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Allele fractions vary across subpopulations due to a number of
factors, such as

drift,

migration,

mutation,

selection.

Here we do not focus on the causes (though we will later try to
detect selection) but we wish to describe this variation.

In the figure on the next slide we see allele counts in samples drawn from
three subpopulations of the UK population.

The counts are at two multi-allelic Short Tandem Repeat (STR) loci
used in forensics.
The allele labels indicate the number of copies of the
(tetranucleotide) tandem repeat (not all allele labels are shown).

An allele label of the form x.y means x full copies of the repeat unit
plus a y nucleotide fragment.
Soon full sequencing of STR alleles will distinguish all microvariants; to
date allele classification is based only on molecular weight.

Which locus has the greater variance in allele fractions across these three
subpopulations?
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To define a variance of allele counts or fractions we need to have some
probabilities. To keep things simple let’s assume a diallelic locus, and we
will call one allele “Red”.

What are the probabilities for the number X of Red alleles obtained
when sampling n alleles at random in a given large subpopulation?

If we know the fraction π of Red alleles in the subpopulation then the
probabilities are given by the binomial distribution:

P (X=m|π) =

(
n

m

)
πm(1−π)n−m for m = 0, 1, . . . , n. (1)

In particular, when n=1, the probability that the allele is Red is

P (X=1|π) = π.
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Now suppose that we don’t know π, but we assume that we know p, the
population fraction of Red alleles.

A natural assumption is E (π) = p; i.e. allele fractions in
subpopulations vary about the population value.

Then the variance of π, denoted V (π), reaches its maximum value

V (π) = p(1−p) when P (π=1) = p and P (π=0) = 1−p.

It is therefore convenient to write

V (π) = Fp(1−p)

where F ∈ [0, 1].

Our goal is to estimate F , a parameter introduced by Wright (1951) who
called it FST , where S is for subpopulation and T is for total population. It
is also sometimes called θ (but note that θ has several other meanings in
population genetics).
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Wright (1951) interpreted FST as measuring the average progress of
subpopulations towards fixation, and hence he called it a fixation index.

FST = 1 implies that all subpopulations have reached fixation (π = 1
or 0) at the locus;

FST = 0 implies that π = p in all subpopulations, and so the
population is homogeneous.

Wright also described FST as

“the correlation between random gametes, drawn from the same
subpopulation, relative to the total”

This correlation is due to relatedness, and FST can also be interpreted as
measuring the relatedness among individuals within sub-populations
relative to the total population (Crow and Kimura, 1970).

Thus it is often called a coancestry coefficient.

More relatedness within subpopulations means higher FST and a
greater variation in allele fractions across subpopulations.
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In some simple
models FST is the
probability that two
alleles drawn at
random in the
subpopulation are
identical-by-descent
(IBD) from an
ancestral allele
within the
subpopulation
(without any
migration event).
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The biggest factor affecting FST in most structured populations is
migration, and in the past FST was estimated as an indirect way to
estimate the migration rate, for example via the formula

FST =
1

1 + 2Nm

(replace 2 with 4 for diploid populations, N = population size) which holds
in a simple island model assuming symmetric migration at rate m between
all pairs of subpopulations.

In order to estimate FST we have to deal with the problem that we don’t
know p.

At first, we solve this problem by simply pretending we know it.
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However we still need to keep in mind what p represents, and there are at
least two schools of thought:

1 p is the actual allele fraction among all individuals in all the
subpopulations; this means that the largest subpopulations dominate
the value of p.

2 p is the allele fraction in a hypothetical ancestral population from
which all the observed subpopulations are descended.

p is unknown in either case, but can be estimated.

In general p can be any reference value, but its definition affects the value
and interpretation of FST .

In forensic applications p is the allele fraction in the population from
which the frequency database was drawn. Then instead of the
variance, FST is defined in terms of the mean square error (MSE) of
π about the given reference value,

MSE[π, p] = E
(
(π−p)2

)
= FSTp(1−p).
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There are many methods for estimating FST and we won’t review them
here.

Some methods can be classified as “method of moments” estimation,
which is based on equating sample moments (mean, variance, etc) to
their expected values under the assumed probability model

(it isn’t necessary to specify a full probability distribution for π).

Some of these methods are based on the idea of partitioning the
variance in the sample allele counts into different components, and
FST is estimated from the between-subpopulation component.

