
SISG Module 3 & SISMID Module 4

Introduction to R

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

Introduction: Course Aims

This is a first course in R. We aim to cover;

• Reading in, summarizing & managing data

• Use of functions in R – doing jobs by programming, not by
using drop-down menus (much)

• Some standard functions for statistical analysis – but minimal
statistics in this module

• How to use other people’s code, how to get help, what to
learn next

We assume no previous use of R, also non-extensive program-
ming skills in other languages. If this is not your level, please
consider switching to a later module.

0.1

Introduction: Resources

Most importantly, the class site is

http://faculty.washington.edu/kenrice/rintro

Contains (or will contain);

• PDF copies of slides (in color, and contains a few hyperlinks)

• All datasets needed for exercises

• Exercises for you to try

• Our solutions to exercises (later!)

• Links to other software, other courses, book, and places to

get R help

• Links to a few helpful websites/email list archives

Of course, search engines will find much more than this, and can

be a useful start, when tackling analyses with R.

0.2

Introduction: About Tim

• Associate Prof, UW Biostat

• A useR and an instructoR

• Research in Genetic

Epidemiology for Complex

Human Traits

0.3

Introduction: About Ken

• Associate Prof, UW Biostat

• AuthoR of a few R packages,

useR, teacheR

• Genetic/Genomic research in

Cardiovascular Epidemiology

... and you?

(Briefly, who are you, what’s your genetics/infectious disease?)

0.4

Introduction: Course structure

10 sessions over 2.5 days

• Day 1; (Mostly RStudio) Data management, using functions

• Day 2; (Standard R) More about programming

• Day 2.5; More advanced ideas

Web page: http://faculty.washington.edu/kenrice/rintro/

0.5

Introduction: Session structure

What to expect in a typical session;

• 45 mins teaching (please interrupt!)

• 30 mins hands-on; please work in pairs

• 15 mins summary, discussion/extensions (interrupt again!)

There will also be one ‘take-home’ exercise, on Day 2; the final

session will include in-depth discussion/evaluation.

Please note: the 2.5 day course moves quickly, and later material

builds on earlier material. So, please interrupt!

0.6

1. Reading in data

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

1.0

What is R?

R is a ‘programming environment for statistics and graphics’

• Does basically everything, can also be extended
• It’s the default when statisticians implement new methods
• Free, open-source

But;

• Steeper learning curve than e.g. Excel, Stata
• Command-line driven (programming, not drop-down menus)
• Gives only what you ask for!

To help with these difficulties, we will begin with RStudio, a
graphical user interface (front-end) for R that is slightly more
user-friendly than ‘Classic’ R’s GUI.

So after installing the latest version of R...

1.1

RStudio

In your favorite web browser, download from rstudio.com;

• Select, download & install version for your system
• Default installation is fine
• Working in pairs highly recommended

1.2

RStudio

On first startup, RStudio should look like this; (up to version
and Mac/PC differences)

If you’ve used it before, RStudio defaults to remembering what
you were doing.

1.3

RStudio

We’ll use the ‘Console’ window first – as a (fancy!) calculator

> 2+2
[1] 4
> 2^5+7
[1] 39
> 2^(5+7)
[1] 4096
> exp(pi)-pi
[1] 19.9991
> log(20+pi)
[1] 3.141632
> 0.05/1E6 # a comment; note 1E6 = 1,000,000
[1] 5e-08

• All common math functions are available; parentheses (round

brackets) work as per high school math

• Try to get used to bracket matching. A ‘+’ prompt means

the line isn’t finished – hit Escape to get out, then try again.

1.4

RStudio

R stores data (and everything else) as objects. New objects are
created when we assign them values;

> x <- 3

> y <- 2 # now check the Environment window

> x+y

[1] 5

Assigning new values to existing objects over-writes the old
version – and be aware there is no Ctrl-Z ‘undo’;

> y <- 17.4 # check the Environment window again

> x+y

[1] 20.4

• Anything after a hash (#) is ignored – e.g. comments
• Spaces don’t matter
• Capital letters do matter

1.5

RStudio: Reading in data

To import a dataset, follow pop-ups from the Environment tab;

1.6

RStudio: Reading in data

More on those options;

• Name: Name of the data frame object that will store the
whole dataset

• Separator: what’s between items on a single line?

• Decimal: Usually a period (“.”)

• Quote: Usually double – seldom critical

The defaults are sensible, but R assumes you know what your

data should look like – and whether it has named columns, row

names etc. No software is smart enough to cope with every

format that might be used by you/your colleagues to store data.

1.7

RStudio: Reading in data

After successfully reading in the data;

• The environment now includes a mammals object – or whatever
you called the data read from file

• A copy of the data can be examined in the Excel-like data
viewer (below) – if it looks weird, find out why & fix it!

... we’ll return later, to read.table in the Console window

1.8

RStudio: Reading in data

What’s a good name for my new object?

• Something memorable (!) and not easily-confused with other

objects, e.g. X isn’t a good choice if you already have x

• Names must start with a letter or period (”.”), after that

any letter, number or period is okay

• Avoid other characters; they get interpreted as math

(”-”,”*”) or are hard to read (” ”) so should not be used in

names

• Avoid names of existing functions – e.g. summary. Some one-

letter choices (c, C, F, t, T and S) are already used by R as

names of functions, it’s best to avoid these too

1.9

Operating on data

To operate on data, type commands in the Console window, just
like our earlier calculator-style approach;

> str(mammals)
’data.frame’: 62 obs. of 2 variables:
$ body : num 3.38 0.48 1.35 465 36.33 ...
$ brain: num 44.5 15.5 8.1 423 119.5 ...

> summary(mammals)
body brain

Min. : 0.005 Min. : 0.14
1st Qu.: 0.600 1st Qu.: 4.25
Median : 3.150 Median : 17.25
Mean : 198.738 Mean : 283.13
3rd Qu.: 48.203 3rd Qu.: 166.00
Max. :6654.000 Max. :5712.00

• str() tells us the structure of an object
• summary() summarizes the object

Can also use these commands on any object – e.g. the single
numbers we created earlier (try it!)

1.10

Operating on data: columns

Individual columns in data frames are identified using the $
symbol – just seen in the str() output.

> mammals$brain
[1] 44.50 15.50 8.10 423.00 119.50 115.00 98.20 5.50 58.00

[10] 6.40 4.00 5.70 6.60 0.14 1.00 10.80 12.30 6.30
[19] 4603.00 0.30 419.00 655.00 3.50 115.00 25.60 5.00 17.50
[28] 680.00 406.00 325.00 12.30 1320.00 5712.00 3.90 179.00 56.00
[37] 17.00 1.00 0.40 0.25 12.50 490.00 12.10 175.00 157.00
[46] 440.00 179.50 2.40 81.00 21.00 39.20 1.90 1.20 3.00
[55] 0.33 180.00 25.00 169.00 2.60 11.40 2.50 50.40
> summary(mammals$brain)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.14 4.25 17.25 283.10 166.00 5712.00

Think of $ as ‘apostrophe-S’, i.e. mammals’S brain.

Unlike many other statistical packages, R can handle multiple

datasets at the same time – helpful if your data are e.g.

phenotypes & genotypes, or county & disease outbreak data.

This isn’t possible without $, or some equivalent syntax.

1.11

Operating on data: columns

New columns are created when you assign their values – here

containing the brain weights in kilograms;

> mammals$brainkg <- mammals$brain/1000
> str(mammals)
’data.frame’: 62 obs. of 3 variables:
$ body : num 3.38 0.48 1.35 465 36.33 ...
$ brain : num 44.5 15.5 8.1 423 119.5 ...
$ brainkg: num 0.0445 0.0155 0.0081 0.423 0.1195 ...

> summary(mammals$brainkg)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00014 0.00425 0.01725 0.28310 0.16600 5.71200

• Assigning values to existing columns over-writes existing

values – again, with no warning

• With e.g. mammals$newcolumn <- 0, the new column has every

entry zero; R recycles this single value, for every entry

• It’s unusual to delete columns... but if you must;

mammals$brainkg <- NULL

1.12

Operating on data: columns

Other functions useful for summarizing data frames, and their

columns;

> names(mammals)
[1] "body" "brain"
> dim(mammals) # dim is short for dimension
[1] 62 2
> length(mammals$body) # how many rows in our dataset?
[1] 62
> min(mammals$body)
[1] 0.005
> max(mammals$body)
[1] 6654
> range(mammals$body)
[1] 0.005 6654.000
> mean(mammals$brain)
[1] 283.1342
> sd(mammals$brain) # sd is short for standard deviation
[1] 930.2789
> median(mammals$brain)
[1] 17.25
> median(mammals$br) # uses pattern-matching (but hard to debug later)
[1] 17.25

1.13

RStudio: the Script window

While fine for occasional use, entering every command ‘by hand’

is error-prone, and quickly gets tedious. A much better approach

is to use a Script window – open one with Ctrl-Shift-N, or the

drop-down menus;

• Opens a nice editor, enables saving code (.R extension)

• Run current line (or selected lines) with Ctrl-Enter, or Ctrl-R

1.14

RStudio: the Script window

An important notice: from now on, we assume you are using

a script editor.

• First-time users tend to be reluctant to switch! – but it’s

worth it, ask any experienced user

• Some code in slides may be formatted for cut-and-paste into

scripts – it may not look exactly like what appears in the

Console window

• Exercise ‘solutions’ given as .R files

• Scripts make it easy to run slightly modified code, without

re-typing everything – remember to save them as you work

• Also remember the Escape key, if e.g. your bracket-matching

goes wrong

For a very few jobs, e.g. changing directories, we’ll still use

drop-down menus. But commands are available, for all tasks.

1.15

Operating on data: subsets

To identify general subsets – not just the columns selected by $
– R uses square brackets.

Selecting individuals elements;

> mammals$brain[32] # 32nd element of mammals$brain
[1] 1320
> row.names(mammals)[32]
[1] "Human"
> mammals$body[32]
[1] 62
> mammals[32,2] # 32nd row, 2nd column
[1] 62

Selecting entire columns (again!) or entire rows, blank entries
indicate you want everything.

> mammals[32,] # everything in the 32nd row
body brain

Human 62 1320
> sum(mammals[32,])
[1] 1382

1.16

Operating on data: subsets

Suppose we were interested in the brain weight (i.e. 2nd column)
for mammals (i.e. rows) 14, 55, & 61. How to select these
multiple elements?

> mammals[c(14,55,61),1]
[1] 0.005 0.048 0.104 # check these against data view

But what is c(14,55,61)? It’s a vector of numbers – c() is for
combine;

> length(c(14,55,61))
[1] 3
> str(c(14,55,61))
num [1:3] 14 55 61

We can select these rows and all the columns;

> mammals[c(14,55,61),]
body brain

Lesser short-tailed shrew 0.005 0.14
Musk shrew 0.048 0.33
Tree shrew 0.104 2.50

1.17

Operating on data: subsets

A very useful special form of vector;
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

> 6:2
[1] 6 5 4 3 2
> -1:-3
[1] -1 -2 -3

R expects you to know this shorthand – see e.g. its use of 1:3 in
the output from str(), on the previous slide. For a ‘rectangular’
selection of rows and columns;
> mammals[20:22, 1:2]

body brain
Big brown bat 0.023 0.3
Donkey 187.100 419.0
Horse 521.000 655.0

Negative values correspond to dropping those rows/columns;
> mammals[-3:-62, 1:2] # everything but the first two rows, & columns 1:2

body brain
Arctic fox 3.385 44.5
Owl monkey 0.480 15.5

1.18

Operating on data: subsets

As well as storing numbers and character strings (like "Donkey",

"Big brown bat") R can also store logicals – TRUE and FALSE.

To make a new vector, with elements that are TRUE if body

mass is above 500kg and FALSE otherwise;

> is.heavy <- mammals$body > 500
> table(is.heavy) # another useful data summary command
is.heavy
FALSE TRUE

58 4

Which mammals were these? (And what were their masses?)

> mammals[is.heavy,] # just the rows for which is.heavy is TRUE
body brain

Asian elephant 2547 4603
Horse 521 655
Giraffe 529 680
African elephant 6654 5712
> mammals[is.heavy,2] # combining TRUE/FALSE (rows) and numbers (columns)
[1] 4603 655 680 5712

1.19

Operating on data: subsets

One final method... for now!

