2
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Meta-analysis: exchangeability

An example with binary {z1, z2, z3}; (colors indicate probabilities)

Are z1, z2, z3 identically distributed? Exchangeble? I.i.d?

z1 z2 z3 P[ z ]
0 0 0 6/20
0 0 1 2/20
0 1 0 3/20
0 1 1 1/20
1 0 0 2/20
1 0 1 2/20
1 1 0 1/20
1 1 1 3/20

18



Meta-analysis: exchangeability

Full exchangeability does not hold, but any two variables are

exchangeable; (colors indicate probabilities again)

Y2 vs Y1 Y3 vs Y1 Y3 vs Y2

The variables {Y1, Y2, Y3} are 2-exchangeable; the concept can

be generalized to n-exchangeability.
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Meta-analysis: exchangeability

In an exchangeable prior, there’s no distinction between what we

know about one βi versus another. For example in meta-analysis;

β̂i ∼ N(βi, σ
2
i )

βi
i.i.d.∼ N(µ, τ2)

...for some µ, τ2 – which may in turn have hyperpriors, describing

uncertainty about the prior for the βi.

• This is a form of hierarchical model

• Remarkably, it turns out that Bayesian hierarchical models

and exchangeability are equivalent – this is de Finetti’s

theorem

20



Meta-analysis: exchangeability

In this hierarchical model, the default not-so-Bayesian estimate

for µ is Der Simonian-Laird (DSL);

µ̂ =

∑k
i=1

1
σ2
i +τ̂2β̂i∑k

i=1
1

σ2
i +τ̂2

, with Var[ β̂F ] =
1∑k

i=1
1

σ2
i +τ̂2

,

and τ̂2 = max

 Q− (k − 1)∑
σ−2
i −

∑
σ−4
i /

∑
σ−2
i

,0


• DSL uses a method of moments plug-in for τ2, then fairly

natural

• Gives β̂F when Q (heterogeneity) is below-average compared

to homogeneity

• Estimates a weighted average of the βi – but where inverse-

variance weights are ‘moderated’ by τ2

21



Meta-analysis: example

Typical meta-analysis of 5 association studies;

−5.00 0.00 5.00 10.00

Mean Difference 

Turner 2000c

Turner 2000b

Prasad 2008

Prasad 2000

Petrus 1998

Douglas 1987

72

68

25

25

52

33

7.9

6.89

4

4.5

4.4

12.1

4.25

3.35

1.04

1.6

1.4

9.8

71

71

25

23

49

30

7.55

7.55

7.12

8.1

5.1

7.7

3.96

3.96

1.26

1.8

2.8

9.8

 0.35 [ −1.00 ,  1.70 ]

−0.66 [ −1.88 ,  0.56 ]

−3.12 [ −3.76 , −2.48 ]

−3.60 [ −4.57 , −2.63 ]

−0.70 [ −1.57 ,  0.17 ]

 4.40 [ −0.45 ,  9.25 ]

−2.04 [ −2.45 , −1.64 ]

−1.21 [ −2.69 , 0.28 ]

Fixed effects (not hierarchical)

Hierarchical (DerSimonian−Laird) 

Study N Mean SD N Mean SD Mean Difference, 95% CI

G=1 G=0

Using full Bayes, we can

introduce priors on the

hyperparameters;

β̂i ∼ N(βi, σ
2
i )

βi
i.i.d.∼ N(µ, τ2)

µ ∼ N(0, ψ2)

τ2 ∼ p(τ2)
22



Meta-analysis: example

−
5

−
4

−
3

−
2

−
1

0
1

2
3

4

Location parameters
   

   
  P

oi
nt

 e
st

im
at

e 
w

ith
 9

5%
 C

I

τ2= τ2~1/4 1 25  100 1/4 1 25  100 1/4 1 25  100 L1 L3 L5 L7 L9 L11

ψ2= 0.1 1 1000 ψ2=1000

Normal Priors Lambert's PriorsPWA

Estimating βF

τ2= τ2~1/4 1 25  100 1/4 1 25  100 1/4 1 25  100 L1 L3 L5 L7 L9 L11

ψ2= 0.1 1 1000 ψ2=1000

Normal Priors Lambert's PriorsD−L

Estimating µ

• Try ψ2 at 0.1, 1, 1000

• Try τ2 fixed at 1/4, 1, 25, 100 and a selection from Lambert

(2005);

L1 : τ−2 ∼ Γ(0.001,0.001); L3 : log(τ2) ∼ U(−10,10); L5 : τ−2 ∼ U(1/1000,1000);

