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Exercise 1.1



Final Size of Outbreak

Final Size Equation

1− τ = e−R0τ .

Note: This equation only gives the final fraction infected

among the initially susceptible individuals.

• There is always a solution τ = 0.

• If R0 > 1, there exists a second solution τ ∗ > 0.

• Final size τ shall be the largest solution on [0, 1].
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Plot of final size as a function of R0

Procedure in R:

• Set a function of R0 solving for τ numerically, return

τ = τ(R0).

• Create a vector of 10000 R0 values in [0, 5].

• Create a vector of corresponding values of τ .

• Plot τ against R0.
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Plot of final size as a function of R0
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Now assuming initial fraction of immune

If there is a fraction r of initially immunes, then there is

fraction (1− r) of initially susceptibles. Then the final size

among initially susceptibles τ ∗ solves

1− τ = e−R0(1−r)τ .

Then the overall fraction infected shall be τ ∗(1− r).
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Plot of overall fraction infected
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Exercise 1.2



Markovian SIR Epidemic Model

• Consider a closed and homogeneous mixing population

with fixed size N.

• At any time point, each individual is susceptible,

infectious or recovered.

• The rate of infectious contacts is β, so the rate at

which one infectious has contact with a specific other

individual is β/N.

• Once infected, one remains to be infectious for a

period I ∼ Exp(γ), after which one becomes recovered

and immune.
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Markovian SIR Epidemic Model

Let S(t), I(t), R(t) be the number of individuals in different

states S, I, R at time t respectively.

Two types of events:

• S → I : a susceptible

gets infected.

• I → R : a infectious

individual recovers.

The corresponding rates:

• β
N
S(t)I(t)

• γI(t)

Note: at any time t, S(t) + I(t) +R(t) = N.
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Deterministic SIR Epidemic Model

SIR differential equation system

dS(t)

dt
= − β

N
S(t)I(t),

dI(t)

dt
=

β

N
S(t)I(t)− γI(t).

Initial Conditions

S(0) = N − 1, I(0) = 1.
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Numerical Solution of the SIR ODE

• Define the function to compute derivatives

(dS(t)/dt, dI(t)/dt) for the SIR ODE.

1 gamma <- 0.25

2 beta <- 0.75

3 deter$\_$sir <- function(t,y, parms) {

4 beta <- parms [1]

5 gamma <- parms [2]

6 N <- parms [3]

7 S <- y[1]

8 I <- y[2]

9 return(list(c(S=....,

10 I=....

11 )))

12 }
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Numerical Solution of the SIR ODE

• Solve the SIR differential equation system with initial

conditions (Use deSolve::lsoda):

1 lsoda(y= ..., \#initial conditions

2 times= ...., \#times at which explicit estimates

for y are desired

3 func= ..., \#an R-function that computes the

values of derivatives in the ODE

4 parms= ... \#vector or list of parameters used

in func

5 )
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Stochastic SIR Epidemic Model

Described as a continuous-time Markov process:
Events Transition Rates

Infection (S(t), I(t)) → (S(t)− 1, I(t) + 1) β
N
S(t)I(t)

Recovery (S(t), I(t)) → (S(t), I(t)− 1) γI(t)

Once I(t) = 0, the epidemic stops.

Algorithm to decide which event occurs first:

• From those two rates, we draw two exponential

random numbers for each possible event. rexp(...)

• Determine the event with the smaller random number.

which.min(...)

• Record the event time and update the number of S

and I according to the event type.
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Plot the deterministic curves of S(t), I(t) and R(t)
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Plot of I(t) with different β
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Plot of I(t) when β is time-dependent

β(t) =


β0 = 0.75 ,if t ≤ t1 = 14,

β1 = 0.65 ∗ 0.75 ,if t1 = 14 < t ≤ t2 = 28,

β2 = 0.75 ∗ 0.75 ,if t > t2 = 28,
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Stochastic vs. Deterministic SIR
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Stochastic vs. Deterministic SIR
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Stochastic vs. Deterministic SIR
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Histogram of Final Size

Histogram of final size when N=500
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Histogram of Final Size

Histogram of final size when N=1000
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Histogram of Final Size

Histogram of final size when N=5000
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Exercise 1.3



Markovian SEIR Epidemic Model

• Consider a closed and homogeneous mixing population

with fixed size N.

• The rate of infectious contacts is β, so the rate at

which one infectious has contact with a specific other

individual is β/N.

• Individuals that get infected are first latent(exposed)

for a exponentially distributed period J with mean

1/ρ, then they become infectious for a random

duration I ∼ Exp(γ), after which they become

recovered and immune.
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Markovian SEIR Epidemic Model

Let S(t), E(t), I(t), R(t) be the number of individuals in

four states S,E, I, R at time t respectively. Assume that

S(0) = N − 1, E(0) = 0, I(0) = 1, R(0) = 1.

Three types of events:

• S → E : a susceptible gets

infected.

• E → I : an exposed individual

become infectious.

• I → R : a infectious individual

recovers.

The corresponding

rates:

• β
N
S(t)I(t)

• ρE(t)

• γI(t)
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Deterministic SEIR Epidemic Model

SEIR differential equation system

∂S(t)

∂t
= − β

N
S(t)I(t),

∂E(t)

∂t
=

β

N
S(t)I(t)− ρE(t),

∂I(t)

∂t
= ρE(t)− γI(t).

Initial Conditions

S(0) = N − 1, E(0) = 0, I(0) = 1, R(0) = 0.
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Plot the deterministic curves of S(t), E(t) and I(t)
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SEIR model with time-dependent β(t)

Definition of β(t)

β(t) =


β0 ,if t ≤ t1 − w

β0 +
β1−β0

2w
t− β1−β0

2w
(t1 − w) ,if t1 − w < t ≤ t1 + w

β1 ,if t > t1 + w.
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Plot of S(t), E(t) and I(t) in SEIR model with β(t)
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Plot of S(t), E(t) and I(t) in SEIR model with time−dependent beta(t)
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Stochastic vs. Deterministic SEIR with β(t)
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Stochastic vs. Deterministic SEIR with β(t)

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

Time

N
um

be
r 

of
 In

fe
ct

io
us

 in
di

vd
ua

ls

stochastic vs deterministic for SEIR model with beta(t) when N=1000

stochastic
deterministic

28



Stochastic vs. Deterministic SEIR with β(t)
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