Instead of specifying rows/columns of interest by number, or

through vectors of TRUEs/FALSEs, we can also just give the

names – as character strings, or vectors of character strings.

> mammals[c("Cow","Goat","Human"),"body"]
[1] 465.00 27.66 62.00
> mammals[c("Cow","Goat","Human"),c("body","brain")]

body brain
Cow 465.00 423
Goat 27.66 115
Human 62.00 1320
> mammals[c("Cow","Goat","Human"),2] # okay to mix & match
[1] 423 115 1320

– this is more typing than the other options, but is much easier

to debug/reuse.

1.20

Quitting time (almost)

When you’re finished with RStudio;

• Ctrl-Q, or the drop-down menus, or entering q() at the
command line all start the exit process

• You will be asked “Save workspace image to ∼/.RData?”
– No/Don’t Save: nothing is saved, and is not available

when you re-start. This is recommended, because you
will do different things in each session

– Yes: Everything in memory is stored in R’s internal format
(.Rdata) and will be available when you re-start RStudio

– Cancel: don’t quit, go back
• Writing about what you did (output from a script) often

takes much longer than re-running that script’s analyses –
so often, a ‘commented’ script is all the R you need to store

To get rid of objects in your current session, use rm(), e.g.
rm(is.heavy, mammals, x, y) ... or RStudio’s ‘broom’ button.

1.21

Summary

• In RStudio, read in data from the pop-up menu in the

Environment window (or Tools menu)

• Data frames store data; can have many of these objects –

and multiple other objects, too

• Identify vectors with $, subsets with square brackets

• Many useful summary functions are available, with sensible

names

• Scripts are an important drudgery-avoidance tool!

1.22

2. More data summary & using

functions

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

In this session

In this session, using a larger dataset of faculty members’ salaries
at a Uniformly Wonderful instution∗, we’ll illustrate;

• Reading in data from the web

• More options for subsetting

• Using functions in a more flexible way

• Getting help!

* Data were collected from 1976–1995 on non-medical faculty, and include

monthly salary, sex, highest degree attained, year of highest degree, field,

year hired, rank, and administrative duties.

2.1

Reading in data from the web

The data live at;

http://faculty.washington.edu/kenrice/rintro/salary.txt

2.2

Reading in data from the web

This online option is very convenient but;

• Make sure you are signed into UW’s wifi system before trying

to access the data

• Make a local copy if you anticipate loading the data through

drop-down menus multiple times – doing this is quicker and

more reliable than downloading every time

• Make a local copy if you have to cut off rows above

the headings – some sources put a short version of the

documentation there, which the drop-down version cannot

cope with

• Keep your local copy up to date!

But what if you’re not restricted to using drop-down menus?

2.3

Reading in data from the web

To import data from the command line (or a script);

salary <- read.table("http://faculty.washington.edu/kenrice/rintro/salary.txt"
, header=TRUE)

Let’s break this down;

• read.table() is a function, that returns ouput and stores it
in new object salary. (Earlier we assigned other output to
new object is.heavy)

• read.table() takes arguments; the first is a character string
giving the location of the file – the URL here, could also
give the file name (in your working directory, see Session/Set
Working Directory in the drop-down menus)

• The second argument (header=TRUE) tells R to expect a row
giving the column names

• Getting either of these wrong (i.e. non-interpretable to R)
will result in error messages, and no data being read in.

2.4

Functions: help!

So how do we know which arguments to provide? The help
system is a huge ... help!

> ?read.table # then look in Help window
read.table(file, header = FALSE, sep = "", quote = "\"’",

dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown", text)

The arguments are also described further down the help page;

• file: the name of the file which the data are to be read
from... can also be a complete URL

• header: a logical value indicating whether the file contains
the names of the variables as its first line

2.5

Functions: help!

Rules for supplying arguments to functions;

• Arguments must be objects of the correct form, e.g. a data
frame, or a vector, or a character string

• R assumes unnamed arguments (as in e.g. summary(mammals))
refer to those at the start of the help page’s list

• Named arguments that follow can be from anywhere in the
list

• Arguments you don’t supply are assumed to follow the
default value – which is usually sensible

Failing to supply arguments that has no defaults gives an error
message – and no output.

Commonly-used arguments in commonly-used functions quickly

become familiar. But because R can do so much, even expeRts

refer to the help system all the time when coding; no-one learns

every detail of every function.

2.6

Functions: help!

Two command-line ways to read in a local copy of the salary
dataset;
myfile <- file.choose() # a function with no arguments
salary <- read.table(myfile, header=T)

salary <- read.table(file.choose(), header=T)

... the second is essentially what the GUI does. The result;
> str(salary)
’data.frame’: 19792 obs. of 11 variables:
$ case : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : int 1 2 2 4 6 6 6 6 6 7 ...
$ gender : Factor w/ 2 levels "F","M": 1 2 2 2 2 2 2 2 2 2 ...
$ deg : Factor w/ 3 levels "Other","PhD",..: 1 1 1 2 2 2 2 2 2 2 ...
<some rows omitted>
$ salary : num 6684 4743 4881 4231 11182 ...

R is a language – and like any language, it provides multiple

valid ways to say the same thing. None is ‘best’, so use the

way you find easiest. (We’ll discuss speed & efficiency later)

2.7

Functions: help!

Other (useful!) parts of the help system;

• Value: What output the function is going to return

• Examples: Short bits of code showing the function in action

– either cut and paste or use e.g. example("read.table")

• See Also: other functions that perform related tasks

R has too big a vocabulary to list every function – which can

be a problem for new users unsure what to use. We’ll mention

many common functions, but to find others;

• ?fn or help("fn") for help on fn

• help.search("topic") for help pages related to "topic"

• apropos("tab") for functions whose names contain "tab"

• RSiteSearch("FDR") searches the R Project website (if online!)

• Your favorite search engine and/or reference book

2.8

Factors

The case and id variables are integers, i.e. whole numbers. As
we saw with the mammals’ numeric data, these can be added,
multiplied, exponentiated, compared etc.

The gender and deg columns are columns of Factor variables
– this is R’s term for categorical variables (e.g. hair color,
nationality, soprano/alto/tenor/bass)

> table(salary$deg)
Other PhD Prof
1640 16806 1346

> table(salary$gender, salary$deg)
Other PhD Prof

F 569 3220 137
M 1071 13586 1209

> table(salary$deg == "Prof")
FALSE TRUE
18446 1346
> (salary$deg == "Prof")[1:10]
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> levels(salary$rank) # default alpha-numeric ordering
[1] "Assist" "Assoc" "Full"

2.9

Factors

What did that show?

• table() crosstabulates all the variables you pass as arguments
• The ‘double equals’ == indicates equality (exact equality)
• Used to compare salary$deg (length 19,792) and "Prof"

(length 1), the second vector gets recycled until it’s as long
as the first

• Factors have levels – and you can see what they are

As you might imagine, factors can’t be added;

> salary$deg[1:10] + 4.2
[1] NA NA NA NA NA NA NA NA NA NA

Warning message:
In Ops.factor(salary$deg[1:10], 4.2) : + not meaningful for factors

This is a Warning – R produces output, unlike an Error which
gives just a message (at best!) Either way, check the code does
what you intended, before going any further.

2.10

Operating on data: subsets again

In the previous session (the mammals example) we saw how to
makes subsets by;

• Selecting numbered rows/columns of interest
• Selecting rows/columns corresponding to TRUEs, in vec-

tor(s) of logicals
• Selecting rows/columns by their names

There is also a subset() command, that returns a new data frame
object – with elements that are a subset of the old one;

> oldprofdata <- subset(salary, rank=="Full" & year<83)
> table(oldprofdata$gender)

F M
99 1542

The first line translates as ‘make a subset of the salary data
frame, using the rows where evaluating rank=="Full" AND
year<83 in the salary data frame returns TRUE’.

2.11

Operating on data: subsets again

Having made this subset (however!), you might be surprised at
this;

> summary(oldprofdata$rank)
Assist Assoc Full

0 0 1641
> table(oldprofdata$rank)
Assist Assoc Full

0 0 1641
> levels(oldprofdata$rank)
[1] "Assist" "Assoc" "Full"

If you want to drop unused factor levels;

> oldprofdata <- droplevels(oldprofdata) # overwrites original version
> levels(oldprofdata$rank)
[1] "Full"

You can also change level names with e.g.

> levels(oldprofdata$field)
[1] "Arts" "Other" "Prof"
> levels(oldprofdata$field) <- c("Arts","Other","Law’n’Med")

2.12

Operating on data: subsets again

Yet another way to operate on data frames – or subsets of them;
> with(salary, table(gender, rank))

rank
gender Assist Assoc Full

F 1460 1465 1001
M 2588 5064 8210

> with(subset(salary, rank=="Full" & year<83), table(gender, rank))
rank

gender Assist Assoc Full
F 0 0 99
M 0 0 1542

> with(droplevels(subset(salary, rank=="Full" & year<83)), table(gender, rank))
rank

gender Full
F 99
M 1542

with() temporarily sets up a data frame as the default place to
look up variables. This means you can then execute commands
(like table(gender, rank)) without having to tell R where to
find gender and rank. It’s also easier to read code without $’s
everywhere.

2.13

Operating on data: with Logic!

To make the subset, we used & as a logical AND. Similarly;

• | denotes logical OR
• ! denotes negation; !TRUE is FALSE and !FALSE is TRUE

• == denotes exact equality (as before)
• != Not equal to
• >= Greater than or equal to; see also >, <, <=

• %in% Are elements of the first vector in the second?

An example of %in%; (for details on the others, see ?Logic)

> letters %in% c("t","i","m")
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[13] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[25] FALSE FALSE
> (1:26)[letters %in% c("t","i","m")]
[1] 9 13 20

You can use a single-equals sign (=) to denote assignment

(previously <-), e.g. one.to.ten = 1:10. But it’s far too easy

to mix this up with ==, and the help system uses the arrow

2.14

Operating on data: missing values

Here’s the last line of the summary of the full dataset;

salary
Min. : 1200
1st Qu.: 3287
Median : 4353
Mean : 4722
3rd Qu.: 5794
Max. :14464
NA’s :4

• NA is R’s code for missing data - so there are 4 entries here

where the monthly salary is missing

• Missing data is important for analysis!

• If your data doesn’t use NA, see the na.strings argument in

read.table() to tell R this

• ... or re-assign elements of vectors, e.g.

salary$salary <- ifelse(salary$salary == -99, NA, salary$salary)

2.15

Operating on data: missing values

Formally NA is short for ‘Not Available’, but it’s better to think
of it as “Don’t Know”. Try it in the following situations;

• 42 + NA: What’s 42 plus a number you don’t know?
• TRUE & NA: Are TRUE & an unknown logical both TRUE?
• FALSE & NA: Are FALSE & an unknown logical TRUE?
• mean(c(1,2,75,NA)): What’s the mean of 1,2,75 and a number

you don’t know?
• x == NA: Is x equal to a number you don’t know?

So how did we get the mean earlier? R’s mean for a summary()

of a data frame is slightly different from ‘plain vanilla’ mean();

> mean(salary$salary)
[1] NA
> mean(salary$salary, na.rm=TRUE) # na.rm’s default is FALSE, in many functions
[1] 4721.712

R distinguishes NA from NaN (‘not a number’, e.g. sqrt(-1)) and
Infinity (e.g. 1/0). Also note is.na(x) returns TRUE/FALSE.

2.16

Summary

• Data can live on the web too

• R uses functions; these have arguments, which have names

and (often) default values

• The help system is essential to use arguments correctly – but

there are multiple correct ways to code individual tasks

• Factors are treated slightly differently from numbers

• Remember NA is ‘Don’t Know’, to understand what will

happen with missing values

2.17

3. Plotting functions and formulas

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

In this session

R is known for having good graphics – good for data exploration

and summary, as well as illustrating analyses. Here, we wil see;

• Some generic plotting commands

• Making graphics files

• Fine-tuning your plots (and why not to do too much of this)

• The formula syntax

NB more graphics commands will follow, in the next session.

3.1

Making a scatterplot with plot()

A first example, using the mammals dataset – and its output in

the Plot window; (The preview button is recommended)

plot(x=mammals$body, y=mammals$brain)

3.2

Making a scatterplot with plot()

Some other options for exporting;

• Copy directly to clipboard as a bitmap or editable (Windows)

metafile - then paste into e.g. your Powerpoint slides

• With ‘Save Plot as Image’, PNG is a (good) bitmap format,

suitable for line art, i.e. graphs. JPEG is good for photos,

not so good for graphs

• For PNG/JPEG, previews disappear if they get too large!

