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Exercise 1.1



Final Size of Outbreak

Final Size Equation

1—7=¢ %0

Note: This equation only gives the final fraction infected

among the individuals.

e There is always a solution 7 = 0.
o If Ry > 1, there exists a second solution 7* > 0.

e Final size 7 shall be the largest solution on [0, 1].



Plot of final size as a function of R

Procedure in R:

e Set a function of Ry solving for 7 numerically, return
T =T(Rp).

e Create a vector of 10000 Ry values in [0, 5].

e Create a vector of corresponding values of 7.

e Plot 7 against Rj.



Plot of final size as a function of R

Final size as a function of Rq
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Now assuming initial fraction of immune

If there is a fraction r of , then there is
fraction (1 — r) of initially susceptibles. Then the final size

among T solves

1 —7 = Tl

Then the overall fraction infected shall be 7*(1 — 7).



Plot of overall fraction infected

Assuming there is a fraction r of initially immune
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Exercise 1.2



Markovian SIR Epidemic Model

e Consider a closed and homogeneous mixing population
with fixed size N.

e At any time point, each individual is susceptible,

infectious or recovered.

e The rate of infectious contacts is /7, so the rate at
which one infectious has contact with a specific other
individual is 5/N.

e Once infected, one remains to be infectious for a
period I ~ Exp(7), after which one becomes recovered

and immune.



Markovian SIR Epidemic Model

Let S(t),I(t), R(t) be the number of individuals in different
states S, I, R at time ¢ respectively.

Two types of events: The corresponding rates:
e S — I : asusceptible o 2S(t)I(t)
gets infected. o yI(t)

e /| — R : ainfectious

individual recovers.

Note: at any time ¢, S(¢) + I(t) + R(t) = N.



Deterministic SIR Epidemic Model

SIR differential equation system

ds(t) B
o —NS(t)I(t),
a8

Initial Conditions

S(0) =N —1,1(0) = 1.



Numerical Solution of the SIR ODE

e Define the function to compute derivatives
(dS(t)/dt,dI(t)/dt) for the SIR ODE.

1 gamma <- 0.25

2 beta <- 0.75

3 deter$\_$sir <- function(t,y, parms) A
| beta <- parms[1]

5 gamma <- parms [2]

6 N <- parms [3]

7 S <- yl1]

8 I <- yl[2]

9 return(list(c(S=....,
10 I=....
11 )))



Numerical Solution of the SIR ODE

e Solve the SIR differential equation system with initial
conditions (Use deSolve::lsoda):

1 1soda(y= ..., \#initial conditions
2 times= ...., \#times at which explicit estimates

for y are desired

3 func= ..., \#an R-function that computes the
values of derivatives in the O0ODE

4 parms= ... \#vector or list of parameters used
in func

5 D)

10



Stochastic SIR Epidemic Model

Described as a continuous-time Markov process:

Events Transition Rates
Infection (S(¢),I(t)) — (S(t) — LI(t)+1) 2S(t)I(t)
Recovery — (S(t),I(t)) — (S(¢),1(t) — 1) ~vI(t)

Once I(t) = 0, the epidemic stops.
Algorithm to decide which event occurs first:

e From those two rates, we draw two exponential
random numbers for each possible event. rexp(...)

e Determine the event with the smaller random number.
which.min(...)

e Record the event time and update the number of S

and I according to the event type.
11



Plot the deterministic curves of S(t), I(t) and R(t)

Plot of S(t), I(t) and R(t)
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Plot of /(t) with different

Plot of I(t) for different beta
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Plot of /(t) when ( is time-dependent

Bo=0.75 if t < t; = 14,
B(t) =14 B =0.65%0.75 if t; = 14 < t < t, = 28,
By = 0.75%0.75 if ¢ > t; — 28,

Plot of I(t) in SIR model with fixed and time—-dependent beta
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Stochastic vs. Deterministic SIR

Stochastic vs. Deterministic when size of population = 100
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Stochastic vs. Deterministic SIR

Stochastic vs. Deterministic when size of population = 1000
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Stochastic vs. Deterministic SIR

Stochastic vs. Deterministic when size of population = 10000
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Histogram of Final Size

Histogram of final size when N=500
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Histogram of Final Size

Histogram of final size when N=1000
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Histogram of Final Size

Histogram of final size when N=5000
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Exercise 1.3




Markovian SEIR Epidemic Model

e Consider a closed and homogeneous mixing population
with fixed size N.

e The rate of infectious contacts is /7, so the rate at
which one infectious has contact with a specific other
individual is 5/N.

e Individuals that get infected are first latent(exposed)
for a exponentially distributed period J with mean
1/p, then they become infectious for a random
duration I ~ Exp(7), after which they become

recovered and immune.

21



Markovian SEIR Epidemic Model

Let S(t), E(t),I(t), R(t) be the number of individuals in
four states S, F/, I, R at time ¢ respectively. Assume that
S(0)=N-1,E(0)=0,1(0)=1,R(0) = 1.

Three types of events: The corresponding
e S — FE : a susceptible gets rates:
infected. ° %S(t)](t)

e F — [ :an exposed individual e pFE(t)
become infectious. o vI(t)

e /| — R : ainfectious individual

recovers.
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Deterministic SEIR Epidemic Model

SEIR differential equation system
05(t) B

50 _ _Lswre,
5@_;” _ %S(t)](t) — pE(1),
a[a—sf) = pE(t) —I(t)

Initial Conditions
S(0)=N-1,FE(0)=0,1(0)=1,R(0) =0.

23



Plot the deterministic curves of S(t), E(t) and I(¢)

Plot of S(t), E(t) and I(t)
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SEIR model with time-dependent [(t)

Definition of j(t)

ﬁo ,1ft§t1—w
p(t) =
ﬁl ,1ft>t1+w

Plot of beta(t)
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Plot of S(t), E(t) and I(t) in SEIR model with 5(¢)

Plot of S(t), E(t) and I(t) in SEIR model with time-dependent beta(t)
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Stochastic vs. Deterministic SEIR with /(¢)

stochastic vs deterministic for SEIR model with beta(t) when N=100
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Stochastic vs. Deterministic SEIR with /(¢)

stochastic vs deterministic for SEIR model with beta(t) when N=1000
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Stochastic vs. Deterministic SEIR with /(¢)

stochastic vs deterministic for SEIR model with beta(t) when N=10000
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