Inference in Randomized Trials with Death and Missingness SISCR Shortcourse

Daniel Scharfstein
Johns Hopkins University dscharf@jhu.edu

$$
\text { July 26, } 2016
$$

HT-ANAM 302 Study

- Anamorelin is a drug developed for the treatment of cancer cachexia and anorexia.
- HT-ANAM 302 was a randomized, double-blind, placebo-controlled Phase III study designed to evaluate the efficacy of anamorelin in patients with advanced non-small cell lung cancer.
- Lean body mass (LBM) was scheduled to be measured at baseline $\left(Y_{0}\right), 6$ weeks $\left(Y_{1}\right)$ and 12 weeks $\left(Y_{2}\right)$
- Primary functional endpoint: $Z=\frac{\left(Y_{2}+Y_{1}\right)}{2}-Y_{0}$

Death and missingness

	Placebo	Anamorelin
	$n=157$	$n=322$
Died Prior to Wk 12	$24(15.3 \%)$	$54(16.8 \%)$
Survivors with complete data	$93(59.2 \%)$	$185(57.5 \%)$
Survivors missing only Wk 6	$3(1.9 \%)$	$17(5.3 \%)$
Survivors missing only Wk 12	$17(10.8 \%)$	$31(9.6 \%)$
Survivors missing both Wks 6, 12	$20(12.7 \%)$	$35(10.9 \%)$

Central Question

How should data from studies like HT-ANAM 302 be analyzed to evaluate the effect of treatment on the functional outcome?

Key Issue

- Distinction between missing data and data truncated by death
- Missing data: exist but not collected
- Data truncated by death: does not exist and undefined
- Can't just treat as a missing data problem.

Common Approaches

(1) Evaluate treatment effect on functional outcome conditional on survival

- Conditioning on post-baseline factor
(2) Joint modeling survival and functional outcomes
- Allows extrapolation of outcomes after death
(3) Principal stratification
- Applies to a subset of patients who are not identifiable at baseline
(4) Composite endpoint combining survival and functional outcomes
- May be hard to separate effect on function.

Bottom Line

NO PERFECT SOLUTIONS

Not a fan of Approaches 1 and 2.

Goal

To construct a composite endpoint approach that handles both death and missing data

Notation

- $T=0,1$: treatment assignment
- X vector baseline covariates
- Y_{0} : baseline functional measure at t_{0}
- Y_{1}, \ldots, Y_{K} : functional outcomes at t_{1}, \ldots, t_{K}
- L : survival time
- $A_{k}=I\left(L>t_{k}\right)$: survival status at t_{k}
- $Z=g\left(Y_{0}, \ldots, Y_{K}\right)$: primary functional endpoint
- e.g. $K=2, Z=\left(Y_{2}+Y_{1}\right) / 2-Y_{0}$
- only defined when $A_{K}=1$

Composite Outcome

Finite-valued random variable U which assigns a score to each patient such that

- each patient who dies prior to t_{K} is assigned a score according to their survival time (L), with shorter survival times assigned lower scores
- each patient who survives past t_{K} is assigned a score (higher than those who died prior to t_{K}) according to their functional status (Z), with lower functional status assigned lower scores.
Only the ordering of U is important, not the actual score assignments.

Mathematical Definition

- Let $W=L$ if $A_{K}=0$ and $W=Z$ if $A_{K}=1$
- U is a function of $\left(A_{K}, W\right)$
- U is defined such that
- For all $\omega \in \Omega, U(\omega)<c$ when $A_{K}(\omega)=0$
- For all $\omega, \omega^{\prime} \in \Omega$

$$
\begin{array}{ll}
U(\omega)<U\left(\omega^{\prime}\right) & \text { if } A_{K}(\omega)=A_{K}\left(\omega^{\prime}\right), W(\omega)<W\left(\omega^{\prime}\right) \\
U(\omega)>U\left(\omega^{\prime}\right) & \text { if } A_{K}(\omega)=A_{K}\left(\omega^{\prime}\right), W(\omega)>W\left(\omega^{\prime}\right) \\
U(\omega)=U\left(\omega^{\prime}\right) & \text { if } A_{K}(\omega)=A_{K}\left(\omega^{\prime}\right), W(\omega)=W\left(\omega^{\prime}\right) \\
U(\omega)<U\left(\omega^{\prime}\right) & \text { if } A_{K}(\omega)=0, A_{K}\left(\omega^{\prime}\right)=1 \\
U(\omega)>U\left(\omega^{\prime}\right) & \text { if } A_{K}(\omega)=1, A_{K}\left(\omega^{\prime}\right)=0 .
\end{array}
$$