• Many of the options (TIFF, EPS) are seldom used, today

• Handy hint; if too much re-sizing confuses your graphics

device (i.e. the Plot window) enter dev.off() and just start

over

3.3

Making a scatterplot with plot()

A golden rule for exporting;

Make the file the size it will be in the final document –

because R is good at choosing font sizes

A 6:4 plot, saved The same plot,
at 24× 16 inches saved at 4× 2.67 inches

0 1000 2000 3000 4000 5000 6000

0
10

00
20

00
30

00
40

00
50

00

mammals$body

m
am

m
al

s$
br

ai
n

0 2000 4000 6000

0
20

00
50

00

mammals$body

m
am

m
al

s$
br

ai
n

• Not the same plot ‘blown up’ – note e.g. axes labels
• R likes to add white space around the edges – good in

documents, less good in slides, depending on your software

3.4

Making a scatterplot with plot()

Better axes, better axis labels and a title would make the

scatterplot better. But on looking up ?plot...

“For simple scatter plots, plot.default will be used. However,

there are plot methods for many R objects, including functions,

data.frames, density objects, etc. Use methods(plot) and the

documentation for these.”

plot() is a generic function – it does different things given

different input; see methods(plot) for a full list. For our plot

of y vs x, the details we need are in ?plot.default...

plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

ann = par("ann"), axes = TRUE, frame.plot = axes,

panel.first = NULL, panel.last = NULL, asp = NA, ...)

3.5

Making a scatterplot with plot()

After checking the help page to see what these mean, we use;
• xlab, ylab for the axis labels
• main for the main title
• log to log the axes – log="xy", to log them both

plot(x=mammals$body, y=mammals$brain, xlab="Body mass (kg)",
ylab="Brain mass (g)", main="Brain and body mass, for 62 mammals",
log="xy")

1e−02 1e+00 1e+02 1e+041e
−0

1
1e

+0
1

1e
+0

3
Brain and body mass, for 62 mammals

Body mass (kg)

B
ra

in
 m

as
s

(g
)

3.6

Making a scatterplot with plot()

For those with historical interests (or long memories);

log="x" log="xy"

Semi-log graph paper Log-log graph paper

3.7

Other plots made with plot()

As the help file suggests, plot() gives different output for
different types of input. First, another scatterplot;

plot(x=salary$year, y=salary$salary)

Tip: export graphs of large datasets as PNG, not PDF or JPEG.

3.8

Other plots made with plot()

Plotting one numeric variable against a factor;

plot(x=salary$rank, y=salary$salary)

Assist Assoc Full

20
00

80
00

14
00

0

There is also a boxplot() function.

3.9

Other plots made with plot()

Plotting one factor variable against another;

plot(x=salary$field, y=salary$rank)

x

y

Arts Other Prof

A
ss

is
t

Fu
ll

0.
0

0.
4

0.
8

This is a stacked barplot – see also the barplot() function

3.10

Other plots made with plot()

Plotting an entire data frame (not too many columns)

smallsalary <- salary[,c("year","salary","rank")]

plot(smallsalary)

Not so clever! But quick, & okay if all numeric – see also pairs().
NB Plotting functions for large datasets are in later sessions.

3.11

Other graphics commands

For histograms, use hist();

hist(salary$salary, main="Monthly salary", xlab="salary")

Monthly salary

salary

Fr
eq

ue
nc

y

2000 6000 10000 14000

0
20

00
40

00

For more control, set argument breaks to either a number, or a
vector of the breakpoints.

3.12

Other graphics commands

Please tell no-one I told you this one;

> table(interaction(salary$gender, salary$rank))

F.Assist M.Assist F.Assoc M.Assoc F.Full M.Full

1460 2588 1465 5064 1001 8210

> pie(table(interaction(salary$gender, salary$rank)))

Why do statisticians hate pie charts with such passion?

3.13

Other graphics commands

... they really do!

3.14

Other graphics commands

Because pie charts are a terrible way to present data. Dotcharts

are much better – also easy to code;

dotchart(table(salary$gender, salary$rank))

See also stripchart(); with multiple symbols per line, these are

a good alternative to boxplots, for small samples.

3.15

Changing plotting symbols

Suppose you want to highlight certain points on a scatterplot;
other options to the plot() command change point style & color;
> grep("shrew", row.names(mammals)) # or just look in Data viewer
[1] 14 55 61
> is.shrew <- 1:62 %in% c(14,55,61) # 3 TRUEs and 59 FALSEs
> plot(x=mammals$body, y=mammals$brain, xlab="Body mass (kg)",
+ ylab="Brain mass (g)",log="xy",
+ col=ifelse(is.shrew, "red", "gray50"), pch=19)

3.16

Changing plotting symbols

We used col=ifelse(is.shrew, "red", "gray50") – a vector of 3

reds and 59 gray50s.

• If we supply fewer colors than datapoints, what we supplied

is recycled

• You could probably guess "red","green","purple" etc, but

not "gray50". To find out the names of the (many) available

R colors, use the colors() command – no arguments needed

• Can also specify colors by numbers; 1=black, 2=red,

3=green up to 8, then it repeats

• Or consult this online chart – or many others like it

• Can also supply colors by hexadecimal coding; #RRGGBB

for red/green/blue – with #RRGGBBTT for transparency

NB legends will follow, in the next session.

3.17

Changing plotting symbols

We also used pch=19 – to obtain the same non-default plotting
symbol, a filled circle.

The full range;

● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• Set the fill color for 21:25 with the bg argument
• The open circle (pch=1) is the default – because it makes it

easiest to see points that nearly overlap. Change it only if
you have a good reason to

• Filled symbols 15:20 work well with transparent colors, e.g.
col="#FF000033" for translucent pink

For different size symbols, there is a cex option; cex=1 is standard
size, cex=1.5 is 50% bigger, etc.

But beware! These options should be used sparingly...

3.18

Changing plotting symbols

One of these points is not like the others...

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

3.19

Changing plotting symbols

One of these points is not like the others...

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

3.20

Changing plotting symbols

One of these points is not like the others...

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

3.20

Changing plotting symbols

One of these points is not like the others... (pch="p")

p

p

p

p

p

p

p

p

pp

p p

p
p

p

p
p

p

p

p

p

p

p

p
p

p p

p

p

p

p
p

p

p

p

p

p

p

p

p
p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp

p

p

p

pp

p

p
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp
p

p

p

p

p

p

p

p

pp

p

p

p

p

p

p

p
p

p

p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

p
p

p

p

p

p

p

p
p

p

p

p

p

p

p

p
p

p
p

p

p

p

p

p
p

p

p

p

p p

p

p

p

p

p

p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

pp

p

p

p

p

p

p

p

p

p

p

p
p p

p

q

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

3.20

Changing plotting symbols

One of these points is not like the others... (pch="p")

p

p

p

p

p

p

p

p

pp

p p

p
p

p

p
p

p

p

p

p

p

p

p
p

p p

p

p

p

p
p

p

p

p

p

p

p

p

p
p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp

p

p

p

pp

p

p
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp
p

p

p

p

p

p

p

p

pp

p

p

p

p

p

p

p
p

p

p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

p
p

p

p

p

p

p

p
p

p

p

p

p

p

p

p
p

p
p

p

p

p

p

p
p

p

p

p

p p

p

p

p

p

p

p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

pp

p

p

p

p

p

p

p

p

p

p

p
p p

p

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

3.20

Changing plotting symbols

Too many colors (> 4, say) requires too much attention; what

pattern is illustrated here?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

3.21

Changing plotting symbols

Too many colors (> 4, say) requires too much attention; what

pattern is illustrated here?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.21

Plots via the formula syntax

To make plots, we’ve used arguments x (on the X-axis) and y (on
the Y-axis). But another method makes a stronger connection
to why we’re making the plot;

plot(brain~body, data=mammals, log="xy")

1e−02 1e+00 1e+02 1e+041e
−0

1
1e

+0
1

1e
+0

3

body

br
ai

n

“Plot how brain depends on body, using the mammals dataset,
with logarithmic x and y axes”

3.22

Plots via the formula syntax

A few more examples, using the salary dataset;

plot(salary~year, data=salary) # scatterplot

plot(salary~rank, data=salary) # boxplot

plot(rank~field, data=salary) # stacked barplot

In all of these, Y ∼ X can be interpreted as Y depends on X –
the ‘tilde’ symbol is R’s shorthand for ‘depends on’.

Statisticians (and scientists) like to think this way;

• How does some outcome (Y) depend on a covariate (X)?
(a.k.a. a predictor)

• How does a dependent variable (Y) depend on an indepen-
dent variable (X)?

And how does Y depend on X in observations with the same Z?

3.23

Plots via the formula syntax

To help us illustrate how scientists think, a bit of science;

Ozone is a secondary pollutant, produced from organic com-
pounds and atmostpheric oxygen, in reactions catalyzed by
nitrogen oxides and powered by sunlight. But for ozone
concentrations in NY in summer (Y) a smoother (code later)
shows a non-monotone relationship with sunlight (X) ...

●
●

●
●

●●
●

●
●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●● ● ●

●

●
●

● ●

●

●
●

●
● ●

●

●

●
●

●

●● ●

0 50 100 150 200 250 300

0
50

10
0

15
0

Solar.R

O
zo

ne

3.24

Plots via the formula syntax

Now draw a scatterplot of Ozone vs Solar.R for various subranges

of Temp and Wind.

data("airquality") # using a dataset supplied with R

coplot(Ozone ~ Solar.R | Temp + Wind, number = c(4, 4),

data = airquality,

pch = 21, col = "goldenrod", bg = "goldenrod")

• The vertical dash (”|”) means ‘given particular values of’,

i.e. ‘conditional on’

• Here, ”+” means ‘and’, not ‘plus’ – see ?formula, and later

sessions

• How does Ozone depend on Solar Radiation, on days with

(roughly) the same Temperature and Wind Speed?

• ...using the airquality data, with a 4 × 4 layout, with solid

dark yellow circular symbols

3.25

Plots via the formula syntax

●●
●

●
● ● ●

●

0
50

15
0

●

●

●
●

●

●
●

●

●

●
●

●
●

0 50 150 250

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●
●●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●●
●

●

●

0 50 150 250

●●
●● ●●

● ●

●
● ●● ● ●
●

●●
●

●
●

●
●
●

●
●
●

●

●
●

●

● ●
● ●

● ●

●

●
●

●

●

●
●

● ●

●
●
●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●
● ● ●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●●
●

●

●
●

0
50

15
0

● ●●● ●● ●
●●

●
● ●

●
● ● ● ●

● ●
● ●●

●
●

●
●

●

0
50

15
0

● ●● ●
●

●●

●
●

● ●

●●● ●
● ●●
●

●

●

●
●
● ●●

●
●

●

● ●
●

●

●

●
●

● ●

●●
● ●

●
●
● ●●

●
●

●

● ●

●

●
●

●

●

● ●●
● ●● ●

●

●

●
●

●
●

●

● ●●
● ●

● ● ●●● ● ●

0 50 150 250

● ●

●

●
●

● ●
●

●●

●
●

●
●●

●

●
● ● ●

●

●
●

●
●

●
●

●

●
●●

●
●

●

●

0 50 150 250

●

●

●●
●

●
●

●

●
●●

●

0
50

15
0

Solar.R

O
zo

ne

60 70 80 90

Given : Temp

5
10

15
20

G
iv

en
 :

W
in

d

3.26

Plots via the formula syntax

What does this show?

• A 4-D relationship is illustrated; the Ozone/sunlight relation-

ship changes in strength depending on both the Temperature

and Wind

• The horizontal/vertical ‘shingles’ tell you which data appear

in which plot. The overlap can be set to zero, if preferred

• coplot()’s default layout is a bit odd; try setting rows, columns

to different values

• Almost any form of plot can be ‘conditioned’ in this way –

but the commands are in the non-default lattice package

NB it is possible to produce ‘fake 3D’ plots in R – but (on 2D

paper) conditioning plots work better!