Because there is little information in a single allele count, it is
necessary to “share information” across different alleles at a
multi-allelic locus, or across subpopulations or across loci.

This usually requires assuming that the value of FST is the same across
these entities, which may not be true.

Weir and Hill (2002) is a good reference.

Bhatia et al. (2013) is a recent reference focussing on genome-wide
human data and the effect of many rare variants on estimates of FST .

SISG 2016 Population Genetics Likelihoods for allele count data



1 Allele fractions in structured populations

2 Interpretations of FST

3 A sampling formula: the Beta-Binomial likelihood

4 Likelihood inference for the inbreeding coefficient

5 Likelihood inference for FST

6 Using FST to detect directional and balancing selection

7 FST estimates in worldwide human populations for forensics

SISG 2016 Population Genetics Likelihoods for allele count data



We will focus here on likelihood-based estimation of FST .

I developed some of this approach, see particularly Balding (2003)
and also my DNA forensics book Steele and Balding (2015).

To proceed, we need to specify a probability distribution for π (remember,
we are assuming that p is known). For a diallelic locus, a natural candidate
is the beta distribution, which has probability density function (pdf)1:

f (x) = cxλp−1(1−x)λ(1−p)−1, (2)

where c is a normalising constant whose value is known but not needed
here, 0 ≤ x ≤ 1, and

λ =
1

FST
− 1.

The expectation and variance of the beta are, respectively, p and
FSTp(1−p).

1NB This parametrisation of the beta is not standard, the usual parametrisation has
α = λp and β = λ(1−p).
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Beta pdf when p = 0.01 (previous, top), p = 0.05 (previous, bottom),
p = 0.20 (above), and λ = 99, 49, and 19, so that FST = 1%, 2%, 5%.

The beta distribution applies exactly under some theoretical models, both
pure drift and weak selection in large populations (Ewens, 2004). It is not
exactly correct in practice, but it allows the essential features of genetic
differentiation to be modelled and estimated in actual populations.

SISG 2016 Population Genetics Likelihoods for allele count data



0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

Fst=1%, k=2, p=0.2

de
ns

ity

beta
gaussian

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

Fst=5%, k=2, p=0.2

de
ns

ity

beta
gaussian

An
alternative to
the beta
(Nicholson
et al., 2002)
is the
truncated
Gaussian,
with
probability
density
outside (0,1)
replaced with
atoms of
probability at
0 and 1.

SISG 2016 Population Genetics Likelihoods for allele count data



To obtain the probability distribution for the allele count X in a
subpopulation, we need to integrate the binomial probabilities (1) over the
beta distribution for π. Remarkably, this integration can be done exactly
and the result is the Beta-Binomial (BB) distribution, which we can
represent schematically as

BB(X ) =

∫
binomial(X |π)beta(π)dπ

The BB is like the binomial but with higher variance, controlled by an
additional parameter: BB variance is np(1−p)(1+(n−1)FST ), which
equals the binomial variance when FST = 0 or n = 1.

Sampling formula: There is a simple recursive formula for the BB
probabilities. Suppose that n alleles have been sampled in the
subpopulation, of which m are Red (for easier notation, let’s now call it
allele A). Then the probability that the next allele sampled in the
subpopulation is also A can be written as:

mFST + (1−FST )pA
1 + (n−1)FST

. (3)
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When m = n = 0, we obtain probability pA that the first allele drawn is A.
The probability that the first two alleles drawn are both A is

pA(FST + (1−FST )pA) = p2
A + FSTpA(1−pA).

Increasing FST thus increases the probability of two A alleles, but
decreases the probability of an A allele followed by a B, which is:

(1−FST )pApB . (4)

The probability of an A and a B in an unordered sample of size two is
obtained by multiplying (4) by two.
Non-recursive form of the sampling formula: the probability of an
unordered sample of size n containing m copies of allele A is

P (X=m) =

(
n

m

)
Γ(λ)

Γ(n + λ)

Γ(m + λp)

Γ(λp)

Γ(n−m + λ(1−p))

Γ(λ(1−p))
, (5)

in which the gamma function satisfies Γ(x+1) = xΓ(x). Replacing λ with
1/FST−1 we obtain the likelihood formula for FST .
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The multi-allelic case: Formula (3) still holds for a locus with > 2
alleles. The multivariate extension of the beta distribution is the Dirichlet,
which has pdf:

f (x1, x2, . . . , xK ) = c
K∏

k=1

xλpk−1
k , (6)

where p1, p2, . . . , pK denote the population allele fractions, with∑K
k=1 pk = 1, and similarly the xk are all positive and sum to one. If

K = 2 then p2 = 1−p1 and x2 = 1−x1 and the beta pdf (2) is recovered.

