FRIDAY (all times in PT)								
8:30 – 9:15	Alie	Bioethics/ Implementation	Bioethical principles in genetic epidemiology, deciding whether to implement genetic testing					
		BRE	EAK					
9:30-10:15	Sara	Rare variation	Strategies to analyze rare genetic variants					
		BRE	ΕΑΚ					
10:30-11:15	Sara	GxE interactions	Gene x Environment interactions analyses					
	_	LUNCH	BREAK					
11:45 – 12:30	Diane	PRS/Risk prediction	Polygenic risk scores and population screening					
	_	BRE	EAK					
12:45-1:30	Sara	Mendelian Randomization	Mendelian Randomization studies					
	BREAK							
1:45 – 2:30	Sara/Alie	Office Hours	Stop by to ask questions from the day, or schedule time to discuss your own project.					

SCHOOL OF PUBLIC HEALTH **EPIDEMIOLOGY** UNIVERSITY of WASHINGTON

SISG 2022: Module 11 Genetic Epidemiology

Risk Prediction and Population Screening

Course survey:

https://si.biostat.washington.edu/user/login

Students / Parents / Faculty & Staff

HOME / PROSPECTIVE STUDENTS / PROGRAMS ~ / FAQ / STUDENT RESOURCES ~ / PEOPLE ~

INSTITUTE FOR PUBLIC HEALTH GENETICS

UW School of Public Health

Public Health Genetics is a dynamic and evolving field established to tackle the challenges of using genomic information to improve population health.

Apply for Autumn 2022

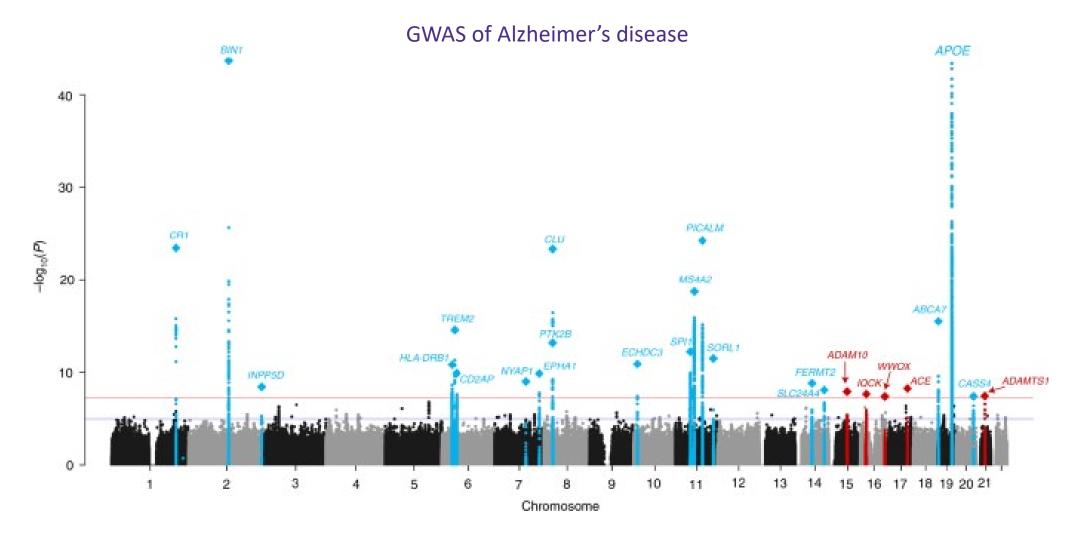
The admission cycle for Autumn 2022 admissions has closed. The Institute for Public Health Genetics will being accepting applications for the Autumn 2023 admission cycle on September 1, 2022. Applications for the Autumn 2023 cycle will be due by January 31, 2023, once the application

ANNOUNCEMENTS

 Questions about the program? Contact us: phgadmit@uw.edus.

Freakonomics Radio: impact and utility of polygenic risk score for lipids 23:00-23:40; 27:30-28:20 http://freakonomics.com/podcast/23andme/

Polygenic Risk Scores

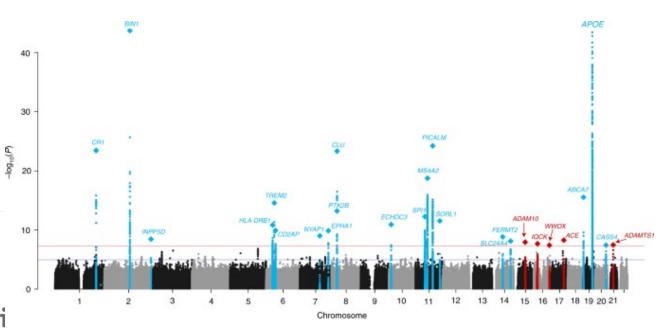

Genetic contribution to disease is complex

Only 1-10% of disease is thought to be driven by rare, high impact variants.