3.27

Summary

• R makes publication-quality graphics, as well as graphics for
data exploration and summary

• plot() is generic, and adapts to what you give it. There are
(necessarily) lots of arguments to consider; colors, plotting
symbols, labels, etc

• hist(), boxplot(), dotplot() and coplot() offer more func-
tionality

• The formula syntax is a (more) natural way from translate
scientific aims to choice of what to plot

• Much more to come! In the next section we’ll build up more
complex plots

3.28

4. Adding Features to Plots

Ken Rice

Timothy Thornton

University of Washington

Seattle, July 2016

In this session

R has very flexible built-in graphing capabilities to add a wide-

range of features to a plot.

• Plotting options

• Adding points, lines, and segments to existing plots

• Creating a legend for a plot

4.1

Scatterplot Options

The command plot(x,y) will create a scatterplot when x and y

are numeric. The default setting will plot points but one can

graph lines or both (or neither):

• plot(x,y,type="p") is the default option that plots points

• plot(x,y,type="l") connects points by lines but does not

plot point symbols

• plot(x,y,type="b") plots point symbols connected by lines

• plot(x,y,type="o") plots point symbols connected by lines,

points on top of lines

• plot(x,y,type="h" will plot histogram-like (a.k.a. high-

density) vertical lines

• plot(x,y,type="n") plots axes only, no symbols

4.2

Examples: Plotting two variables

Let’s consider the airquality dataset.

data(airquality)

names(airquality)

airquality$date<-with(airquality, ISOdate(1973,Month,Day))

(ISOdate() takes year/month/day information and returns an

object containing the same information, but in a format R

recognizes as numeric information.)

4.3

Examples: Plotting two variables

plot(Ozone~date, data=airquality)

●
●

●
●
●
●●
●●
●
●●
●●

●

●

●

●
●
●
●

●
●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●●●●

●

●
●

●●

●

●
●
●
●●
●

●

●
●

●

●●
●

May Jun Jul Aug Sep Oct

0
50

10
0

15
0

date

O
zo

ne

4.4

Examples: Plotting two variables

plot(Ozone~date, data=airquality,type="l")

May Jun Jul Aug Sep Oct

0
50

10
0

15
0

date

O
zo

ne

4.5

Examples: Plotting two variables

plot(Ozone~date, data=airquality,type="h")

May Jun Jul Aug Sep Oct

0
50

10
0

15
0

date

O
zo

ne

4.6

Adding points to a graph

We can add points to an existing plot with the command

points(x,y)

The lines(x,y) command can be used to add connected points

by lines to an existing plot without symbols

4.7

Adding points to a graph

For example, create a graph that contains axes only.

plot(Ozone~Solar.R, data=airquality,type="n")

0 50 100 150 200 250 300

0
50

10
0

15
0

Solar.R

O
zo

ne

4.8

Adding points to a graph

Now add the points to the graph:

points(airquality$Solar.R,airquality$Ozone,col="blue",pch=7)

0 50 100 150 200 250 300

0
50

10
0

15
0

Solar.R

O
zo

ne

4.9

Adding lines to plots

Horizontal, vertical, and sloped lines can be added to an existing

plot with abline():

• abline(h=ycoordinate) adds a horizontal line at the specified

y-coordinate

• abline(v=xcoordinate) adds a vertical line at the specified

x-coordinate

• abline(intercept,slope) adds a line with the specified inter-

cept and slope

As well as using lines(), line segments can also be added to an

existing plot with segments():

• segments(x0,y0,x1,y1) adds a line segment from (x0,y0) to

(x1,y1)

4.10

Adding lines to plots

bad <- ifelse(airquality$Ozone>=90, "orange","forestgreen")

plot(Ozone~date,data=airquality,type="h",col=bad)

abline(h=90,lty=2,col="red")

May Jun Jul Aug Sep Oct

0
50

10
0

15
0

date

O
zo

ne

4.11

Adding text to plots

Text labels can be added to a plot with the text() command:

• text(x,y,"Here is my text") adds text centered at the spec-

ified (x,y) coordinates

Text colors and size can be specified with the options col and

cex, respectively.

4.12

Adding text to plots

bad <- ifelse(airquality$Ozone>=90, "orange", "forestgreen")

plot(Ozone~Solar.R, data=airquality, col=bad)

abline(h=90, lty=2, col="red")

text(85,100,"High Ozone Level",cex=.8,col="blue")

●
●

●
●

●●
●

●
●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●● ● ●

●

●
●

● ●

●

●
●

●
● ●

●

●

●
●

●

●● ●

0 50 100 150 200 250 300

0
50

10
0

15
0

Solar.R

O
zo

ne High Ozone Level

4.13

Adding a legend to a plot

Including a legend is often essential for explaining symbols,

colors, or line types used in a plot. The legend() command

can be used to add a legend to an existing plot:

• The position of the legend can be specified by (x,y) coordi-

nates or by using preset positions:

– legend(x,y,c("name1","name2"), pch=c(1,5)) adds a leg-

end to the plot with its top-left corner at coordinate (x,y)

– legend("topright",c("name1","name2"),pch=c(1,5)) adds a

legend in the top right corner of the plot. Can also

use ”bottom”, ”bottomleft”, ”left”, ”topleft”, ”top”,

”topright”, ”right” and ”center”.

4.14

Adding a legend to a plot

Options such as symbols (pch), colors (col), and line types (lty)

can be specified in the legend command. See ?legend for more

details.

lowwinds <- ifelse(airquality$Wind<=8, "red", "blue")

symbols <- ifelse(airquality$Wind<=8, 5,1)

plot(Ozone~Solar.R,data=airquality,col=lowwinds,pch=symbols)

legend("topleft",c("low wind","high wind"),col=c("red","blue"),

pch=c(5,1))

4.15

Adding a legend to a plot

●
●

●●
●

●
●●● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ● ●

●

●

● ●
●

●
●
●

●

●

●
● ●

●

0 50 100 150 200 250 300

0
50

10
0

15
0

Solar.R

O
zo

ne

●

low wind
high wind

4.16

Smoothing

A straight line may not adequately represent the relationship

between two variables.

Smoothing is a way of illustrating the local relationship between

two variables over parts of their ranges, which may differ from

their global relationship.

Locally weighted scatterplot smoothing (LOWESS) can be

performed in R with the lowess() function, which calculates a

smooth curve that fits the relationship between y and x locally.

The supsmu() function can also be used for smoothing.

The output from both smoothing functions have attributes $x

and $y that can be used with the generic plotting function lines()

4.17

Smoothing

Consider the built-in dataset cars.

data(cars)

plot(dist~speed,data=cars)

with(cars, lines(lowess(speed, dist), col="tomato", lwd=2))

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

4.18

Smoothing

plot(dist~speed,data=cars, log="xy")

with(cars, lines(lowess(speed, dist), col="tomato", lwd=2))

with(cars, lines(supsmu(speed, dist), col="purple", lwd=2))

●

●

●

●

●

●

●

●
●

●

●

●

●
●
● ●

●●

●

●

●

●

●

●
●

●

●
●
●
●
●
●

●

●●

●
●

●

●

●●
●
● ●

●
●

●●
●

●

5 10 15 20 25

2
5

10
20

50

speed

di
st

4.19

Smoothing

legend("bottomright", legend=c("lowess","supersmoother"),bty="n",

lwd=2, col=c("tomato","purple"))

●

●

●

●

●

●

●

●
●

●

●

●

●
●
● ●

●●

●

●

●

●

●

●
●

●

●
●
●
●
●
●

●

●●

●
●

●

●

●●
●
● ●

●
●

●●
●

●

5 10 15 20 25

2
5

10
20

50

speed

di
st

lowess
supersmoother

4.20

Multiple plots in a single figure

The par() and layout() functions can be used for drawing several

plots in one figure.

par() with the option mfrow=c(nrows,ncols) creates a matrix of

nrows × ncols plots that are filled in by row.

Using par(mfcol=c(nrows,ncols)) fills in the matrix by columns

instead.

layout(mat) allows for a more customized panel with multiple

plots, where mat is a matrix object that specifies the locations

of the plots in the figure.

4.21

Multiple plots in a single figure

The ToothGrowth dataset, supplied with R, contains data from

a study on the the effect of vitamin C on tooth growth in 10

guinea pigs.

• There are two treatments/supplement types: orange juice

and ascorbic acid

• There are three vitamin C dose levels for each of the two

treatments: 0.5, 1, and 2mg

• The response is length of odontoblast;

4.22

Multiple plots in a single figure

Commands for plotting multiple figures with the ToothGrowth
dataset, using par();

data(ToothGrowth) # load data into current R session
par(mfrow=c(2,2)) # Set up a 2x2 layout

#1st Plot - scatterplot of length vs dose;
plot(len~dose, data=ToothGrowth, xlab="Vitamin C dose (mg)",

ylab="Tooth Length", col="blue" ,cex.main=.8)

#2nd plot - boxplot of length vs dose;
boxplot(len~dose, data=ToothGrowth, horizontal=TRUE,

ylab="Vitamin C dose (mg)", xlab="Tooth Length", cex.main=.8)

#3rd plot - boxplot of length vs type of supplement;
boxplot(len~supp, data=ToothGrowth, horizontal=TRUE,

ylab="Supplement Type", xlab="Tooth Length", cex.main=.8)

#4th plot - length vs *interaction* (i.e. all combinations) of supp and dose;
boxplot(len~supp*dose,data=ToothGrowth,horizontal=TRUE,col=c("orange","yellow"),

ylab="Supplement and Dose", xlab="Tooth Length")

#... and give this one a legend
legend("topleft", c("Ascorbic acid", "Orange juice"), fill=c("yellow","orange"))

4.23

Multiple plots in a single figure

●

●

●
●●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

0.5 1.0 1.5 2.0

5
10

15
20

25
30

35

Vitamin C dose (mg)

To
ot

h
Le

ng
th

0.
5

1
2

5 10 15 20 25 30 35

Tooth Length

V
ita

m
in

 C
 d

os
e

(m
g)

O
J

V
C

5 10 15 20 25 30 35

Tooth Length

S
up

pl
em

en
t T

yp
e

●

O
J.

0.
5

O
J.

1
O

J.
2

5 10 15 20 25 30 35

Tooth Length

S
up

pl
em

en
t a

nd
 D

os
e

Ascorbic acid
Orange juice

4.24

Multiple plots in a single figure

Commands for a more customized multiple-plot figure using
layout()

#set up a 2x2 layout, but merge first 2 cells, i.e. the top row
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))

#1st plot - the interactions again, with a legend added
boxplot(len~supp*dose, data=ToothGrowth, col=c("orange","yellow"),

xlab="Supplement and Dose",ylab="Tooth Length")

legend("bottomright",c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

#2nd plot (in bottom left position) - scatterplot length vs dose
plot(len~dose, data=ToothGrowth, xlab="Vitamin C dose (mg)",

ylab="Tooth Length", col="blue", cex.main=.8)

#3rd plot (in bottom right position) - histogram of tooth length
hist(ToothGrowth$len, xlab="Tooth Length", main="", cex.main=.8)

(This is far too much effort for a quick look at your data – but

useful for making slides, or final copies of your paper)

4.25

Multiple plots in a single figure

●

OJ.0.5 VC.0.5 OJ.1 VC.1 OJ.2 VC.2

5
10

15
20

25
30

35

Supplement and Dose

To
ot

h
Le

ng
th

Ascorbic acid
Orange juice

●

●

●
●●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

0.5 1.0 1.5 2.0

5
10

15
20

25
30

35

Vitamin C dose (mg)

To
ot

h
Le

ng
th

Tooth Length

Fr
eq

ue
nc

y

0 5 10 15 20 25 30 35

0
2

4
6

8
10

12

4.26

Summary

• R has a variety of plotting options

• points() adds points to an existing plot and lines() adds

connected points by lines to an existing plot without symbols

• abline() draws a single straight line on a plot

• lowess() and supsmu() are scatterplot smoothers

• legend() adds a legend to a plot

• par() and layout() can be used for multi-panel plotting

4.27

5. Over and over

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

In this session

In Sessions 1–4, we completed tasks by breaking them down,

into one line of an R script at a time. In principle, we could do

everything this way. But;

• Repeating the same job many times (i.e. once for each

person/guinea pig in the dataset) the typing gets slow &

tedious, and is error prone

• For iterative methods, we don’t know how much code will

be needed before starting the task

This session, and the next, introduce writing loops, so we can

re-use the same code in a script, without re-typing it.

NB This module does not cover every R tool for looping.