The non-recursive form of the multinomial-Dirichlet is

P (X=m) =
n!Γ(λ)

Γ(n + λ)

K∏
k=1

Γ(mk + λpk)

mk !Γ(λpk)
, (7)

where m = (m1,m2, . . . ,mK ) denotes the sample count vector so that
n =

∑K
k=1 mk .
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Allele fractions simulated under the multinomial-Dirichlet for a 5-allele
locus in 2 subpopulations with FST = 1% (left) and 5% (right).
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Computing multinomial-Dirichlet probabilities under the sampling
formula: Suppose that there are three alleles with population fractions p1,
p2, and p3, so that p1 + p2 + p3 = 1. Using (3) repeatedly, or (7), the
probability P(1,1,1) that an unordered sample of size three from the
subpopulation consists of one copy of each allele is

P (1, 1, 1) =
6

(1−FST )(1+FST )

3∏
k=1

(1−FST )pk = 6p1p2p3
(1−FST )2

1 + FST
.

Similarly,

P (2, 1, 0) = 3p1p2(1−FST )
(FST+(1−FST )p1)

1 + FST
,

P (3, 0, 0) = p1(FST + (1−FST )p1)
(2FST + (1−FST )p1)

1 + FST
.

These two formulas are the same whether the locus is diallelic or
multi-allelic.
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The multinomial-Dirichlet (or BB if diallelic) is not exact. Marchini et al.
(2004) found that the BB provided an excellent fit for a genome-wide
study of SNP markers. However STR mutant alleles usually differ from
their parents by exactly one repeat unit, and this makes it unlikely that the
Dirichlet assumption will be strictly valid.

For inferences about variances it can be shown to give a good
approximation.

Alternative distributions are the multivariate Gaussian (Weir and Hill,
2002) and multivariate Gaussian log-ratios (Aitchison, 2003).
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The multinomial-Dirichlet gives probabilities for a sample of alleles drawn
from a subpopulation in terms of FST and the population allele fractions
(the p). If we know the latter, this specifies a likelihood function for FST .

Likelihood-based inference has many advantages. We can start to
illustrate these using observed diploid genotypes (samples of size two from
the subpopulation) to infer the inbreeding coefficient f , or FIT in Wright’s
notation. He also derived in a simple island model

1− FIT = (1− FIS)(1− FST )

where FIS is the inbreeding coefficient when the π are known.

Under the inbreeding model, the genotype probabilities are

P (AA) = p2
A + fpBpA

P (AB) = 2(1−f )pBpA

P (BB) = p2
B + fpBpA,

where max(−pB/pA,−pA/pB) ≤ f ≤ 1.

SISG 2016 Population Genetics Likelihoods for allele count data



Then the likelihood of a sample with genotype counts nAA, nAB , nBB is

L(f ) = c P (AA)nAA P (AB)nAB P (BB)nBB ,

where c is a constant.

We can choose c such that L(f ) takes value one at the HWE value
f = 0, in which case we obtain

L(f ) = (1 + fpB/pA)nAA(1−f )nAB (1 + fpA/pB)nBB .

Maximising over f gives the Maximum Likelihood Estimator (MLE),
but there is more information in the likelihood than just its maximum.

If we choose c so that the integral over f is one, then the likelihood
also specifies the posterior probability density curve for f given a
uniform prior for f (see plot next slide for an illustration).

The uniform prior for f isn’t appropriate when we have information about
reasonable values (e.g. close to 0), but when n is large the choice of prior
has little impact. We discuss choice of prior for FST below.

SISG 2016 Population Genetics Likelihoods for allele count data



Posterior probability density for the inbreeding coefficient f given sample
genotype counts nAA = 10, nAB = 5, and nBB = 5, pA = 0.6, pB = 0.4,
and a uniform prior.
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Consider a sample of 10 alleles, with nA = 6 and pA = 0.2.

