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Exercise 2.1



Estimation of R, (a)

e Assume a homogeneous mixing population and all

individuals are initially susceptible.
e No prevention measures.

e In case of a large outbreak, we observe that a fraction
7 get infected.

The estimate of Ry is given by the observed value:

~

Ry = —In(1 — 7)/7.



Estimation of R, (b)

Now if we know that a fraction r was initially immune,
and there were a fraction 7,,e.qu infected during the
outbreak.

e The fraction infected among those initially susceptibles
T = Tm;erall/(l - T)'

e The estimate of Ry is now given by

Ry=—-In(1-7)/(1 —r)7.



Exercise 2.2



Estimating parameters: SIR model

Background: Classical Swine Fever Virus(CSFV)
in the Netherlands

A highly contagious disease of pigs and wild boar.

A huge outbreak in the Netherlands took place
between February 1997 and May 1998.

There were 429 infected herds detected and stamped
out.

Netherlands has approximately N = 21 500 pig herds.



Plot of the weekly number of infectious herds
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Estimating parameters: (Gaussian observations

e We have n observations y; = I(¢;) at time points
t1,+ -+ ,t, with mean E[y;; 0], which is determined by
the SIR differential system.

e Least squares estimates § = (f,7) minimizing the

function
n

1(0) =Y (: — Ely:;0))%,

i=1
corresponds to Maximum Likelihood Estimate for
Gaussian observations with

I(t;) ~ N(E[y; 6];07),

with the variance of the observation noise 2.



Estimating parameters: MLE for CSFV Data(1)

Define the log-likelihood function
11.gauss <- function(theta){
#determine the solution of SIR ODE
<- 1lsoda(...)
return(sum(dnorm(data, mean =..., sd = 1, log =

TRUE)))

}.



Estimating parameters: MLE for CSFV Data(2)

Maximize the log-likelihood and compute MLE
mle <- optim(

#initial values for theta to be optimized over
#log-likelihood function

fn = 11.gauss,

#maximize the function

control = list(fnscale = -1) ).



SIR model fitted to CSFV curve by Gaussian

likelihood
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Exercise 2.3




Estimating parameters: SEIR model(1)

In this exercise, we are supposed to fit the SEIR model
with time changing £(¢) from Exercise 1.3 to the data of
reported cases in Stockholm during Feb-Apr 2020.
60 JIft Stl - w,
Blt) = Bo+ Lt — (t —w)) ifti —w <t <t +w,
61 71ft > t1+wa

The parameters here to optimize for are

9 = (50,61,1‘:1,1{),7)'



Estimating parameters: SEIR model(2)

Assumptions:
e N =2374550,p = 1/5.

e let I(¢) match the number of reports on calendar day t,
with 7(0) = 1 and ¢ = 0 is equal to 2020-02-17.

Plot of the time series:



Least Square Approach for fitting(1)

Define the Least Square function
11.sq <- function(theta,I0){

#determine the solution of SEIR ODE

sol <- 1lsoda(y=, times=, func=,

parms=exp (theta))

sum((...-...)A2 )

}.
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Least Square Approach for fitting(2)

Compute the estimates

theta hat <- optim(

#starting values ..., fn = 1l1.sq,
#minimize the function
method="Nelder—-Mead", IO0O=1)

Note: While using optim, try out more starting values (t;
is not too small, v not too large, 51 < fy...) to get a
reasonably well-fitted curve.
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Fitted curve on the time series plot
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