L7 : τ−2 ∼ Par(1,0.001); L9 : τ ∼ U(0,100); L11 : τ ∼ N(0,100), τ > 0

• Priors matter for µ, not βF

23
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Meta-analysis: example

For the priors with fixed ψ, τ2;

0 10 20 30 40 50

−
4

0
2

4 ψ2=1

0 10 20 30 40 50

−
4

0
2

4 ψ2=1000

P
os

te
rio

r 
m

ea
n,

 9
5%

 C
I

βF µ βi

Location Parameters

τ2

Location−
precise
Prior

Location−
vague
Prior

Heterogeneous
Prior

Homogeneous
Prior
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Meta-analysis: example

Similarly, precision-weighted ‘spread’ ζ2 is more stable than τ2
0

2
4

6
8

10
12

Heterogeneity parameters
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ith

 9
5%

 C
I

τ2= τ2~1/4 1 25  100 1/4 1 25  100 1/4 1 25  100 L1 L3 L5 L7 L9 L11

ψ2= 0.1 1 1000 ψ2=1000

Normal Priors Lambert's PriorsPWASD

Estimating ζ

τ2= τ2~1/4 1 25  100 1/4 1 25  100 1/4 1 25  100 L1 L3 L5 L7 L9 L11

ψ2= 0.1 1 1000 ψ2=1000

Conjugate Normal Priors Lambert's PriorsD−L

Estimating τ

• Not as stable as for βF – because data tells us less about ζ2

than overall location

• Just reporting the original-data forest plot is a sane summary
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Meta-analysis: example

And for priors with fixed ψ2, τ2 – the same story;
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More on sensitivity

Why, in these models, does

the prior on τ2 matter so

much?

Recall our example; what

values of τ are plausible?

−5.00 0.00 5.00 10.00

Mean Difference 

Turner 2000c

Turner 2000b

Prasad 2008

Prasad 2000

Petrus 1998

Douglas 1987

72

68

25

25

52

33

7.9

6.89

4

4.5

4.4

12.1

4.25

3.35

1.04

1.6

1.4

9.8

71

71

25

23

49

30

7.55

7.55

7.12

8.1

5.1

7.7

3.96

3.96

1.26

1.8

2.8

9.8

 0.35 [ −1.00 ,  1.70 ]

−0.66 [ −1.88 ,  0.56 ]

−3.12 [ −3.76 , −2.48 ]

−3.60 [ −4.57 , −2.63 ]

−0.70 [ −1.57 ,  0.17 ]

 4.40 [ −0.45 ,  9.25 ]

−2.04 [ −2.45 , −1.64 ]

−1.21 [ −2.69 , 0.28 ]

Fixed effects (not hierarchical)

Hierarchical (DerSimonian−Laird) 

Study N Mean SD N Mean SD Mean Difference, 95% CI

G=1 G=0

Homogeneity (i.e. τ =

0) isn’t ruled out by data

– but low τ values are,

under Γ priors. This can’t

be entirely avoided, expect

to think carefully about the

prior.
log(τ)

pr
io

r 
de

ns
ity

/li
ke

lih
oo

d

−4 −2 0 2 4 6

Γ(0.01,0.01)
prior

likelihood
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Hierarchical models: another motivation

Exchangeability is a strong justification for using hierarchical
models (see e.g. Higgins & Spiegelhalter 2009). But the
‘classical’ motivation looks like this;

Randomly-sampled effect-sizes have mean µ, variance τ2 –
parameters of the random effects distribution.
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Hierarchical models: another motivation

The same calculations can have >1 interpretation;

Model term Random effects Fixed effectS
+ exchangeability

β̂i ∼ N(βi, σ
2
i ) Random outcomes Random outcomes

βi ∼ N(µ, τ2) Random studies Prior on
µ ∼ N(0, ψ2) Prior on fixed mean fixed
τ2 ∼ p(τ2) & var of possible βi β1, ..., βk

• In RE model, ψ is the standard deviation of the prior on

average study effect µ; τ is the standard deviation of the

study effects

• An assumption of i.i.d. effects is often hard to justify;

typically, later studies’ designs depend on earlier studies’

results – e.g. replication studies

• But random effects models are needed for prediction – what

βi might we see in the next study?
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Hierarchical models: another motivation

Q. So can I use this without upsetting people?
A. Again (!) it depends who you ask

Random-effects models are unpopular with some...