The sample proportion 6/10 is � pA, suggesting that FST is large,
but any inferences must be weak with so little data. To make this
precise, from (7) we obtain:

L(FST ) =

∏5
i=0(iFST + (1−FST )/5)×

∏3
i=0(iFST + 4(1−FST )/5)

(1−FST )
∏8

i=1(1 + iFST )

This curve is plotted in next slide (solid line) scaled so that it can be
interpreted as a posterior density given a uniform prior for FST .

As expected, a wide range of FST values is supported: the 95%
highest posterior density interval for FST is (0.027,0.83).

Increasing the sample size by a factor of 10, the 95% hpd interval is
0.099 ≤ FST ≤ 0.84, excluding a larger interval near zero.

Stepping up by a further factor of 10 (dotted curve), the posterior
density curve is almost unchanged. Once we get a good fix on π,
there is no additional benefit from increasing the sample size for that
subpopulation and locus.
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Likelihood curves for FST given samples from one subpopulation, at a
diallelic locus with p = 0.2. The curves have been scaled so that they can
also be interpreted as posterior density curves given a uniform prior for
FST .SISG 2016 Population Genetics Likelihoods for allele count data



Cheating simulation study

True FST 0.2% 0.5% 1% 2% 4% 8%

n = 100 MoM 52 66 87 132 224 404
MLE 36 53 74 114 184 317

n = 200 MoM 31 43 67 110 198 377
MLE 23 37 57 91 159 288

n = 400 MoM 19 33 56 101 192 376
MLE 16 28 46 83 150 276

Standard deviations (×104) of MoM and MLE estimators of FST when
the multinomial-Dirichlet assumption is valid. There were 104

simulations of samples of size n from each of five subpopulations, typed at
a locus with K = 4 alleles. The population allele fraction vector p was
sampled uniformly randomly, independently for each simulation, and was
regarded as known for the estimation of FST .
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C. D. Steele et al.

Figure 2 FST posterior 95% interval using: (red) a beta prior with median 2.3% and 95% CI
(0.26%, 8.0%); (blue) the uniform prior. Sample sizes are shown on x-axis. Data were
simulated to have FST = 1% (horizontal line). The vertical lines indicate the 95% equal-tailed
CI, and medians are indicated with horizontal segments.

and we are thus able to utilise 15 of the 16 available loci (SE33
is excluded due to low sample sizes, Table 1).

In the indirect method, the reference population is not
observed, but is assumed to be a hypothetical ancestral popu-
lation from which two or more observed subpopulations have
descended independently. We used the BayesFST software
(Beaumont & Balding, 2004) which implements a Markov
Chain Monte Carlo method to sample from the posterior
distribution of FST in each subpopulation given the allele
counts. BayesFST assigns a jointly uniform prior distribution
to the ancestral allele fractions at each locus, and uses the
model

F i, j
ST = e ai +b j

1 + e ai +b j
, (2)

where a i and b j denote locus and population effects, respec-
tively. All inferences reported below are based on 150 000
posterior values.

We first investigated the variation of FST estimates across
loci, treating IC1 through IC6 as six subpopulations of the hy-

pothetical ancestral population. Each subpopulation param-
eter b j was assigned an N(−3, 1.8) prior, while the locus
parameters a i were assigned an N(0,1) prior. The resulting
prior distribution for FST has a prior median 4.7%, with
95% CI from 0.02% to 92%. Table 2 shows that the poste-
rior 95% CI for the a i include zero for 13 of the 15 loci.
In view of this limited evidence for locus heterogeneity,
we subsequently set the locus effect parameter to be close
to zero in order to estimate an average FST over loci and
hence allow greater comparability across analyses. The im-
plied prior median is then 4.7%, with 95% CI from 0.1% to
63%.

We repeated all analyses with only the 10 loci used in
the direct analyses, and confirmed that resulting inferences
were similar, but on average more precise with 15 loci
(10-locus results not shown). Thus, the differences reported
below between direct and indirect FST values for a sub-
population are almost entirely due to the different refer-
ence population, rather than the different number of loci
used.