5.1

A very first for() loop

Many people’s first computer program looks like this;

> for(i in 1:5){
+ print("hello world!")
+ print(i^2)
+ }
[1] "hello world!"
[1] 1
[1] "hello world!"
[1] 4
[1] "hello world!"
[1] 9
[1] "hello world!"
[1] 16
[1] "hello world!"
[1] 25

Two fundamental ideas;

• Go round the loop 5 times
• Each time, do something that may (or may not) depend on

which ‘go round’ it is

Of course, for() loops also have more practical uses...

5.2

Example: hard math made easy

A question from analysis of survival traits – and its answer!

What is the expected value of the median of a sample,

size n = 51, of independent data from Exp(1)?

What is its variance?

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Observation

D
en

si
ty

Exp(1)
Median of Exp(1), n=51

5.3

Example: hard math made easy

If the picture didn’t make it obvious enough (!) here are the

exact answers;

E[Median51] =
2178178936539108674153

3099044504245996706400

E[Median251] =
2467282316063667967459233232139257976801959

4802038419648657749001278815379823900480000

These are 0.70286 and 0.51380 to 5 d.p. – so the variance is

0.51380− 0.702862 = 0.01978.

• Yes, there are ‘pretty’ answers here

• In general there aren’t – but the ‘expectation’ (E[...]) terms

just mean averaging over lots of datasets – which is easy,

with a computer

• We can get a good-enough answer very quickly

5.4

Example: hard math made easy

We’ll write code that;

1. Generates a single sample of size n = 51 from Exp(1)

2. Calculates its median and stores this number

3. Repeats steps 1 and 2 many times, then works out the mean
and variance of the stored numbers

Here are steps 1 and 2 – run them and see what’s created;

many.medians <- vector(10000, mode="numeric") # or just rep(NA, 10000)
set.seed(4)
for(i in 1:10000){

mysample <- rexp(n=51, rate=1) # take a single sample, size 51
many.medians[i] <- median(mysample) # calcuate & store its median
}

The function set.seed() tells R where to start its random-
number generator – this is important, as it means we can repeat
the code and get the same answers. Choose any ‘seed’ you like.

5.5

Example: hard math made easy

How to think of the seed;

• The seed indicates starting place in the list
• The list closely resembles truly random numbers – certainly

closely enough for our purposes – but is actually fixed

5.6

Example: hard math made easy

And the answers, from 10,000 simulations, with that seed?

> mean(many.medians)
[1] 0.702171 # exact answer is 0.70286
> var(many.medians)
[1] 0.01955728 # exact answer is 0.01978

NB: for large-enough values of 10,000, we could work basically
anything about the sample median, with little extra work;

Histogram of many.medians

Observed Median

D
en

si
ty

0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

5.7

Example: hard math made easy

Notes on the coding; (NB see ?Control for the help page on

for(), ?for won’t work as for is ‘restricted’)

• for([iteration] in [vector of iteration values]) – the vec-

tor of iteration values can be of anything, not just 1:n

• The expression between the curly brackets { } is evaluated

each ‘go round’ the loop, substituting i for 1,2, ... 10,000

in turn

• Very important – create an object to store the output first

(but no need to create i first). To do this, you’ll need to

know how big the output is going to be.

• Last-used version of objects used (i, mysample) are available

when the loop terminates – which is very helpful, if (when!)

an error occurs

• We used rexp(), but there are many built-in distributions;

rnorm(), rgamma(), rbinom(), rpois() etc

5.8

Example: data manipulation

Recall the salary example – on faculty measured over several
years. Suppose we were interested in the final observation for
each person – how to construct that dataset?

• Different numbers of observations per person – so can’t just
look at e.g. rows 1,5,11,15, ... (but see seq() if you do want
to do this)

• Different entry and exit years
• subset() won’t work, neither will use of square brackets

Instead, we can go through every id number, pull out the rows
with that id and record the one for which year is highest. Or, if
the data is sorted first (by id and time) pull out the last row for
each id number.

As before, it’s very important that we prepare an object for the
results (‘pulled out’ data, here) before running any loops.

5.9

Example: data manipulation

First sort the data, and make the empty object ready to take
output;

salary <- salary[order(salary$id, salary$year),]

View(salary) # check we know what we should get from subsetting

n <- length(unique(salary$id)) # how many individual people?

finalsalary <- salary[0,] # take just column names from salary

finalsalary[1:n,] <- NA # fill in with missing values

str(finalsalary) # check the structure we made

• order() returns the vector that puts objects in order. There
is a sort() function, but it accepts only vectors and not data
frames

• A less-sneaky way to make a new empty data frame uses e.g.
data.frame(id=NULL, age=NULL, sex=NULL)

• In RStudio, View() operates in the Source window; in vanilla
R it opens up a new window. Neither refreshes automatically

5.10

Example: data manipulation

Now for the loop;
for(i in 1:n){

id.i <- unique(salary$id)[i]
salary.i <- subset(salary, id==id.i)
n.i <- dim(salary.i)[1] # dim() for dimension
finalsalary[i,] <- salary.i[n.i,] # i.e. just the last row
} # View(finalsalary) a good idea, to check it worked

Compare the full dataset (white) and final-only version (red);

●

●●●

●●

●●●

●

●●●

●

●●●
●●
●
●
●
●●●●
●●●●
●●●
●●
●

●●●●
●
●●●●
●
●●
●

●●
●●

●
●●
●

●●
●

●

●

●●●
●●
●●
●●
●

●
●

●●
●●
●
●●

●

●
●●
●
●●●
●●
●
●●
●

●●●

●

●●
●

●
●
●●
●

●●
●●

●

●●
●
●●
●

●●
●
●●
●●
●●
●

●●
●●
●
●●●
●

●

●●
●

●

●
●
●
●
●●
●

●
●
●●●
●

●
●
●●
●

●●●●●
●●●
●●●
●

●
●●●
●●●

●
●
●●
●

●

●
●
●●
●

●
●
●
●●
●

●●●●
●

●

●●
●●
●

●

●

●

●●●●●
●
●●
●●
●●

●●
●●●
●
●●●●
●●
●
●●
●
●●

●
●●

●

●●
●
●●●

●
●●
●
●
●
●●●
●
●●
●●
●

●
●●
●

●●●
●●
●●
●
●●
●●●●
●
●●
●●●

●
●
●●
●●

●
●●

●

●

●●●

●

●
●

●

●

●

●●●
●
●●
●

full full full

20
00

60
00

10
00

0
14

00
0

sa
la

ry

●

●

●

●●

●

●●

●

●

●●
●●●
●

●

●

●●
●
●
●●

●

●

●

●
●●●
●
●

●

●●
●

●

●●●
●
●●

●
●
●

final final final

20
00

60
00

10
00

0
14

00
0

Assist Assoc Full

5.11

Example: permutation test

A classical statistical question: are the data we’ve observed

unexpected, if there’s nothing going on?

An example where we can answer this is R’s sleep data;

●● ●● ● ● ●●● ●

●● ●●● ● ●● ●●

extra hours sleep

tre
at

m
en

t

−1 0 1 2 3 4 5

1
2

• 10 subjects per group

• Groups receive different treatments, we record how many

hours sleep they get, compared to baseline

• Mean extra hours sleep is higher in group 2 (2.33 hrs vs 0.75

hrs, so difference is 1.58 hrs)

5.12

Example: permutation test

What if there were nothing going on∗, i.e. what if any differences
in mean were just chance? If so, the data we saw would be just
as likely as that obtained assigning the group labels at random;

●

● ●●

●

●

●

●● ●

●

●

●●

●

● ●

●

●●

●●

●

●

● ● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●

●●

●

● ●

●

●● ● ● ●

●

●

●●● ●●● ●

●● ●

●

●●

●● ● ●

●●●

●

●● ●

●● ●

●

● ●

● ●● ●● ●

● ●●

● ●

●●

●

●● ● ●●

●●

●

● ●●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●● ●

● ● ● ●●● ●●

● ●●●

●

●

●

●●

●

● ●

● ●

●

●

●

● ●●

● ●

●

● ● ●

● ●

●

●●

●●

●

●

●●● ●

●●

●●●

● ●● ●●

* Formally, what if the null hypothesis of equal means held, in the population

from which this data has been sampled?

5.13

Example: permutation test

To measure how unexpected our data is, we compute the
red/green difference in means for many of these permutations,
and see how the observed data compares.
orig.mean.diff <- with(sleep,

mean(extra[group==2]) - mean(extra[group==1])
)

orig.mean.diff

many.mean.diff <- vector(10000, mode="numeric") # set up place to put output
set.seed(4) # set the random seed

for(i in 1:10000){ # do this bit 10,000 times
group.shuffle <- sample(sleep$group)
many.mean.diff[i] <- with(sleep,

mean(extra[group.shuffle==2]) - mean(extra[group.shuffle==1])
)

}

• sample() returns a random shuffle of a vector
• The same calculation is made, for the original data and the

shuffled version; the difference in means is called the test
statistic

5.14

Example: permutation test

How does original data (w/ mean diff=1.58) compare to these?

Histogram of many.mean.diff

many.mean.diff

Fr
eq

ue
nc

y

−3 −2 −1 0 1 2 3

0
10

0
20

0
30

0
40

0
50

0

> table(many.mean.diff>orig.mean.diff)
FALSE TRUE
9601 399

> mean(many.mean.diff>orig.mean.diff)
[1] 0.0399
> mean(abs(many.mean.diff)>abs(orig.mean.diff))
[1] 0.0789

5.15

Example: permutation test

• The proportion of sample in the RH tail is a (valid) p-value

for a one-tailed test, where the alternative is that green >

red. p = 0.04, here

• The proportion in both tails is the p-value for a two-tail test;

p = 0.079

• There is some ‘Monte Carlo’ error in these p-values; roughly

±0.004 here, i.e. 2 decimal places in p. If that’s not good

enough, use more permutations. (Here, could use all 184,756

– but in larger samples it’s not possible)

To get a quicker (but approximate) version of the same thing;

> t.test(extra~group, data=sleep) # recall extra ‘depends on’ group
Welch Two Sample t-test
data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0

The t test makes fewer assumptions than most people think!

5.16

Notes on timing, and speed

Doing a lot of calculations can take a long time – it’s useful
to know how long. Try out the system.time() command on a
smaller version of the problem, i.e.
system.time({

for(i in 1:1000){ # just 1000, not 10000
group.shuffle <- sample(sleep$group)
many.mean.diff[i] <- with(sleep,

mean(extra[group.shuffle==2]) - mean(extra[group.shuffle==1])
)

}
})

This returns the time taken to run the outer curly brackets;
user system elapsed
0.57 0.00 0.60

... so running 100,000 permutations would take 100*0.6/60 =
1 minute, roughly. (NB this is much less time than it took to
write the code!)

If RStudio hangs, there is a ‘STOP’ button on the Console
window; in vanilla R hit Escape, or Ctrl-D.

5.17

Notes on timing, and speed

Throughout, we have stressed the importance of setting up
empty objects for the loop’s output. Why? Let’s code the
permutation test without doing this;

many.mean.diff <- NULL # this will ‘grow’, in the loop
system.time({

for(i in 1:100000){
group.shuffle <- sample(sleep$group)
mean.diff <- with(sleep,

mean(extra[group.shuffle==2]) - mean(extra[group.shuffle==1]))
many.mean.diff <- c(many.mean.diff, mean.diff) # ‘grow’ the dataset

}})

user system elapsed # CPU/child process/total
115.53 4.93 122.07

• This works, but at half the speed of the other version
• The extra time is all spend copying vector many.mean.diff –

R copies objects slowly
• The slowdown is worse for larger objects, i.e. gets worse

with more permutations, i.e. when speed really matters

5.18

Notes on timing, and speed

Compared to using a single R command (when available) to do

the job, for() loops can be inefficient.

• Add two vectors (x <- y + z) don’t add them element by

element (for(i in 1:n){ x[i] <- y[i] + z[i]})
• Recall ifelse() earlier, rather than looping over a vector.

many.samples <- matrix(data=NA, nrow=100000,ncol=20)

for(i in 1:100000){
many.samples[i,] <- sample(sleep$extra)

}
many.mean.diff <- rowMeans(many.samples[,1:10]) - rowMeans(many.samples[,11:20])

• Shuffling the outcomes is equivalent to shuffling the groups

• A matrix has all entries of the same type – less flexible than

a data.frame, but faster to work with

• This version takes 4.3s, i.e. it’s ×14 faster than the loop.

• Not available for every task – also uses more memory

5.19

Summary

• Writing loops saves a lot of typing – essential for serious

computing jobs, but helpful for data management too

• for() loops offer enough flexibility for several jobs – more to

come in the next session!