If you have these variants, you have a very high chance of developing the disease, but those variants account for a small amount of overall people with the disease

- > **BRCA1** in breast cancer
 - 45% lifetime risk with the variant
 - only 5-10% of breast cancer is linked to BRCA1
- > LDLR in Familial hypercholesterolemia
 - 66% risk of heart disease
 - only 2% of people with heart disease is linked to *LDLR*

What about the rest of disease?

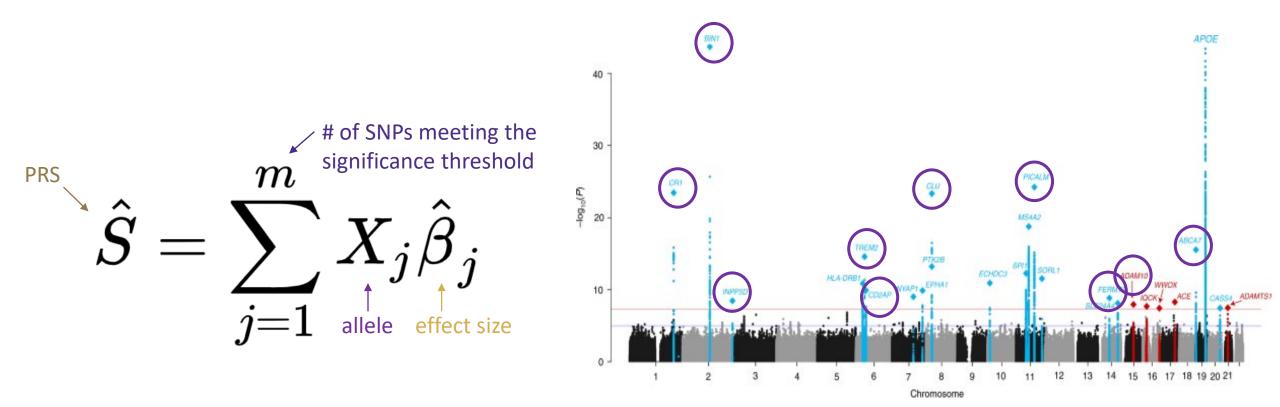


Kunkle *et al*. 2019 (Nature)

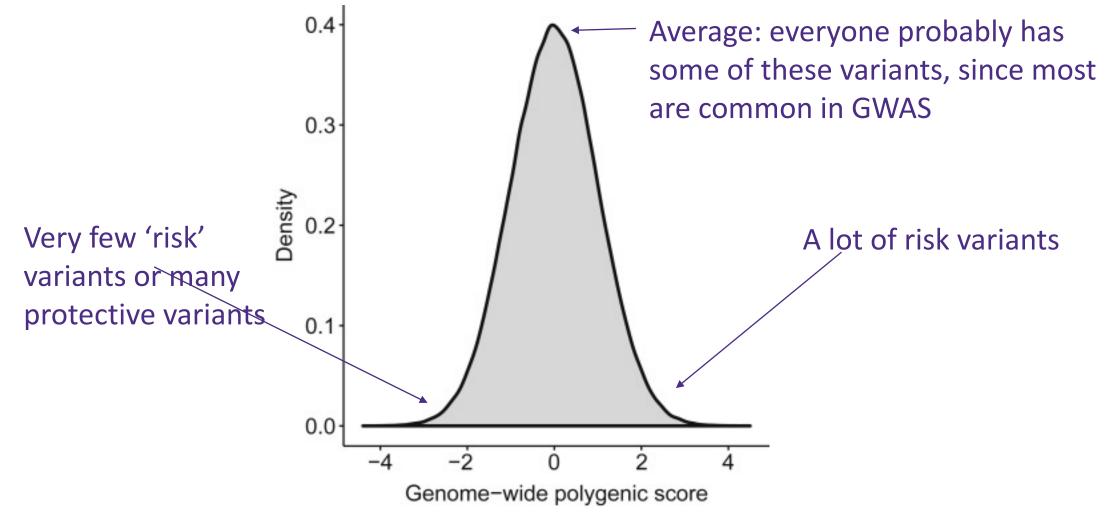
What about the rest of disease?