472 Annals of Human Genetics (2014) 78,468–477 C⃝ 2014 The Authors.
Annals of Human Genetics published by University College London (UCL) and John Wiley & Sons Ltd

Effect of prior,
single locus, p
known: FST

posterior 95%
interval using:
(red) a beta prior
with median 2.3%
and 95% CI
(0.26%, 8.0%) );
(blue) the uniform
prior. Data were
simulated at a
multiallelic locus
with FST = 1%.
The vertical lines
indicate the 95%
equal-tailed CI,
and medians are
indicated with
horizontal
segments.
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Effect of prior on FST , ten multi-allelic loci
Worldwide FST Estimates from STR Loci

Figure 3 FST posterior densities (solid lines) using the direct method, given a uniform prior (blue) and an informative beta
prior (red). Dotted red lines show the beta prior density. The subpopulations analysed are (left) Iran and (right) Afghanistan, with
the reference populations being EA6 (Middle East/North Africa) and EA4 (South Asia), respectively.

Table 2 Posterior 95% intervals for locus effect parameters using
the indirect method. The analysis used all 7121 individuals with IC1
through IC6 treated as six subpopulations.

Percentile Percentile

Locus 2.5 97.5 Locus 2.5 97.5

D3 −1.72 −0.2 D19 −0.62 0.62
TH01 0.11 1.58 D2 −0.59 0.62
D21 −0.85 0.45 D22 −0.06 1.32
D18 −0.79 0.38 D1 −0.7 0.52
D16 −1.3 0.15 D10 −0.87 0.6
vWA −0.93 0.42 D2 −0.21 1.15
D8 −0.73 0.6 D12 −0.71 0.56
FGA −1.04 0.23

Best Population Fit
Each subpopulation defined above was assigned to the FSS
database giving the “best fit” (lowest median FST under the
direct method), for both direct and indirect method analyses
below. The majority of allocations were as expected: most
European subpopulations fit best with EA1, most African and
Caribbean subpopulations with EA3, all South Asian sub-
populations fit best with EA4, both East Asian subpopula-
tions fit best with EA5 and most Arab subpopulations fit best
with EA6. Three subpopulations close to the Middle East fit
EA6 equally or slightly better than their nominal population:

Southern Europe (EA1), Afghanistan (EA4) and Kenya (EA3).
The nominal classification was retained in each case.

One discrepancy was much larger: Somalia fit better with
EA6 (FST=1.5%) than with the nominal EA3 (FST=2.2%),
and we subsequently included Somalia with IC6. Although
Somalia borders Kenya (EA3), it is also geographically close to
the Arab world, and there have historically been many links.
Mitochondrial (Mikkelsen et al., 2012) and Y-chromosome
(Sanchez et al., 2005) studies have both suggested a strong
Arab influence in Somali genetics, although their highest
similarity is usually with neighbouring Eastern Ethiopians
and Northern Kenyans. HLA typing (Mohamoud, 2006)
also suggests that Somalis are more similar to Arabs than
to sub-Saharan Africans. Pickrell et al. (2014) estimate the
Eurasian ancestry of Somalis at roughly 38% using admixture
mapping, supporting the low FST estimate for Somalia with
the EA6 database.

RESULTS

EA1

When comparing subpopulations to the EA1 reference pop-
ulation (Table 3), all the European subpopulations have an
FST estimate (97.5 percentile) under 1%, except Western Eu-
rope, which has the smallest sample size. The low FST esti-
mate for Southern Europe supports the merging of European-
origin IC2 individuals with IC1, suggesting that IC2 might
usefully be redefined to only include Latin Americans with

Annals of Human Genetics (2014) 78,468–477 473C⃝ 2014 The Authors.
Annals of Human Genetics published by University College London (UCL) and John Wiley & Sons Ltd
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Most examples above use only a single population and a single locus.

It’s an advantage of the likelihood approach that some inference is
possible even with so little information.

But in practice, to obtain better inferences about FST we need to
combine information across loci and/or across subpopulations.

Another advantage of likelihood is that we can do this in many
different ways using hierarchical models.

With collaborators, I have developed the BayesFST software2 which
assumes the model

F ij
ST =

exp(ai+bj)

1 + exp(ai+bj)
, (8)

where i indicates the locus and j the population.

BayesFST also deals with the fact that we often we don’t know the p:

Integrate over the p with respect to a prior, by default uniform.

Different assumptions about p can have a big impact on inferences.
Uniform prior not appropriate for SNPs: a U-shaped distribution of
allele fractions is common, and can be modelled by a beta prior.