• As with all programming; break the job into lots of small

pieces, and do each one in turn

• Never never never grow the output except when doing tiny jobs where

speed is irrelevant, and then only if you promise not to fall into bad habits!

• Other looping methods exist in R – but aren’t in this module

5.20

6. More Loops, Control Structures, and

Bootstrapping

Ken Rice

Timothy Thornton

University of Washington

Seattle, July 2016

In this session

We will introduce additional looping procedures as well as control

structures that are useful in R. We also provide applications to

bootstrapping.

• Repeat and While loops,

• If-Then and If-Then-Else structures

• Introduction to the bootstrap, with examples

6.1

Repeat loops

The repeat loop is an infinite loop that is often used in

conjunction with a break statement that terminates the loop

when a specified condition is satisfied. The basic structure of

the repeat loop is:

repeat{

expression

expression

expression

if(condition) break

}

6.2

Repeat loops

Below is a repeat loop for printing the square of integers from 1

to 10.

i <- 1

repeat {

print(i^2)

i <- i+1

if(i > 10) break

}

6.3

While loops

The while loop is often used for executing a set of commands
or statements repeatedly until a specific condition is satisfied.

The structure of a while loop consists of a boolean condition
and statements that are written inside while loop brackets, for
which repetitive execution is to be carried out until the condition
of interest is satisfied:

while (condition) {

expression

expression

expression

}

It is important to note that the while loop will first check that
the condition is satisfied prior to executing a first iteration of the
commands.

6.4

While loops

Below is a while loop for printing out the first few Fibonacci

numbers: 0, 1, 1, 2, 3, 5, 8, 13,. . ., where each number is the

sum of the previous two numbers in the sequence.

a = 0

b = 1

print(a)

while (b < 50) {

print(b)

temp = a + b

a = b

b = temp

}

6.5

While loops

Below is a while loop that creates a vector containing the first

20 numbers in the Fibonacci sequence

x = c(0,1)

n=20

while (length(x) < n) {

position = length(x)

new = x[position] + x[position-1]

x = c(x,new)

}

6.6

If-Then and If-Then-Else structures

Sometimes a block of code in a program should only be executed
if a certain condition is satisfied. For these situations, if-then and
if-then-else structures can be used:

The if-then structure has the following general form:

if (condition) {

expression

expression

}

The if-then-else structure extends the same idea:

if (condition) {

expression

expression

}

else {

expression

expression

}

6.7

If-Then and If-Then-Else structures

An example: an if-then-else statement that takes the square root
of the product of two numbers x and y, if the product is positive:

x <- 3

y <- 7

if((x<0 & y<0) | (x>0 & y>0)){

myval <- sqrt(x*y)

}

else{

myval <- NA

}

And the value of myval when x=3 and y=7 is:

> myval

[1] 4.582576

What is myval if x=2 and y=-10?

> myval

[1] NA

6.8

Introduction to bootstrapping

Bootstrapping is a very useful tool when the distribution of a

statistic is unknown or very complex.

Bootstrapping is a non-parametric (i.e. assumption-lite) re-

sampling method for estimaing standard errors, computing

confidence intervals, and hypothesis testing.

The method is often used when sample sizes are small and

asymptotic (i.e. large-n) approximations, may be difficult to

apply.

“The bootstrap is a computer-based method for assigning

measures of accuracy to sample estimates.” [B. Efron and R. J.

Tibshirani, An Introduction to the Bootstrap, Boca Raton, FL:

CRC Press, 1994.]

6.9

Introduction to bootstrapping

Bootstrapping uses three steps:

• Resample a given data set with replacement a specified

number of time, where each bootstrap sample is the same

size as the original sample

• Calculate a statistic of interest for each of the bootstrap

samples.

• The distribution of the statistic from the bootstrap samples

can then be used to estimate standard errors, create confi-

dence intervals, and to perform hypothesis testing with the

statistic.

6.10

Example: bootstrapping the median

We can bootstrap in in R by going round a loop, using the

sample(x, size, replace, prob) function at each iteration:

• x is a vector containing the items to be resampled.

• size specifies how many resamples to take: the default is the

length of x

• replace determines if the sample will be drawn with or with-

out replacement. The default value, FALSE i.e. sampling is

performed without replacement

• prob lets us specify unequal probabilities of resampling each

element of x – not needed here

Bootstrapping uses resamples of the same size as the original

data, sampling with replacement – so sample(x, replace=TRUE)

6.11

Example: bootstrapping the median

Let’s consider the airquality dataset again. Below is a histogram
of the daily ozone concentrations in New York, summer 1973.

hist(airquality$Ozone,col="lightblue",xlab="Ozone Concentrations",

main="Ozone Concentrations in NY (Summer 1973)")

Ozone Concentrations in NY (Summer 1973)

Ozone Concentrations

Fr
eq

ue
nc

y

0 50 100 150

0
10

20
30

What’s the median

ozone level?

How accurately

do we know the

median?

6.12

Example: bootstrapping the median

First, let’s work out the median;

> median(airquality$Ozone)

[1] NA

Several ozone concentration values are missing, but if we take

the median of the 116 observed values;

> median(airquality$Ozone,na.rm=TRUE)

[1] 31.5

How might this value differ, in other similar experiments? We

will use the bootstrap to estimate its distribution, and to provide

a 95% confidence interval for the median.

6.13

Example: bootstrapping the median

To make the code easier to read, make a vector of the ozone

concentrations with missing values excluded:

ozone <- airquality$Ozone[!is.na(airquality$Ozone)]

Using a for() loop, we can create 10,000 bootstrap samples and

calculate the median for each sample:

nboot <- 10000 # number of bootstrap samples

bootstrap.medians <- rep(NA, nboot)

set.seed(10)

for(i in 1:nboot){

bootstrap.medians[i] <- median(sample(ozone,replace=TRUE))

}

6.14

Example: bootstrapping the median

What do the medians look like? How do they compare with
original ‘raw’ data?

hist(bootstrap.medians,col="lightblue",xlab="Bootstrap Medians",

main="Bootstrap Medians for Ozone Concentrations in NY",cex.main=.8)

Medians of Bootstrapping Samples for Ozone Concentration in NY

Bootstrap Medians

Fr
eq

ue
nc

y

20 25 30 35 40 45 50

0
50

0
15

00
25

00

10,000 of them,

not 116

Much less skewed

than raw data

Much less variable

than raw data

6.15

Example: bootstrapping the median

The 95% confidence interval is given by the .025 and .975

quantiles of those boostrap medians;

> quantile(bootstrap.medians, c(0.025, 0.975))

2.5% 97.5%

23.5 39.0

• Could read off from the previous graph

• (23.5, 39.0) is a range of median values we might expect

to see (i.e. the uncertainty in the medians) if repeating the

experiment many times

• This method does assume that the ozone measurement on

different days is independent so probably understates uncertainty, here!

6.16

Example: bootstrap for lowess curve

The bootstrap is a very powerful idea. For a more sophisticated
example, recall the cars data, and the line we put through it;

data(cars)

plot(dist~speed,data=cars)

with(cars, lines(lowess(speed, dist), col="tomato", lwd=2))

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

6.17

Example: bootstrap for lowess curve

To bootstrap the curve, we resample entire observations;

m <- dim(cars)[1] # obtain the sample size
nboot <- 20
for(i in 1:nboot){

mysample <- sample(1:m, replace=T) # i.e. which rows are resampled?
with(cars[mysample,],

lines(lowess(speed, dist), col=(i+1), lwd=2)
)}

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

6.18

Example: bootstrap for lowess curve

For a smoother version, note lowess() only produces output at

the sampled points – so we extrapolate to the others using

approx();

nboot <- 1000
boot.speed <- matrix(NA, 1000, m) # for storing the curve’s value at all m points
set.seed(1314) # Battle of Bannockburn
for(i in 1:nboot){

mysample <- sample(1:m,replace=T)
low1 <- with(cars, lowess(speed[mysample], dist[mysample]))
low.all <- approx(low1$x, low1$y, xout=cars$speed, rule=2)
boot.speed[i,] <- low.all$y

}

Now work out the lower and upper ranges of the lines, at all m
values of speed;

upper <- rep(NA, m)
lower <- rep(NA, m)
for(j in 1:m){
upper[j] <- quantile(boot.speed[,j], 0.975)
lower[j] <- quantile(boot.speed[,j], 0.025)}

6.19

Example: bootstrap for lowess curve

Finally, make a cool blue picture, using transparency;

plot(dist~speed,data=cars)
for(i in 1:nboot){

lines(x=cars$speed, y=boot.speed[i,], col="#0000FF05") }
with(cars, lines(lowess(speed, dist), col="tomato", lwd=2)) # raw data lowess
polygon(x=c(cars$speed, rev(cars$speed)), y=c(upper, rev(lower)),

density=0, col="red", lty=2) # pointwise 95% conf ints

6.20

Summary

• while{} and repeat{} are useful tools for looping until a

condition is satisfied

• if-then and if-then-else structures allow blocks of code to be

executed under different specified conditions

• Bootstrapping is a powerful statistical technique for express-

ing accuracy/inaccuracy. (Almost all other methods used for

this can be thought of as approximations to some form of

bootstrap)

• Bootstrapping can be implemented in a few lines of R, using

loops and the sample() function

6.21

7. Fitting models

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

Disclaimer/Warning

In statistics, as in fashion, a model is an idealization of reality.

Peter McCullagh

JRSSD (1999) 48:1

Models basically play the same role in economics as in fashion:
they provide an articulated frame on which to show off your
material to advantage ...; a useful role, but fraught with the
dangers that the designer may get carried away by his personal
inclination for the model, while the customers may forget that
the model is more streamlined than reality.

Jacques Drèze

Economic Journal (1985) 95:380

7.1

In this session

... we will not attempt to teach all of statistical modeling.

Instead, we’ll cover;

• More about the formula syntax (Y ∼ X), and some functions

that use it to fit models

• Some explanation of what these functions are doing, and

why it might be useful

• Some ‘helper’ functions, used when fitting models

7.2

Example: the t-test

Recall the sleep example from Session 5. We want to compare

mean levels of extra sleep, in Group 1 and 2. The full version of

the code and output;

> t.test(extra~group, data=sleep)
Welch Two Sample t-test

data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832

sample estimates:
mean in group 1 mean in group 2

0.75 2.33

• extra is the outcome, it depends on group – for an analogous

graphical comparison use plot(extra∼group, data=sleep)

• Confidence interval is for difference in means

• p-value: null hypothesis is of equal means (2-sided test)

7.3

Example: linear regression

Another favorite example;

●

●

●

●

●●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4 6 8

−2
0

2
4

6
8

log(body)

lo
g(

br
ai

n)

Straight line suggests log(brain) higher by ≈0.75 units, per 1-

unit difference in log(body) – i.e. a power law, brain ∝ body0.75.

7.4

Example: linear regression

Where does the straight line come from? One way∗ to justify it
is as the least squares fit;

−10 −5 0 5 10

−2
0

2
4

6
8

log(body)

lo
g(

br
ai

n)

Any other choice of line would use more purple ink.

* there are several – too many to discuss here!

7.5

Example: linear regression

Finding the least-squares fit is known as ‘simple’ linear regression,

or fitting a linear model. In R;

> mammals.reg <- lm(log(brain)~log(body), data=mammals)
> summary(mammals.reg)

Call:
lm(formula = log(brain) ~ log(body), data = mammals)

Residuals:
Min 1Q Median 3Q Max

-1.71550 -0.49228 -0.06162 0.43597 1.94829

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.13479 0.09604 22.23 <2e-16 ***
log(body) 0.75169 0.02846 26.41 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6943 on 60 degrees of freedom
Multiple R-squared: 0.9208,Adjusted R-squared: 0.9195
F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

7.6

Example: linear regression

The summary() is fairly verbose; (SAS is a lot worse!)

• Function lm() make an lm.object, containing the output of

the regression; try str(mammals.reg) to see that summary()

picks out the most important bits

• Call restates the formula, Residuals summarizes how small

our ‘least’ square edges are

• Coefficient; the fitted line is

log(brain) = 2.13+ 0.75× log(body)

The intercept (2.13) is (sensibly) added by default.