Ranking examples

- $A_{K, i}=A_{K, j}=1$
- $Z_{i}>Z_{j}$: subject i ranked better than subject j
- $Z_{i}<Z_{j}$: subject j ranked better than subject i
- $Z_{i}=Z_{j}$: subjects i and j ranked the same
- $A_{K, i}=A_{K, j}=0$
- $L_{i}>L_{j}$: subject i ranked better than subject j
- $L_{i}<L_{j}$: subject j ranked better than subject i
- $L_{i}=L_{j}$: subjects i and j ranked the same
- $A_{K, i}=1, A_{K, j}=0$
- subject i ranked better than subject j
- $A_{K, i}=0, A_{K, j}=1$
- subject j ranked better than subject i

Treatment Effect

Treatment effect (θ) is measured by the probability that the outcome for an individual with $T=0$ is less than the outcome of an individual with $T=1$ minus the probability that the outcome for an individual with $T=0$ is greater than the outcome of an individual with $T=1$

- $\theta=0$ under the null
- $\theta>0$ favors $T=1 ; \theta<0$ favors $T=0$
- First part: Mann-Whitney
- Second part: needed to handle ties

Can also compare the treatment-specific quantiles of U.

Estimation of θ

In the absence of missing data,

$$
\widehat{\theta}=\frac{1}{n_{0} n_{1}} \sum_{i: T_{i}=0} \sum_{j: T_{j}=1}\left\{I\left(U_{i}<U_{j}\right)-I\left(U_{i}>U_{j}\right)\right\}
$$

where $n_{0}=\sum_{i}\left(1-T_{i}\right)$ and $n_{1}=\sum_{i} T_{i}$.

Missing Data

- R_{k} : missing data indicator (defined when $A_{k}=1$)
- $S=\left(R_{1}, \ldots, R_{K}\right)$ (defined when $A_{K}=1$)
- $Y_{o b s}^{(s)}=\left\{Y_{k}: R_{k}=1, k \geq 1, S=s\right\}$
- $Y_{\text {mis }}^{(s)}=\left\{Y_{k}: R_{k}=0, k \geq 1, S=s\right\}$
- Z is unobserved when $S \neq 1$.

To estimate θ, need to impute Z or equivalently $Y_{\text {mis }}^{(s)}$ for $s \neq \mathbf{1}$

Observed Data

Missing Data Assumptions

$$
\begin{aligned}
& f\left(Y_{m i s}^{(s)} \mid A_{K}=1, Y_{o b s}^{(s)}, Y_{0}, X, T, S=s\right) \\
& \propto \exp \left(\beta_{T} Z\right) \underbrace{f\left(Y_{m i s}^{(s)} \mid A_{K}=1, Y_{o b s}^{(s)}, Y_{0}, X, T, S=\mathbf{1}\right)}_{\text {Reference Distribution }}
\end{aligned}
$$

for all $s \neq \mathbf{1}$,

- β_{T} is a treatment-specific sensitivity parameter.
- $\beta_{T}=0$ (i.e., benchmark assumption) reduces to the complete case missing value (CCMV) restrictions applied to the missing data patterns for patients alive at t_{K}.
- CCMV is different than missing at random (MAR) assumption.

HT-ANAM 302 Study

- $K=2, Z=\left(Y_{1}+Y_{2}\right) / 2-Y_{0}$.
- $\beta_{T}^{\prime}=2 \beta_{T}$

$$
\begin{aligned}
& f\left(Y_{2} \mid A_{2}=1, Y_{1}, Y_{0}, X, T, S=(1,0)\right) \\
& \propto \exp \left(\beta_{T}^{\prime} Y_{2}\right) \underbrace{f\left(Y_{2} \mid A_{2}=1, Y_{1}, Y_{0}, X, T, S=\mathbf{1}\right)}_{\text {Reference Distribution }}
\end{aligned}
$$

For subjects alive at t_{2}, who are observed at time t_{1}, who share the same functional measure at t_{1} and who share the same baseline factors, the distribution of Y_{2} for those whose functional measure at t_{2} is missing is, when $\beta_{T}^{\prime}>0(<0)$, more heavily weighted toward higher (lower) values of Y_{2} than those whose functional measure at t_{2} is observed.