2www.reading.ac.uk/Statistics/genetics/software.html
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Loci subject to directional selection may respond differently in different
environments, or an advantageous allele may arrive in different populations
at different times.

In either case the effect of selection at a locus may be detectable as
an unusually high FST value.

Conversely balancing selection can be detected as unusually low FST .

“High” and “low” values of FST can be assessed empirically with reference
to the genome-wide distribution of FST estimates

but it is then hard to assess significance or choose thresholds
according to quantitative criteria;

also hard to assess effects of sample and subpopulation sizes.
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Beaumont and Balding (2004) addressed this problem using model (8) for
FST .

The bj are nuisance parameters reflecting demography (subpopulation
sizes and histories).

A posterior distribution for an ai that lies almost entirely one side or
the other of zero indicates directional selection.

A posterior distribution for an ai that only supports values close to
zero indicates balancing selection.

There has been much subsequent development of this model, for example
Foll and Gaggiotti (2008), Guo et al. (2009), Coop et al. (2010), Galinsky
et al. (2016) and Duforet-Frebourg et al. (2016). Some of the changes
are:

Different ways to decide if a value of ai is “significant”.

Relating FST to principal components (which usually reflect
geography) or other environmental covariates, rather than just a
subpopulation label.
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From Beaumont and Balding (2004):

I D E N T I F Y I N G  L O C I  U N D E R  S E L E C T I O N 975

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 969–980

5% level, and only six (4.3%) are detected over all the
simulations at the 10% level. Of the 6800 neutral loci in all
12 datasets, 25 (0.4%) were mis-classified as directionally-
selected and one (0.01%) as under balancing selection
at the 5% level. At the 10% level, the rates were 1.2% for
directional false positives, and 0.5% for balancing false
positives.

Although directionally-selected loci are more often
detected under the marker-selected model than under the
two-locus model, the difference is not as marked as might
have been expected: 95 versus 87 at the 5% level, 110 vs 100
at the 10% level.

The distribution of empirical ‘P-values’ in the three 1000-
loci datasets, together with their associated posterior mean
FST values, are illustrated in Figure 2 (right panels). Recall
that ‘P-value’ here means P (αi < 0), and empirically it is the
proportion of negative values among the MCMC outputs
for αi. In the figure, for improved visualisation, the P-value
has been transformed via logit(2|p − 0.5|), where logit(x) ≡
log(x/(1 − x)). In general, except when the selection coeffi-
cient is 2% (top right panel), the directionally-selected (red)
and balancing-selected (blue) loci tend to be located
towards the appropriate tails of the distribution. However,

for the latter to achieve significance, FST has to be very close
to zero, which is only occasionally realised, and only when
the selection coefficient is 10% (bottom right panel). The
simulations were carried out with a mean FST of 0.1. In popu-
lations with a higher FST it may be easier to detect loci
under balancing selection. However, it is also the case that
typical values of FST for many populations (including
humans) are generally around 0.1 or lower, which implies
that it may often be difficult to detect balancing selection
from gene frequency data.

Summary-statistic method

The results from the analyses with fdist are presented
in Table 3. In order to compare these with the Bayesian
regression method we chose critical p-values such that
the two-tailed false positive rate for all 6800 neutral loci
matched as closely as possible for the two methods. In the
absence of information about the true levels of selection
coefficients, matching the false-positive rate seems a pragmatic
way of comparing the two methods. Thus, we assigned a P-
value in fdist of 0.0005 to compare with the Bayesian 5%, and
a P-value of 0.01 to compare with the Bayesian 10% level.

Fig. 2 Summary of the results of analyses
of the three 1000-locus data sets (top: M-2L-
02, middle: M-2L-05, bottom: M-2L-10).
The results from fdist are shown on the
left, and those from the Bayesian regression
method are shown on the right. An estimate
of FST is plotted against empirical P-values
for each locus. The vertical bars show the
critical P-values used for identifying outlier
loci, as described in the text. Because of
sample-size effects the minimum two-tailed
P-value was set at 0.001 for the Bayesian
regression method and 0.0002 for fdist

Simulated
data:
Red:
directional
Blue:
balancing
Open: neutral.

Vertical lines
indicate 1%
and 5%
significance
levels.
y -axis shows
FST but
inference is
based on ai .
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In forensic DNA analysis, the weight of evidence depends on the
coancestry of alleged and alternative contributors of DNA to a sample.