Explore more

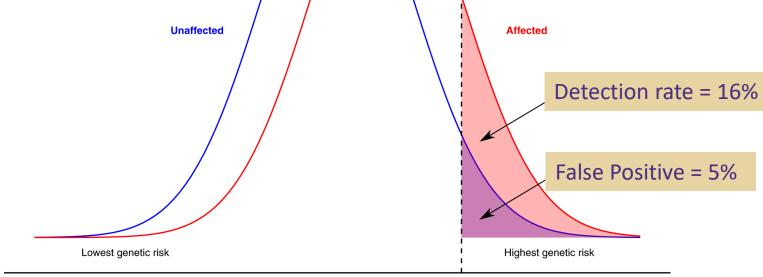
You can find out whether you may have an increased risk of developing late-onset Alzheimer's disease based on your genetics with the 23andMe Late-Onset Alzheimer's Disease Genetic Health Risk report*. The report looks for the £4 variant in the APOE gene associated with late-onset Alzheimer's disease. The report is available through the 23andMe Health + Ancestry Service.



Health + Ancestry Servi


Learn more

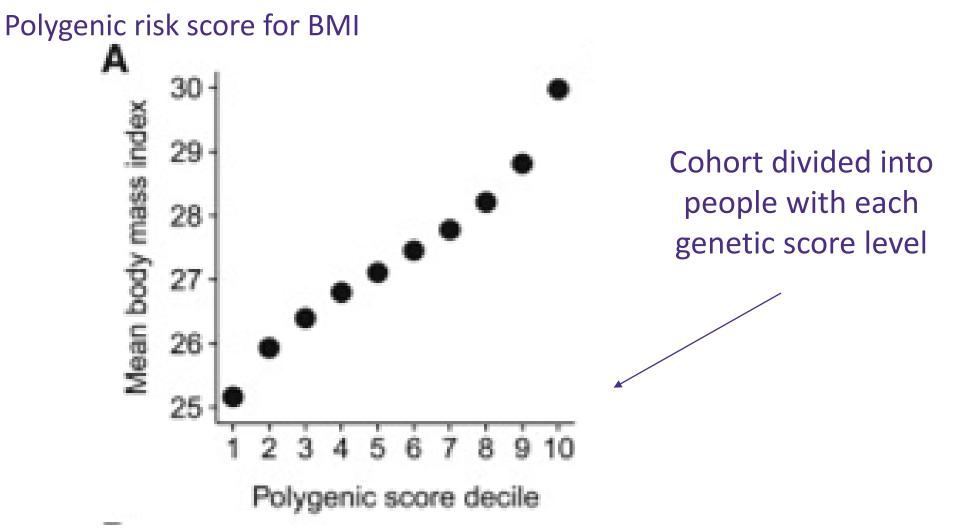
"Polygenic" risk = Sum of genome-wide risk



Kunkle *et al*. 2019 (Nature)

Population polygenic risk score distribution

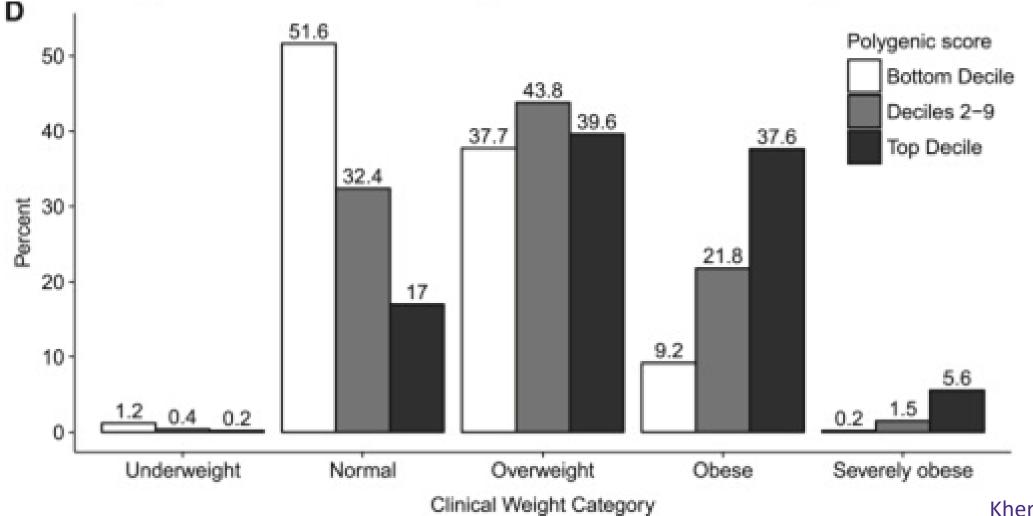
Population polygenic risk score distribution