• Std. Error describes the noise in each estimate – smaller

when you have more data

• Pr(> |t|) is a two sided p-value, for the null hypothesis that

the relevant coefficient is zero

• Other terms describe remaining ‘noise’

7.7

Example: linear regression

The next-most useful summary; (recall bootstrap intervals)

> confint(mammals.reg, parm="log(body)", level=0.95)
2.5 % 97.5 %

log(body) 0.6947503 0.8086215
> confint(mammals.reg, parm=1:2, level=0.975)

1.25 % 98.75 %
(Intercept) 1.9139805 2.355597
log(body) 0.6862469 0.817125

• For lm.objects, confint() gives intervals based on point
estimate ± Std. Error × the appropriate quantile of the
appropriate t distribution

• confint.default() uses Normal quantiles instead
• level is the confidence level, default is 95%
• parm can be a vector of coefficient names, or a vector of

numbers; the default gives intervals for all terms
• Like most software, R gives an insane number of decimal

places – in the final write-up round std errs to 1 significant
figure, using signif(), and round() estimates to this precision

7.8

Example: linear regression

To ‘extract’ other parts of an lm.object, you can use the
$ (apostrophe-S) symbol, e.g. mammals.reg$coef is the point
estimates. But R’s regression functions also have generic
extractor functions, helpful for common jobs;

• coef(mammals.reg) – gives the fitted coefficients
• fitted(mammals.reg) returns the fitted log(brain) values (i.e.

mean Y), for each data point (i.e. each X)
• residuals(mammals.reg) returns log(body) minus the fitted

value – that we minimized the sum of, when squared
• predict(mammals.reg, new.data.frame) predicts the mean log(brain)

(i.e. Y) for which you supply log(body)

Experts: vcov() gives the variance-covariance matrix, describing
the statistical noise in the coefficients; sqrt(diag(vcov(mammals.reg)))
is the same as Std. Error column in summary() output.

For more of these (some fairly esoteric) use methods(class="lm").

7.9

Example: linear regression

Experts again: plot() has a method for lm.objects;

par(mfrow=c(2,3))
plot(mammals.reg, which=1:6)

−2 0 2 4 6 8

−2
−1

0
1

2

Fitted values

R
es

id
ua

ls

●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

Residuals vs Fitted
Human

Water opossum

Rhesus monkey

●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

−2 −1 0 1 2

−2
0

1
2

3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s Normal Q−Q

Human

Water opossum

Rhesus monkey

−2 0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

Scale−Location
Human

Water opossumRhesus monkey

0 10 20 30 40 50 60

0.
00

0.
06

0.
12

Obs. number

C
oo

k's
 d

is
ta

nc
e

Cook's distance
Human

Musk shrewWater opossum

0.00 0.02 0.04 0.06 0.08 0.10

−3
−1

1
2

3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●
●

Cook's distance
0.5

0.5

Residuals vs Leverage
Human

Musk shrew

Water opossum

0.
00

0.
06

0.
12

Leverage hii

C
oo

k's
 d

is
ta

nc
e

●

●

●

●

●●●●
●

●

●

●● ●●
●
●
●

●●

●
●●●

●

●

● ●
●●●

●

●

●●

●

●
●

● ●● ●● ●
●

●●

●
●

●●
●

●

●

●

●

●

●●

●
●●

0 0.02 0.04 0.06 0.08 0.1

0

0.5

11.522.53

Cook's dist vs Leverage hii (1 − hii)
Human

Musk shrewWater opossum

7.10

Example: salaries again

Another familiar example; how does salary depend on rank?

plot(salary~rank, data=finalsalary)

●

●

●

●●

●

●●

●

●

●●

●●●
●

●

●

●●
●
●
●●

●

●

●

●
●●●
●
●

●

●●
●

●

●●●
●
●●

●

●
●

Assist Assoc Full

40
00

60
00

80
00

12
00

0

rank

sa
la

ry

As a regression, we could ask whether the mean salary is different
at different ranks. NB With one final salary per person, it’s
reasonable to assume independent observations.

7.11

Example: salaries again

For independent outcomes, comparison of means is exactly what

‘analysis of variance’ does ...despite the name!

> salary.aov <- aov(salary~rank, data=finalsalary)
> summary(salary.aov)

Df Sum Sq Mean Sq F value Pr(>F)
rank 2 2.642e+09 1.321e+09 529.6 <2e-16 ***
Residuals 1593 3.974e+09 2.495e+06

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
1 observation deleted due to missingness
> model.tables(salary.aov, type="means")
Tables of means
Grand mean

6391.161
rank

Assist Assoc Full
4650 5335 7584

rep 314 437 845
> table(finalsalary$rank)
Assist Assoc Full

315 437 845 # spot the difference

7.12

Example: salaries again

‘Under the hood’, aov() runs group-specific linear regressions
with just an intercept (salary∼1, in the formula syntax) and
recombines them. Here, least-squares ≡ take each group’s mean.

A simpler approach∗ uses regression directly; (edited output)

> salary.lm <- lm(salary~rank, data=finalsalary)
> summary(salary.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4650.43 89.13 52.173 < 2e-16 ***
rankAssoc 684.31 116.85 5.856 5.74e-09 ***
rankFull 2933.93 104.39 28.106 < 2e-16 ***

(1 observation deleted due to missingness)
F-statistic: 529.6 on 2 and 1593 DF, p-value: < 2.2e-16

• Same F statistic, and p-value, equivalent point estimates
• Intercept describes mean salary in Assist Profs (again)
• Other coefficients describe differences – so e.g. p = 5.74 ×

10−9 is for testing Assist=Assoc. Assist is ‘reference’ level

* preferred by most statisticians, though not all

7.13

Multiple regression

Say you wanted to know how salary depended on start year at

UW, and on year of final degree (≈ age, here)

> mreg <- lm(salary~ yrdeg + startyr, data=finalsalary)
> summary(mreg)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13583.596 375.936 36.133 < 2e-16 ***
yrdeg -118.455 7.380 -16.051 < 2e-16 ***
startyr 22.438 7.275 3.084 0.00208 **

• Starting later is associated with greater salary (+22.44) in

people with same year of degree

• Getting a degree earlier associated with less salary (-118.46)

in those who started in same year

• In the formula, ‘+’ means ‘and’. To regress on multiple

covariates, use y ∼ x + z + u + v + ...

• To use ‘plus’ in a formula (or minus) I() is for insulate;

y ∼ x + I(z + u) regresses Y on X and the sum of Z + U

7.14

Multiple regression

Regressing Y on X and Z fits a plane;

7.15

Multiple regression

To test hypotheses involving more than one parameter at a time,
use anova() to compare the fitted models with and without those
parameters;

> mreg <- lm(salary~ yrdeg + startyr, data=finalsalary)
> mreg0 <- lm(salary~ yrdeg + startyr + rank, data=finalsalary)
> anova(mreg, mreg0)
Analysis of Variance Table

Model 1: salary ~ yrdeg + startyr
Model 2: salary ~ yrdeg + startyr + rank

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1593 5025366914
2 1591 3834775234 2 1190591680 246.98 < 2.2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• Here testing any difference between ranks, adjusted for the
other two variables – order doesn’t matter

• Not the same as aov()!
• With only one model, anova() tests each coefficient, in order

of appearance – order does matter

7.16

Logistic regression

When Y is binary (e.g. 1/0, yes/no, dead/alive) the expected
value of Y is the probability that Y = 1.

48 51 55 58 61 64 67 70 73 76 79 82 85 88 91 94

year of degree

P
r(

sa
la

ry
>6

00
0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1/
10

0
1/

5
1/

2
1

2
5

10
0

O
dd

s(
sa

la
ry

>6
00

0)

Linear regression’s straight line might give a poor summary.

7.17

Logistic regression

Instead of a straight line, logistic regression fits a curve through
the data;

48 51 55 58 61 64 67 70 73 76 79 82 85 88 91 94

year of degree

P
r(

sa
la

ry
>6

00
0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1/
10

0
1/

5
1/

2
1

2
5

10
0

O
dd

s(
sa

la
ry

>6
00

0)

The fitted odds shrink by ≈10%, for each extra year.

7.18

Logistic regression

The glm() command does this (close relative of lm())

> glm1 <- glm(salary>6000 ~ yrdeg, data=finalsalary, family=binomial)
> summary(glm1)
Call:
glm(formula = salary > 6000 ~ yrdeg, family = binomial, data = finalsalary)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.2923 -0.9342 -0.5215 0.9674 1.9871
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.743524 0.490335 15.79 <2e-16 ***
yrdeg -0.101791 0.006403 -15.90 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2212.5 on 1595 degrees of freedom
Residual deviance: 1895.9 on 1594 degrees of freedom

(1 observation deleted due to missingness)
AIC: 1899.9
Number of Fisher Scoring iterations: 4

NB turn those #&*%ing stars off! options(show.signif.stars=FALSE)

7.19

Logistic regression

The coefficients here are log odds (for the Intercept) and log
odds ratios. So, for a confidence interval around the ‘10%
smaller’ result;

> confint(glm1, "yrdeg", level=0.95)
Waiting for profiling to be done...

2.5 % 97.5 %
-0.11454628 -0.08943648
> confint.default(glm1, "yrdeg", level=0.95)

2.5 % 97.5 %
yrdeg -0.1143396 -0.0892416
> round(exp(confint.default(glm1, "yrdeg", level=0.95)), 3)

2.5 % 97.5 %
yrdeg 0.892 0.915

• The default is fairly sophisticated; for typical symmetric
intervals use confint.default()

• ... then exponentiate to get interval for the odds ratio

All the extractor functions we saw before are available – and use
the formula syntax to regress on multiple covariates.

7.20

Other regressions, other tests

In glm(), other family arguments provide other forms of regres-
sions – too many for our course. Some other tests;

> tab1 <- with(droplevels(subset(finalsalary, yrdeg>87 & rank!="Full")),
+ table(salary>6000, rank))
> tab1

rank
Assist Assoc

FALSE 199 24
TRUE 25 8

> chisq.test(tab1)
Pearson’s Chi-squared test with Yates’ continuity correction
X-squared = 3.6229, df = 1, p-value = 0.05699
Warning message:
In chisq.test(tab1) : Chi-squared approximation may be incorrect
> fisher.test(tab1)
Fisher’s Exact Test for Count Data
p-value = 0.04413
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9243447 6.9357450

sample estimates:
odds ratio

2.640338

7.21

Summary

• There are R implementations of almost every regression
method

• Most use the formula syntax, also used for plotting –
naturally, because both describe how outcome Y depends
on some covariates

• The default in lm() and glm() is to drop cases with NAs –
without warning you

• Extractor functions save time, and make code easier to read

There are many more regression methods available, beyond what
‘plain vanilla’ R provides – in the next session we’ll discuss use
of ‘packages’, to extend R.

7.22

8. Introduction to R Packages

Ken Rice

Timothy Thornton

University of Washington

Seattle, July 2016

In this session

‘Base’ R includes pre-installed packages that allow for a fully

functioning statistical environment in which a variety of analyses

can be conducted.

Thousands of user-contributed extension ‘packages’ are available

that provide enhanced functionality with R. We’ll discuss;

• Loading packages, and seeing what’s in them

• Finding and installing packages

• Some examples, using available packages on CRAN

8.1

CRAN Packages

One factor in R’s success is the way it allows authors to rapidly

develop and disseminate packages, containing resources (with

documentations) that will be useful to others.

R packages are collections of functions, data, and compiled code,

in a well-defined format. These are made available – either direct

from R or via a web browser – through the Comprehensive R

Archive Network (CRAN)

At the time of writing there are 8,729 packages available on

CRAN!

8.2

CRAN Packages

Base R’s recommended packages (below) are available on CRAN:

... though most downloads provide them automatically.

8.3

Example: the foreign package

The foreign package is one of those recommended with base R,

and also lives on CRAN. It contains several useful functions that

import and export data, to/from a variety of formats.

To use these functions, first load it into your current session;

library("foreign")

• Its function read.spss() reads SPSS data files;

dat.spss <- read.spss("http://faculty.washington.edu/tathornt/sisg/hsb2.sav",
to.data.frame=TRUE)

• Its function read.dta() reads in Stata files;

dat.dta <- read.dta("http://faculty.washington.edu/tathornt/sisg/hsb2.dta")

• After loading a package, look up the help files for commands

with e.g. ?read.spss and ?read.dta

• If you don’t know its commands, try library(help="foreign")

or help(package="foreign"), or look online e.g. via Google

8.4

Installing packages

Sometimes, we need more than the recommended packages.
When you find an R package (e.g. via Google) of use to you,
first install it – here, by following the drop-down menus;

RStudio Base R’s GUI

...after going online! The coded way is, for the hexbin package;

install.packages("hexbin")

• In base R, expect to specify a CRAN mirror site
• Write-privileges can be an issue; the defaults are sensible

8.5

Installing packages

The wider world of R packages and tools;

8.6

Vignettes

In addition to the ‘plain vanilla’ help files, many (but not all)

packages include ‘vignettes’. These documents give an overview

of the package, usually including some worked examples.