HT-ANAM 302 Study

$$
\begin{aligned}
& f\left(Y_{1} \mid A_{2}=1, Y_{2}, Y_{0}, X, T, S=(0,1)\right) \\
& \propto \exp \left(\beta_{T}^{\prime} Y_{1}\right) \underbrace{f\left(Y_{1} \mid A_{2}=1, Y_{2}, Y_{0}, X, T, S=1\right)}_{\text {Reference Distribution }}
\end{aligned}
$$

For subjects alive at t_{2}, who are observed at time t_{2}, who share the same functional measure at t_{2} and who share the same baseline factors, the distribution of Y_{1} for those whose functional measure at t_{1} is missing is, when $\beta_{T}^{\prime}>0(<0)$, more heavily weighted toward higher (lower) values of Y_{1} than those whose functional measure at t_{1} is observed.

HT-ANAM 302 Study

$$
\begin{aligned}
& f\left(Y_{1}, Y_{2} \mid A_{2}=1, Y_{0}, X, T, S=(0,0)\right) \\
& \quad \propto \exp \left(\beta_{T}^{\prime}\left(Y_{1}+Y_{2}\right)\right) \underbrace{f\left(Y_{1}, Y_{2} \mid A_{2}=1, Y_{0}, X, T, S=1\right)}_{\text {Reference Distribution }}
\end{aligned}
$$

For subjects alive at t_{2} and who share the same baseline factors, the joint distribution of Y_{1} and Y_{2} for those whose functional measures at t_{1} and t_{2} are missing is, when $\beta_{T}^{\prime}>0$ (<0), more heavily weighted toward higher (lower) values of Y_{1} and Y_{2} than those whose measures are fully observed.

HT-ANAM 302 Study

- Ignore conditioning on Y_{0} and X and suppose $f\left(Y_{1}, Y_{2} \mid A_{2}=1, T, S=\mathbf{1}\right)$ is multivariate normal with mean $\left(\mu_{T, 1}, \mu_{T, 2}\right)$ and variance-covariance matrix

$$
\Sigma_{T}=\left[\begin{array}{ll}
\sigma_{T, 1}^{2} & \rho_{T} \sigma_{T, 1} \sigma_{T, 2} \\
\rho_{T} \sigma_{T, 1} \sigma_{T, 2} & \sigma_{T, 2}^{2}
\end{array}\right]
$$

- $f\left(Y_{2} \mid A_{2}=1, Y_{1}, T, S=(1,0)\right)$ is normal with mean $\mu_{T, 2}+\beta_{T}^{\prime}\left(1-\rho_{T}^{2}\right) \sigma_{T, 2}^{2}+\rho_{T} \frac{\sigma_{T, 2}}{\sigma_{T, 1}}\left(Y_{1}-\mu_{T, 1}\right)$ and variance $\left(1-\rho_{T}^{2}\right) \sigma_{T, 2}^{2}$
- $f\left(Y_{1} \mid A_{2}=1, Y_{2}, T, S=(0,1)\right)$ is normal with mean $\mu_{T, 1}+\beta_{T}^{\prime}\left(1-\rho_{T}^{2}\right) \sigma_{T, 1}^{2}+\rho_{T} \frac{\sigma_{T, 1}}{\sigma_{T, 2}}\left(Y_{2}-\mu_{T, 2}\right)$ and variance $\left(1-\rho_{T}^{2}\right) \sigma_{T, 1}^{2}$

HT-ANAM 302 Study

- $f\left(Y_{1}, Y_{2} \mid A_{2}=1, T, S=(0,0)\right)$ is multivariate normal with mean $\left(\mu_{T, 1}+\beta_{T}^{\prime} \sigma_{T, 1}^{2}+\beta_{T}^{\prime} \rho_{T} \sigma_{T, 1} \sigma_{T, 2}, \mu_{T, 2}+\right.$ $\left.\beta_{T}^{\prime} \sigma_{T, 2}^{2}+\beta_{T}^{\prime} \rho_{T} \sigma_{T, 1} \sigma_{T, 2}\right)$ and variance-covariance matrix Σ_{T}.
- If $\rho_{T}>0$, then the means increase linearly in β_{T}^{\prime}
- β_{T}^{\prime} has no impact on the variances and covariances.
- $\beta_{T}^{\prime}>0\left(\beta_{T}^{\prime}<0\right)$ implies that the non-identified distributions have more (less) mass at higher values than their reference distributions.