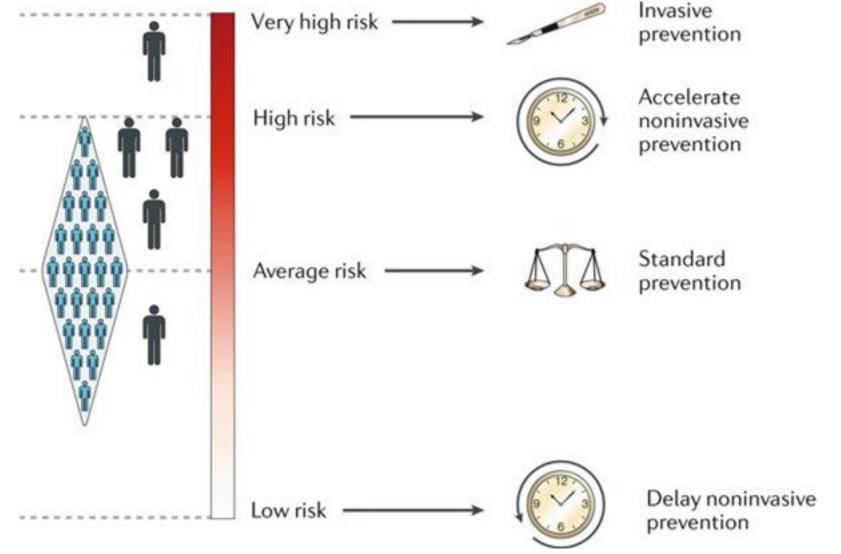
Polygenic risk for prostate cancer

Is this amount of risk discrimination useful?

Sud et al. 2021 (Nature)