To find vignettes, use browseVignettes() – noting the capitaliza-

tion. For example, once you found out that the hexbin package

does things you are interested in;

install.packages("hexbin") # download it (once, for each version of R)
library("hexbin") # make it available in the current R session
browseVignettes("hexbin") # see some tutorials
help(package="hexbin") # get to the help files

The vignette() function also finds vignettes – but it’s clunkier;

vignette(package="hexbin")
vignette(topic="hexagon_binning")

8.7

Masking: overlapping object names

With so many packages by different authors, it’s inevitable that,
sometimes, multiple packages use the same name for distinct
objects. For example, if you were using both the plyr and reshape

packages in the same session;

> library("plyr")
> library("reshape")
Attaching package: reshape

The following objects are masked from package:plyr:
rename, round_any

• Masking means two objects have the same name. R uses the
one loaded most recently, i.e. the reshape version, here

• If you are going to use these functions, pay attention!
• You may not know you will use these functions – perhaps
round any() is called from within other functions

• If you really need to, use the masked version directly with
e.g. plyr::rename() – or use the get() function. But these
are best avoided, unless you are an expert – perhaps writing
a complicated package of your own

8.8

But what’s already been loaded?

The sessionInfo() command will tell you this – and what version
of R you are using;

> sessionInfo()
R version 2.13.0 (2011-04-13)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:
[1] en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid stats graphics grDevices utils
datasets methods base
other attached packages:
[1] hexbin_1.26.0 lattice_0.19-23 foreign_0.8-43

loaded via a namespace (and not attached):
[1] tools_2.13.0

NB if you get warnings about R versions, try update.packages()

to update packages you have, new.packages() to see what’s
available, or (more rarely) old.packages() to revert.

8.9

But what’s already been loaded?

To see the order in which packages in the current R session were

attached, use search();

> search()
[1] ".GlobalEnv" "package:hexbin" "package:lattice"
[4] "package:grid" "package:foreign" "tools:RGUI"
[7] "package:stats" "package:graphics" "package:grDevices"
[10] "package:utils" "package:datasets" "package:methods"
[13] "Autoloads" "package:base"

• .GlobalEnv is the familiar command line environment – easy

to inspect, with RStudio

• It’s also possible to attach() datasets, which also appear in

the search() list. This may save you some typing, but beware

masking problems if you use object X and also mydata$X –

so this approach is not recommended. (Beware out-of-date

teaching resources!)

8.10

Example: the survey package

The survey package includes a data set named api containing
California Academic Performance Index for 6194 schools;

library("survey")
help(package="survey") # look for the "api" entry
data(api, package="survey") # make the apipop dataset available

Plotting the data, perhaps colored by school type, we see how
crowded scatterplots can be with large data sets;

> summary(apipop[,c("api99","api00","stype")])
api99 api00 stype

Min. :302.0 Min. :346.0 E:4421
1st Qu.:527.0 1st Qu.:565.0 H: 755
Median :631.0 Median :667.0 M:1018
Mean :631.9 Mean :664.7
3rd Qu.:734.0 3rd Qu.:761.0
Max. :966.0 Max. :969.0

> plot(api00~api99, data=apipop)
> colors <- c("tomato","forestgreen","purple")[apipop$stype]
> plot(api00~api99, data=apipop, col=colors)

(Keen people: note we recode E/H/M to 1/2/3 to tomato/forestgreen/purple.)

8.11

Example: the survey package

8.12

Example: the survey package

8.13

Example: the hexbin package

When there are many data points and significant overlap,

scatterplots become less useful.

The hexbin() function in the hexbin package provides a way to

aggregate the points in a scatterplot. It computes the number

of points in each hexagonal bin.

library("hexbin")

with(apipop, plot(hexbin(api99,api00), style="centroids"))

The style="centroids" option plots filled hexagons, at the

centroid of each bin. The sizes of the plotted hexagons are

proportional to the number of points in each bin.

8.14

Example: the hexbin package

300 400 500 600 700 800 900

400

500

600

700

800

900

17
121823293440465157626873798490

Counts

8.15

Summary

• Many functions in R live in optional packages, and thousands

of packages are available on CRAN for downloading

• The install.packages() function is used for installing an

extension package

• The library() function lists packages, shows help, or loads

packages from the package library

• If/when masking occurs, packagename::function() can be

used to access a function in a package that has been masked

due to another loaded package having a function with the

same

8.16

9. Writing Functions

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

In this session

One of the most powerful features of R is the user’s ability to

expand existing functions and write custom functions. We will

give an introduction to writing functions in R.

• Structure of a function

• Creating your own function

• Examples and applications of functions

9.1

Introduction

Functions are an important part of R because they allow the user

to customize and extend the language.

• Functions allow for reproducible code without copious/error

prone retyping

• Organizing code into functions for performing specified tasks

makes complex programs tractable

• Often necessary to develop your own algorithms or take

existing functions and modify them to meet your needs

9.2

Structure of a function

Functions are created using the function() directive and are

stored as R objects.

Functions are defined by;

1. A function name with assignment to the function() directive.

(Function names can be almost anything. However, the

usage of names of existing functions should be avoided.)

2. The declaration of arguments/variables ‘passed’ to the

function

3. Finally, giving the operations (the function body) that

perform computations on the provided arguments

9.3

Structure of a function

The basic structure of a function is:

my.func <- function(arg1, arg2, arg3, ...) {

<commands>

return(output.object)

}

• Function arguments (arg1, arg2, ...) are the objects ‘passed’

to the function and used by the function’s code to perform

calculations.

• The <commands> part describes what the function will do to

arg1, arg2

• After doing these tasks, return() the output of interest. (If

this is omitted, output from the last expression evaluated is

returned)

9.4

Calling a function

Functions are called by their name followed by parentheses
containing possible argument names.

A call to the function generally takes the form;

my.func(arg1=expr1, arg2=expr2, arg3=exp3, ...)

or

my.func(expr1, expr2, expr3, ...)

• Arguments can be ‘matched’ by name or by position (recall
Session 2, and use of defaults when calling functions)

• A function can also take no arguments; entering my.func()

will just execute its commands. This can be useful, if you
do exactly the same thing repeatedly

• Typing just the function name without parentheses prints the
definition of a function

9.5

Function body – more details

• The function body appears within {curly brackets}. For

functions with just one expression the curly brackets {} are

not required – but they may help you read your code

• Individual commands/operations are separated by new lines

• An object is returned by a function with the return()

command, where the object to be returned appears inside

the parentheses. Experts: you can return() from any place

in the function, not just in the final line

• Variables that are created inside the function body exist only

for the lifetime of the function. This means they are not

accessible outside of the function, in an R session

9.6

Example: returning a single value

Here’s a function for calculating the coefficient of variation (the
ratio of the standard deviation to the mean) for a vector;

coef.of.var <- function(x){

meanval <- mean(x,na.rm=TRUE) # recall this means "ignore NAs"

sdval <- sd(x,na.rm=TRUE)

return(sdval/meanval)

}

Translated, this function says “if you give me an object, that I
will call x, I will store its mean() as meanval, then its sd() as sdval,
and then return their ratio sdval/meanval.”

Doing this to the airquality’s 1973 New York ozone data;

> data(airquality) # make the data available in this R session

> coef.of.var(airquality$Ozone)

[1] 0.7830151

9.7

Example: returning multiple values

A function can return multiple objects/values by using list() –

which collects objects of (potentially) different types.

The function below calculates estimates of the mean and

standard deviation of a population, based on a vector (x) of

observations;

popn.mean.sd <- function(x){
n <- length(x)
mean.est <- mean(x,na.rm=TRUE)
var.est <- var(x,na.rm=TRUE)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

• The in-built var() applies a bias correction term of n/(n−1),

which we don’t want here

• Easier to write a new function than correct this every time

9.8

Example: returning multiple values

Applying our popn.mean.sd() function to the daily ozone concen-

trations in New York data;

> results <- popn.mean.sd(airquality$Ozone)

> attributes(results) #list the attributes of the object returned

$names

[1] "mean" "sd"

> results$mean

[1] 42.12931

> results$sd

[1] 32.8799

• Elements of lists can also be obtained using double square

brackets, e.g. results[[1]] or results[[2]].

• Can also use str() to see what’s in a list

9.9

Declaring functions within functions

Usually, functions that take arguments, execute R commands,
and return output will be enough. But functions can be declared
and used inside a function;

square.plus.cube <- function(y) {

square <- function(x) { return(x*x) }

cube <- function(x) { return(x^3) }

return(square(y) + cube(y))

}

Translated; “if you given me a number, that I will call y, I will
define a function I call square that takes a number that it calls x

and returns x-squared, then similarly one I call cube that cubes,
then I will return the sum of applying square to y and cube to y”.

> square.plus.cube(4)

[1] 80

9.10

Example: function returning a function

And functions can also return other functions, as output;

make.power <- function(n){

pow <- function(x){x^n}

pow

}

Translated; “if you given me a number, that I will call n, I will
define a function that takes a number that it calls x and raises
x to the nth power, and I will return this function”.

cube <- make.power(3)

square <- make.power(2)

> cube(3)

[1] 27

> square(3)

[1] 9

9.11

Example: functions as arguments

Functions can take other functions as arguments. This is helpful
with finding roots of a function; values of x such that f(x) = 0.

The Newton-Raphson method finds roots of f(x) = 0 by the
following iteration procedure:

xn+1 = xn − f(xn)

f ′(xn)

9.12

Example: functions as arguments

A function to implement the Newton-Raphson method, given
input of arguments, a place to start, and convergence tolerance:

newton.raphson <- function(f,fprime,x0,thresh){

myabsdiff <- Inf

xold <- x0

while(myabsdiff>thresh){ # have we converged yet? If no, move;

xnew <- xold-f(xold)/(fprime(xold))

myabsdiff <- abs(xnew-xold)

xold <- xnew

}

return(xnew)

}

• Inf is (positive) infinity – here, it ensures we go round the
loop at least once

• Recall we saw while() loops in Session 6
• We could also use repeat() here

9.13

Example: functions as arguments

We’ll find the roots of f(x) = x2+3x−5, using Newton-Raphson.
We need the derivative of f(x): f ′(x) = 2x+3

myf <- function(x){ x^2 + 3*x - 5 }

myfprime <- function(x){ 2*x + 3 }

We use the newton.raphson() function with initial value of 10 and
a convergence threshold of 0.0001 to obtain a root:

> newton.raphson(f=myf,fprime=myfprime,x0=10,thresh=0.0001)

[1] 1.192582

−10 −5 0 5 10

0
20

40
60

80
10

0

x

m
yf

(x
)

How did we do?

−b±
√

b2 − 4ac

2a
=

−3±
√

32 + 4× 5

2
≈ −4.19,1.19

(Try other values of x0 to

find the other root)

9.14

Tips for writing functions

• Avoid rewriting the same code... use functions!

• Modularize as much as possible: write function that call other

functions. (Start with the low-level ones)

• Test your functions: use data/arguments for which you know

the results to verify that your functions are working properly

• Later on: provide documentation, including detailed com-

ments describing the procedures being conducted by the

functions, especially for large, complex programs

• Use meaningful variable and function names

9.15

Summary

• User-defined functions are easy to create in R, with my.fun <-

function(argument list)

• Arguments of a function are allowed to be practically any
R object including lists, numeric vectors, data frames, and
functions

• In functions calls, arguments are matched by name or by
position

• An object can be returned by a function with return(). If
return() is not invoked, the last evaluated expression in the
body of a function will be returned.

• list() can be used for returning multiple values

9.16

10. The End

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2016

In this session

We will;

• Review of the HW exercise

• Some other packages, that interact with the wider world

• Answer any last questions, and advertise other modules

Note that slides not printed for this session – but a review of the

HW exercise will be made available on the course site.

Also note the course site remains ‘up’, if you need to review it

in future.

10.1