Example: Exponential tilting

Modeling

Need to specify of a model for

$$
f\left(\bar{Y}_{K} \mid A_{K}=1, Y_{0}, X, T, S=\mathbf{1}\right)
$$

- To respect bounds, define

$$
\phi\left(y_{k}\right)=\log \left\{\frac{y_{k}-B_{L}}{B_{U}-y_{k}}\right\}
$$

- $Y_{k}^{\dagger}=\phi\left(Y_{k}\right)$ and $\bar{Y}_{k}^{\dagger}=\left(Y_{1}^{\dagger}, \ldots, Y_{k}^{\dagger}\right)$.
- One-to-one mapping between

$$
h\left(\bar{Y}_{K}^{\dagger} \mid A_{K}=1, Y_{0}, X, T, S=\mathbf{1}\right)
$$

and

$$
f\left(\bar{Y}_{K} \mid A_{K}=1, Y_{0}, X, T, S=\mathbf{1}\right)
$$

Modeling

$$
\begin{aligned}
& h\left(\bar{Y}_{K}^{\dagger} \mid A_{K}=1, Y_{0}, X, T, S=\mathbf{1}\right)= \\
& \quad \prod_{k=1}^{K} h\left(Y_{k}^{\dagger} \mid A_{K}=1, \bar{Y}_{k-1}^{\dagger}, Y_{0}, X, T, S=\mathbf{1}\right)
\end{aligned}
$$

- Posit a model for each component of the product.

Modeling

$$
\begin{aligned}
& h\left(Y_{k}^{\dagger} \mid A_{K}=1, \bar{Y}_{k-1}^{\dagger}, Y_{0}, X, T=t, S=\mathbf{1}\right) \\
& \quad=h_{k, t}\left(Y_{k}^{\dagger}-\mu_{k, t}\left(\bar{Y}_{k-1}^{\dagger}, Y_{0}, X ; \boldsymbol{\alpha}_{k, t}\right)\right)
\end{aligned}
$$

- $\mu_{k, t}\left(\bar{Y}_{k-1}^{\dagger}, Y_{0}, X ; \boldsymbol{\alpha}_{k, t}\right)$ is a specified function
- $\boldsymbol{\alpha}_{k, t}$ is an unknown parameter vector
- $h_{k, t}$ is an unspecified time/treatment-specific density function.
- The parameter vectors $\boldsymbol{\alpha}_{k, t}$ can be estimated by minimizing the least squares objective function
$\sum_{i=1}^{n} I\left(T_{i}=t\right) A_{K, i}\left(\prod_{k=1}^{K} R_{k, i}\right)\left\{Y_{k, i}^{\dagger}-\mu_{k, t}\left(\bar{Y}_{k-1}^{\dagger}, Y_{0}, X ; \boldsymbol{\alpha}_{k, t}\right)\right\}^{2}$
- The density function $h_{k, t}$ can be estimated by kernel density estimation based on the residuals $\left\{Y_{k, i}^{\dagger}-\mu_{k, t}\left(\bar{Y}_{k-1, i}^{\dagger}, Y_{0, i}, X_{i} ; \widehat{\boldsymbol{\alpha}}_{k, t}\right): T_{i}=t, A_{K, i}=\right.$ $\left.1, R_{1, i}=\ldots, R_{K, i}=1, i=1, \ldots, n\right\}$
- $f\left(\bar{Y}_{K} \mid A_{K}=1, Y_{0}, X, T, S=\mathbf{1}\right)$ is estimated by

$$
\prod_{k=1}^{K} \widehat{h}_{k, t}\left(Y_{k}^{\dagger}-\mu_{k, t}\left(\bar{Y}_{k-1}^{\dagger}, Y_{0}, X ; \widehat{\boldsymbol{\alpha}}_{k, t}\right)\right)\left|\frac{d \phi\left(Y_{k}\right)}{d Y_{k}}\right| .
$$

Imputation/Estimation

- For each individual i alive at t_{K} and who is in a stratum $s \neq 1$ and treatment t, impute the missing functional outcomes by drawing (using Metropolis-Hastings algorithm) from the density that is proportional to

$$
\left.\exp \left(\beta_{t} Z\right) \widehat{f(} Y_{m i s}^{(s)} \mid A_{K}=1, Y_{o b s}^{(s)}=Y_{o b s, i}, Y_{0}=Y_{0, i}, X=X_{i}, T=t, S=\mathbf{1}\right)
$$