I’ll not let the random differences between

different trials contribute to my final p-value or

contribute to my final estimate of the magnitude

of the effect or to the confidence intervals that I’ll

put about it.

The random effects analysis says, look, we’ve got

a lot of different trial results, here. What’s the

mean and what’s the scatter of the different trials

results? I don’t think that this is actually wholly

wrong [...] I think it does answer a question. But

it’s a very abstruse and uninteresting question

Richard Peto, Stats in Med, 1987
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Hierarchical models: another motivation

It’s worth noting that random-effects models do not provide

intervals that ‘reflect heterogeneity’;

RE Model

−2.00 −1.00 0.00 1.00 2.00 3.00 4.00

β̂i, µ̂

Study  16
Study  15
Study  14
Study  13
Study  12
Study  11
Study  10
Study  9
Study  8
Study  7
Study  6
Study  5
Study  4
Study  3
Study  2
Study  1

Recall that µ and its posterior describe the mean of the

population of study effects you might ever see, not necessarily

the set of effects in the observed studies.
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Summary – for inference

Name Common effect Fixed effectS Random effects

Estimate: β0 βF µ

Spread: nope! ζ2 τ2

Problems? Unrealistic Just right! Sensitive
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MANTRA

Assumptions of exchangeability provide attractive shrinkage and
‘borrowing strength’, when there’s no reason to distinguish βi.
But, at least in genetic association work, ancestry may suggest
which βi may be similar;

Dendrogram

illustrating mean MAF

similarities/differences

between African

American, European

American, Latinos,

Japanese Americans

& Native Hawaiians;

data from the Type

2 Diabetes (T2D)

consortium.
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MANTRA

The Meta-ANalysis of Transethnic Association studies (MANTRA)

method (Morris, 2011) exploits the MAF information (or FST )

to cluster effects in sub-populations. Conceptually;
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MANTRA

Within each cluster, there is a single ‘center’ effect selected from

the study effects β1, β2, ... βk – each study is equally likely to be

such a center, a priori, and each non-center study gets assigned

to its ‘nearest’ center.

Within-cluster, the center effect size has prior

βc ∼ N(µ, τ2)

τ2 ∼ Exp(1)

µ ∼ flat.

The number of clusters C has prior

P[C = c ] =


1
2, c = 1

1
2c

2k−1

2k−1−1
, c = 2, ..., k,

i.e. homogeneity has 50% prior support, then it ‘tails off’.
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MANTRA

MANTRA is implemented with reversible jump MCMC – some-

what like Gibbs Sampling, but allowing center effects βc to

enter/leave the model. It is run twice, with all βi = 0 (i.e.

the null) and the model above (alternative).

Its output;

• Bayes Factor comparing the null with the clustered, non-zero

βi
• Posterior probability of C > 1 under the alternative

• Posterior probabilities of cluster-membership, for each study,

under the alternative

The computational effort required is non-trivial (e.g. 10 mins per

SNP) but can be parallelized; 32 processors for 1 week enables

GWAS with 2.5M SNPs.
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MANTRA

Output for T2D association, at rs7754840 in the (known)
CDKAL1 locus;

●

●

●

●

●

●

log odds ratio

0.0 0.1 0.2 0.3 0.4

C=1

NAH

JAP

AFR

LAT

EUR

Compared to the null, get BF = 8.9 for C = 1, but BF = 11.0
for unconstrained model – and 99.2% posterior probability that
C > 1.
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MANTRA

Showing the posterior probability of cluster memberships;

The large Bayes Factor occurs because the data suggest
differences between group as well as a non-zero average effect.
Both violate the null – that all βi = 0.
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MANTRA

Heterogeneity and average effect in the fixed-effects analysis;

writing

Z2
i = β̂2

i /σ
2
i

Z2
F = β̂F/Var[ β̂F ],

then Z2 =
k∑
i=1

Z2
i

= Z2
F +

∑
i=1

σ−2
i (β̂i − β̂F )2

= Z2
F +Q,

i.e. the signal-to-noise over all studies is the signal-to-noise for

the average effect βF plus the heterogeneity – Cochran’s Q.

GWAS usually only examines βF – but there’s no need to restrict

like this. See also the ASSET method, looking at differences by

disease subtype.
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Summary

• Meta-analysis is natural in a Bayesian framework

• Summarizing what You know is still a challenge

• Questions of heterogeneity are of interest, but often more

sensitive to modeling assumptions; prior information matters
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Obligatory XKCD cartoon

And finally;

The meta-meta analyses are real!
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