Another Example

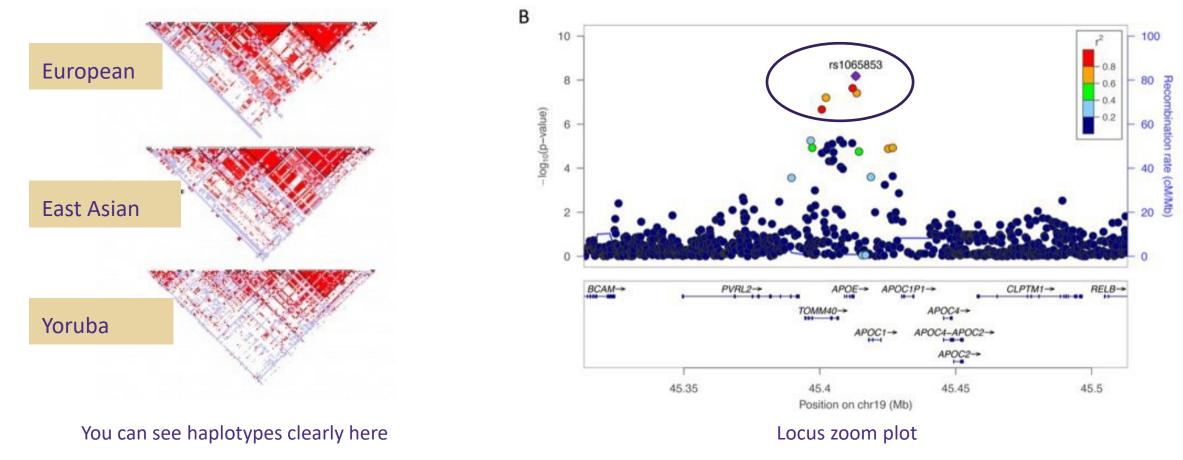
Khera, Cell. 2019


Polygenic risk scores are still probabilistic

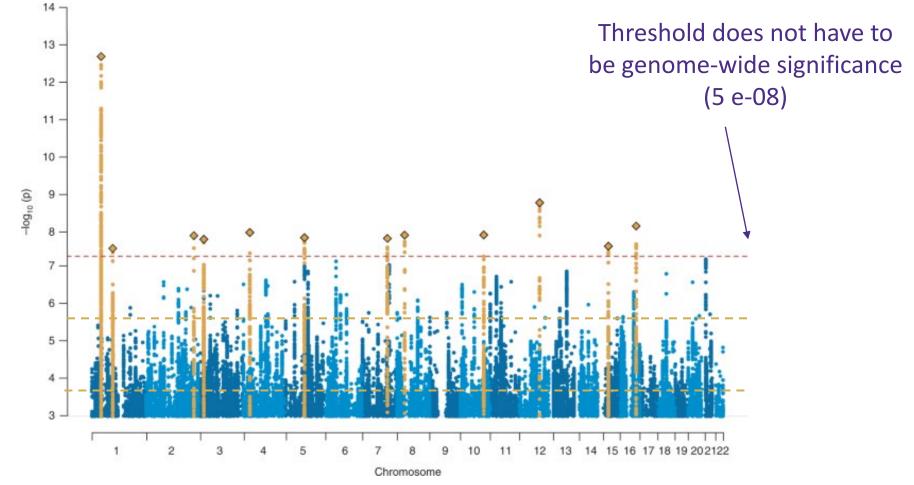
Based on polygenic risk score category, what weight score do people have?

Khera, Cell. 2019

Polygenic scores as another data point \rightarrow Precision health


Torkmani, Nature, 2018

1) Start with GWAS Summary Statistics


123456	20 20 20 20	SNP rs1418258 rs6086616 rs6039403 rs6135141 rs1935386 rs6051659	16749 17094 22347 35416	-0.012000 -0.001804 0.008119 0.010570	0.02998 0.02754 0.02927 0.02786	R2 4.353e-04 5.650e-05 1.520e-06 2.720e-05 5.090e-05 5.506e-04	0.6891 0.9478 0.7815 0.7043
				Effect Size			P-value (to determine cut-off)

2) Account for Linkage Disequilibrium (clumping)

Zoom: Why would a polygenic risk score developed in a European cohort be unreliable for a person with Yoruba ancestry?

3) Determine SNP inclusion threshold

Note: what is the reference allele?

4) Generate score model

BMI as the outcome

SNP	estimate	error	p-value
rs441084	1.20	0.89	5x10 ⁻⁶
rs8783	0.50	0.22	8x10 ⁻⁸
rs4699	-0.24	0.19	6x10 ⁻⁷

Score = 1.20*(#alleles rs441084) + 0.50 *(#alleles rs8783) -0.24*(#alleles rs4699)

This is calculated for each individual

Calculate polygenic risk score for Fred

	FRED			
*Fred's outcome is not consi	Genotype	Effect size	Effect allele	Genetic variant
Ι	AA	0.02	A	rs12395
	GT	-0.04	G	rs44346
	CG	-0.05	С	rs72557
Variant allele he gets points depe	AT	0.09	A	rs18338
on how many copies of this allele h	π	0.004	Т	rs29849
T	AA	0.07	т	rs43466
T	CC	-0.01	G	rs29457
T	AA	0.015	С	rs13458

Calculate polygenic risk score for Fred

			FRED	
Genetic variant	Effect allele	Effect size	Genotype	Effect
rs12395	A	0.02	AA	+.02 (x2)
rs44346	G	-0.04	GT	-0.04
rs72557	С	-0.05	CG	-0.05
rs18338	A	0.09	AT	0.09
rs29849	Т	0.004	Π	+.004 (x2)
rs43466	т	0.07	AA	
rs29457	G	-0.01	CC	
rs13458	С	0.015	AA	

*Fred's outcome is not considered

Calculate polygenic risk score for Fred

			FRED	
Genetic variant	Effect allele	Effect size	Genotype	Effect
rs12395	A	0.02	AA	+.02 (x2)
rs44346	G	-0.04	GT	-0.04
rs72557	С	-0.05	CG	-0.05
rs18338	A	0.09	AT	0.09
rs29849	Т	0.004	Π	+.004 (x2)
rs43466	Т	0.07	AA	
rs29457	G	-0.01	CC	
rs13458	С	0.015	AA	
		Polygenic score:	0.0)48

*Fred's outcome is not considered

Zoom poll:

Calculate polygenic risk score for Alice

			FRED		ALICE
Genetic variant	Effect allele	Effect size	Genotype	Effect	Genotype
rs12395	A	0.02	AA	+.02 (x2)	Π
rs44346	G	-0.04	GT	-0.04	π
rs72557	С	-0.05	CG	-0.05	CC
rs18338	A	0.09	AT	0.09	Π
rs29849	Т	0.004	π	+.004 (x2)	СТ
rs43466	Т	0.07	AA		TA
rs29457	G	-0.01	CC		CC
rs13458	С	0.015	AA		CA

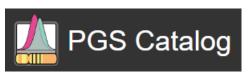
5) Use polygenic score in regression model & Assess accuracy Is our polygenic score associated with BMI?