- Draw M copies of the missing functional outcomes to create M complete datasets.
- For each complete dataset m, estimate θ by $\widehat{\theta}_{m}$.
- Overall estimator of θ is $\tilde{\theta}=\frac{1}{M} \sum_{m=1}^{M} \widehat{\theta}_{m}$.
- Confidence intervals can be constructed by non-parametric bootstrap

Sampling steps

1. Set $j=0$. Choose arbitrary initial values for $Y_{\text {mis }}^{(s)}$, denoted by $Y_{m i s}^{(s, 0)}$. Let $Z_{i}^{(0)}$ be the primary functional endpoint with data $\left(Y_{o b s, i}, Y_{\text {mis }}^{(s, 0)}\right)$.
2. Set $j=j+1$
3. Generate $Y_{\text {mis }}^{(s)^{\prime}}$ from a (multivariate) Gaussian distribution with mean $Y_{\text {mis }}^{(s, j-1)}$ and variance Σ. Let Z_{i}^{\prime} be the primary functional endpoint with data $\left(Y_{o b s, i}, Y_{\text {mis }}^{(s)^{\prime}}\right)$.

Sampling steps

4. Calculate the acceptance ratio as

$$
\begin{aligned}
a & =\frac{\left.\exp \left\{\beta_{t} Z_{i}^{\prime}\right\} \widehat{f(} Y_{m i s}^{(s)^{\prime}} \mid A_{K}=1, Y_{o b s, i}, Y_{0, i}, X_{i}, T=t, S=\mathbf{1}\right)}{\exp \left\{\beta_{t} Z_{i}^{(j-1)}\right\} \widehat{f\left(Y_{m i s}^{(s, j)} \mid A_{K}=1, Y_{o b s, i}, Y_{0, i}, X_{i}, T=t, S=\mathbf{1}\right)}} \\
& =\frac{\left.\exp \left\{\beta_{t} Z_{i}^{\prime}\right\} \widehat{f\left(Y_{m i s}^{(s)^{\prime}}\right.}, Y_{o b s, i} \mid A_{K}=1, Y_{0, i}, X_{i}, T=t, S=\mathbf{1}\right)}{\left.\exp \left\{\beta_{t} Z_{i}^{(j-1)}\right\} \widehat{f\left(Y_{m i s}^{(s, j-1)}\right.}, Y_{o b s, i} \mid A_{K}=1, Y_{0, i}, X_{i}, T=t, S=\mathbf{1}\right)}
\end{aligned}
$$

Sampling steps

5. Accept $Y_{\text {mis }}^{(s)^{\prime}}$ with probability $\min (1, a)$ and $Y_{\text {mis }}^{(s, j-1)}$ with probability $1-\min (1, a)$. Let $Y_{\text {mis }}^{(s, j)}$ be the accepted value.
6. Repeat Steps 2-5 until the Markov chain converges
7. Draw random samples from the set $\left\{Y_{m i s}^{\left(s, j_{0}\right)}, Y_{\text {mis }}^{(s, j o+1)}, \ldots\right\}$ as the imputed missing values, where j_{0} corresponds to the number of burn-in

Simulation scenarios

- Considered two post-baseline functional assessments at t_{1} and t_{2}
- Scenario I
- Focused on evaluating the impact of survival and functional status among survivors
- Assume no missing data among survivors
- Scenario II
- Focused on evaluating the impact of missing data and the proposed sensitivity analysis strategy
- Assume no deaths

Data generation

- Draw Y_{0} from standard normal distribution.
- Given T and Y_{0}, draw L_{1} from an exponential distribution with mean $1 / \exp \left(\lambda_{T, 0}+\lambda_{T, 1} Y_{0}\right)$. If $L_{1}<t_{1}$, set $L=L_{1}$ and stop.
- Given T and Y_{0}, draw Y_{1} from a normal distribution with mean $\mu_{T}+\gamma_{T} Y_{0}$, and variance 1.
- Given T and \bar{Y}_{1}, draw L_{2} from an exponential distribution with mean $1 / \exp \left(\lambda_{T, 0}+\lambda_{T, 1} Y_{1}\right)$. If $L_{2}<t_{2}-t_{1}$, set $L=L_{2}+t_{1}$ and stop.
- Given T and \bar{Y}_{1}, draw Y_{2} from a normal distribution with mean $\mu_{T}+\gamma_{T} Y_{1}$ and variance 1.

Data generation

- Given T and \bar{Y}_{2}, draw S from multinomial distribution with

$$
P\left[S=s \mid T, \bar{Y}_{2}\right]=\frac{\exp \left(\mu_{T, s}^{\prime}+\beta_{T} Z\right)}{1+\sum_{s^{\prime} \neq \mathbf{1}} \exp \left(\mu_{T, s^{\prime}}^{\prime}+\beta_{T} Z\right)}, \quad s \neq \mathbf{1}
$$

and

$$
P\left[S=\mathbf{1} \mid T, \bar{Y}_{2}\right]=\frac{1}{1+\sum_{s^{\prime} \neq \mathbf{1}} \exp \left(\mu_{T, s^{\prime}}^{\prime}+\beta_{T} Z\right)}
$$

Scenario I results

$\lambda_{1,1}$	Death Rate		μ_{1}	True θ	Sample Size	Estimation		Rate	
	$T=0$	$T=1$				θ	MSE*	Rej*	Cov*
1.3	0.188	0.230	0.0	-0.056	200	-0.060	5.5	0.092	0.978
					500	-0.054	2.9	0.186	0.938
		0.293	0.5	0.088	200	0.085	7.1	0.198	0.944
					500	0.086	2.5	0.358	0.958
	0.354	0.388	0.0	-0.051	200	-0.053	6.7	0.104	0.936
					500	-0.046	2.7	0.154	0.956
		0.463	0.5	0.007	200	0.007	7.6	0.072	0.928
					500	0.006	2.6	0.042	0.960
1.0	0.188	0.188	0.0	-0.001	200	0.002	6.9	0.050	0.952
					500	0.004	2.7	0.048	0.958
		0.236	0.5	0.178	200	0.181	7.5	0.602	0.932
					500	0.177	2.7	0.934	0.946
	0.354	0.354	0.0	0.000	200	-0.003	6.1	0.032	0.974
					500	0.000	2.7	0.058	0.944
		0.418	0.5	0.080	200	0.079	7.2	0.180	0.946
					500	0.084	2.7	0.352	0.948
0.7	0.188	0.151	0.0	0.051	200	0.047	6.4	0.090	0.960
					500	0.053	2.4	0.174	0.952
		0.180	0.5	0.265	200	0.269	5.8	0.924	0.954
					500	0.262	2.7	0.996	0.944
	0.354	0.315	0.0	0.054	200	0.051	6.3	0.096	0.958
					500	0.053	2.5	0.174	0.964
		0.362	0.5	0.163	200	0.160	6.0	0.518	0.950
					500	0.165	2.7	0.884	0.954

Table: Scenario I Simulation Study Results. MSE*: mean squared error $\times 1000$. Rej*: rejection rate for $H_{0}: \theta=0$. Cov*: bootstrap 95% confidence interval coverage rate. The Death Rates for $T=0$ are 0.188 or 0.354 corresponding to the study length (t_{2}) of 0.2 and 0.5 , respectively.

Scenario II results

β_{1}^{*}	Missing		$\begin{gathered} \hline \text { True } \\ \theta \end{gathered}$	Sample Size	Estimation		Rate	
	Rate*	μ_{1}			$\widehat{\theta}$	MSE*	Rej*	Cov*
0	0.21	-0.25	-0.186	200	-0.049	26.8	0.090	0.640
				500	-0.045	23.5	0.146	0.268
	0.15	0.00	0.000	200	0.104	18.4	0.236	0.780
				500	0.110	15.1	0.516	0.476
	0.10	0.25	0.186	200	0.275	14.4	0.906	0.810
				500	0.271	9.5	1.000	0.614
-2	0.21	-0.25	-0.186	200	-0.192	7.1	0.612	0.952
				500	-0.189	2.9	0.928	0.950
	0.15	0.00	0.000	200	-0.014	7.6	0.054	0.952
				500	-0.011	3.1	0.050	0.952
	0.10	0.25	0.186	200	0.180	7.5	0.572	0.950
				500	0.178	2.7	0.928	0.948

Table: Scenario II Simulation Study Results. MSE*: mean squared error $\times 1000$. Rej*: rejection rate for $H_{0}: \theta=0$. Cov*: bootstrap 95% confidence interval coverage rate. β_{1}^{*} : sensitivity parameter for $T=1$. Missing rate*: overall functional endpoint missing rate.