R input:

Model1 <- Im(BMI ~ PRS + Age + Sex+..., data = BMIdata) We put our summary score in the equation instead of a specific SNP

Q. We use a new dataset to develop this model: Why?

5) Use polygenic score in regression model


Is our polygenic score associated with BMI?

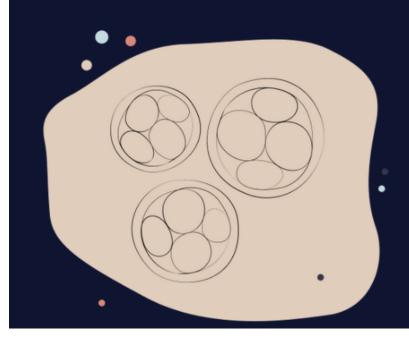
Im(BMI~PRS + Age + Sex, data = BMIdata)

Variable	estimate	error	p-value
Intercept	21.0		
PRS	8.9	0.05	8x10 ⁻⁶
Age	0.02	0.01	0.004
SexF	1.0	0.17	0.006

Popular PRS tools

> PGS Catalog: https://www.pgscatalog.org/

- Similar to GWAS catalog, contains summary information for PRS score development
- You can download the GWAS Summary stats they used to calculate
- > PRSsice : uses clumping+thresholding method we discussed
- > LDPred2: uses LDMatrix and Bayesian method

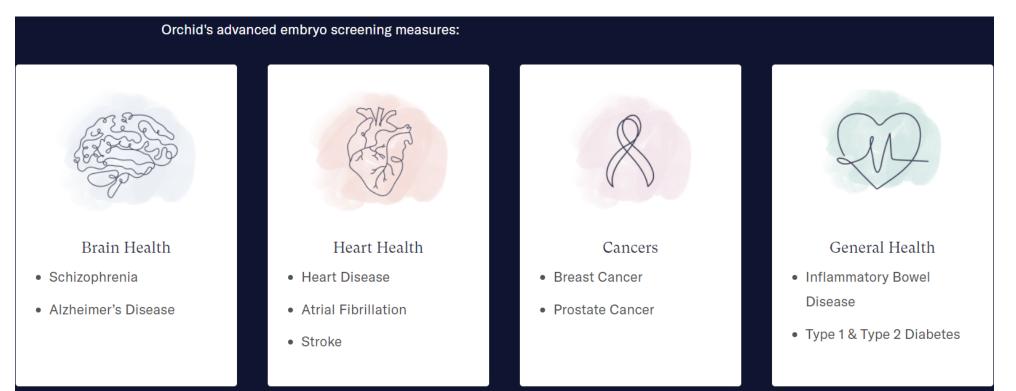

Ethical question

ORCHID

○ COUPLE REPORT

EMBRYO REPORT

GET /



Identify your healthiest embryo

Mitigate your family's genetic predispositions with advanced genetic screening for your embryos

Ethical question

Orchid's report relies on what are called polygenic risk scores. These scores estimate the likelihood that an individual will develop a particular condition, based on an analysis of their genome. The data

Ethical question

> In your zoom breakouts:

- Discuss the ethical and social implications of using polygenic risk scores for embryo selection
- How should OrchidHealth handle rapid scientific developments? What happens if after an embryo is selected, new research comes out that shows that high PRS for one disease is inversely related to another disease?

New methods designed for application in multi-ethnic studies

> <u>PRS-CSx</u>

- Bayesian method that combines GWAS results from multiple populations
 - > Con: assumes that variants are mostly the same across ancestries

> <u>TL-PRS</u>

- Transfer learning method to make use of large European GWAS
 - > Con: works best with training data from only one homogenous ancestry group

> <u>TL-Multi</u>

- Transfer learning method that uses summary statistics from GWAS of diverse ancestry
 - > Con: no clumping uses ALL data (computationally inefficient)

Population Screening

Implementing population screening

How do allele frequencies intersect with actionability and economics to make implementation decisions?

Determine how population allele frequencies affect implementation decisions for population screening

Zoom breakout.

Zoom breakout: population screening

Zoom breakout

- Expect 28/100,000 individuals in general population to have cystic fibrosis, but 4162 among people with Ashkenazi Jewish ancestry.
- Integrating bioethical decisions and practical decisions of budgetary constraints