HT-ANAM 302 Study

- Anamorelin is a drug developed for the treatment of cancer cachexia and anorexia.
- HT-ANAM 302 was a randomized, double-blind, placebo-controlled Phase III study designed to evaluate the efficacy of anamorelin in patients with advanced non-small cell lung cancer.
- Lean body mass (LBM) was scheduled to be measured at baseline $\left(Y_{0}\right), 6$ weeks $\left(Y_{1}\right)$ and 12 weeks $\left(Y_{2}\right)$
- Primary functional endpoint: $Z=\frac{\left(Y_{2}+Y_{1}\right)}{2}-Y_{0}$

Death and missingness

	Placebo	Anamorelin
	$n=157$	$n=322$
Died Prior to Wk 12	$24(15.3 \%)$	$54(16.8 \%)$
Survivors with complete data	$93(59.2 \%)$	$185(57.5 \%)$
Survivors missing only Wk 6	$3(1.9 \%)$	$17(5.3 \%)$
Survivors missing only Wk 12	$17(10.8 \%)$	$31(9.6 \%)$
Survivors missing both Wks 6, 12	$20(12.7 \%)$	$35(10.9 \%)$

Central Question

How should data from studies like HT-ANAM 302 be analyzed to evaluate the effect of treatment on the functional outcome?

Missing pattern

Completers LBM

Placebo

Survival

Baseline covariates

Covariates	Levels
ECOG	$0:\{0,1\}, 1:\{2\}$
AGE	$0: \leq 65,1:>65$
GENDER	$0: M, 1: F$
BMI	$0: \leq 18.5,1:>18.5$
WEIGHT $^{\text {LOSS }}$	
YO	$0: \leq 10 \%, 1:>10 \%$
Continuous	

${ }^{1}$ in prior 6 months

Modeling

Specify $\mu_{k, t}\left(\bar{Y}_{k-1}, Y_{0}, X ; \boldsymbol{\alpha}_{k, t}\right)$ as follows:

$$
\begin{gathered}
\mu_{1, t}=\alpha_{1, t, 1}+\alpha_{1, t, 2} Y_{0}+\alpha_{1, t, 3} E C O G+\alpha_{1, t, 4} A G E \\
\quad+\alpha_{1, t, 5} G+\alpha_{1, t, 6} B M I+\alpha_{1, t, 7} W L \\
\mu_{2, t}=\alpha_{2, t, 1}+\alpha_{2, t, 2} Y_{0}+\alpha_{2, t, 3} E C O G+\alpha_{2, t, 4} A G E \\
\quad+\alpha_{2, t, 5} G+\alpha_{2, t, 6} B M I+\alpha_{2, t, 7} W L+\alpha_{2, t, 8} Y_{1}
\end{gathered}
$$

Model fitting diagnosis

Analysis under benchmark assumptions

- 10 imputed datasets generated
- 200 bootstrap samples

Table: Hypothesis testing

	$\hat{\theta}(95 \% \mathrm{CI})$	p-value
HT-ANAM 302 Study	$0.30(0.19,0.40)$	<0.0001

Table: Median

		$\widehat{p}_{50}(95 \% \mathrm{CI})$
HT-ANAM 302 Study	Anamorelin	$0.67(0.45,0.89)$
	Placebo	$-0.92(-1.43,-0.28)$

Cumulative plot

Composite Endpoint

Choice of sensitivity parameters

- Change in $E(Z)$ about 1.5 kg at $\beta_{T}=0.5$ and $\beta_{T}=-0.5$
- Set $\beta_{T}=\{-0.5,-0.4, \ldots, 0, \ldots, 0.5\}$

Sensitivity analysis: Rank

Sensitivity analysis: Median

Median

Sensitivity analysis: Contour of p-values

Conclusion

There is a significant difference between the Placebo and the Anamorelin arms in their composite endpoints of survival and average LBM change. The difference favors the Anamorelin arm.

Discussion

- Method presumes that death and the functional outcome can be ordered in a scientifically meaningful way.
- Use mixed methods to confirm that ordering is consistent with the health preferences of patient population.
- Ranking scheme is similar to 'untied worst-rank score analysis" for missing data of Lachin (1999).
- The "worst-rank score analysis" ranks all the patients who died $\left(A_{K}=0\right)$ the same and is also commonly used.
- CCMV is a strong benchmark assumption.
- Assumed survival time is always known, need to extend methods to handle censoring.
- R package idem