We can’t know the right FST in any given case but we can use large
values relative to the observed range.

The reference population is that of the frequency database
this leads to increased estimates compared with usual
population-genetics estimates, for which the reference population is
either an ancestral population or a (weighted) mean of the
subpopulations.

Conversely, most human population genetic studies are of distinct
populations, often geographically or socially isolated from other
populations

this leads to higher FST estimates than for the heterogeneous,
cosmopolitan populations that are often appropriate in forensic work.

FST is also affected by the mutation rate.
We might guess that higher mutation causes greater divergence among
populations.
In practice this doesn’t seem to be true: FST at (high-mutation) STR
loci tends to be lower than at (low-mutation) SNPs.
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We obtained worldwide allele count data for 16 (multi-allelic) forensic STR
loci from UK migration applicants.

We grouped then into 5 continental-scale regions IC1 to IC6 (map).

We assumed (after checking) that FST is constant over loci.
C. D. Steele et al.

Figure 1 Countries of origin of the individuals included in the study, coloured according to the
population that provides the best fit according to the indirect method (see text). White indicates
countries represented by fewer than five individuals.

judgement; there is no canonical classification scheme for
human populations.

IC1 and IC2
IC2 individuals from Europe were moved to IC1. Two
national subpopulations were kept distinct, Eire and Great
Britain, while the remaining European subpopulations were
merged according to the United Nations geo-scheme for Eu-
rope (United Nations Statistics Division, 2014):

Eastern Europe: Hungary, Moldova, Poland, Romania,
Russia, Slovakia, Ukraine.

Northern Europe: Denmark, Latvia, Lithuania, Sweden.
Southern Europe: Albania, Bosnia, Croatia, Cyprus, Greece,

Italy, Kosovo, Malta, Macedonia, Portu-
gal, Spain, Yugoslavia.

Western Europe: Belgium, France, Germany, Netherlands.

IC2 individuals from Argentina, Bolivia, Brazil, Columbia,
Mexico, and Venezuela were combined (“Latin America”),
as were IC1 individuals from Australia, New Zealand, and
USA (“Anglo New World”). Those with no subpopulation
identified, and those from Jersey, Northern Ireland, or South
Africa, were removed.

IC3
Six national subpopulations were kept distinct: Ghana,
Jamaica, Kenya, Nigeria, Sierra Leone, and Uganda. The fol-
lowing subpopulations were created from mergers according
to the United Nations geo-scheme for Africa (United Na-
tions Statistics Division, 2014), with Middle and Southern
Africa combined as Central/Southern Africa:

Other W Africa: Benin, Gambia, Guinea, Guinea-Bissau,
Ivory Coast, Liberia, Mali, Togo.

Other C/S Africa: Angola, Chad, Congo, Cameroon, South
Africa.

Other E Africa: Burundi, Ethiopia, Eritrea, Malawi,
Rwanda, Sudan, Tanzania, Zambia,
Zimbabwe.

Other Caribbean: Barbados, Bermuda, Dominica, Guyana,
Grenada, Monserrat, St Lucia, Virgin
Islands, Trinidad.

Individuals with missing subpopulation were included as
“Unknown IC3.” Those with origin not in Africa or the
Caribbean were removed (Eire, GB, USA). Algeria, Egypt,
Morocco, and Somalia were all included with IC6 (see “Best
population fit” below).

IC4
Four national subpopulations were kept distinct: Afghanistan,
Bangladesh, India, Pakistan. Individuals with missing subpop-
ulation, or if the subpopulation was Nepal or Sri Lanka, were
included as “Unknown IC4.” Mauritius was removed.

IC5
SE Asian subpopulations were merged (Cambodia, Indonesia,
Philippines, Thailand, Vietnam). Mongolia and South Korea
were merged with the much larger China sample to form NE
Asia. Fiji was removed.

IC6
Iran, Iraq, Somalia, and Turkey were kept as separate na-
tional subpopulations. Other subpopulations were merged
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Results in following slides are a sample from Steele et al. (2014).
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FST posterior median + 95% interval in Africa/Caribbean3

C. D. Steele et al.

Table 3 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA1 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC1 n 2.5 50 97.5 2.5 50 97.5

Eire 1949 0.1 0.2 0.2 0.0 0.0 0.1
Great Britain 1416 0.1 0.1 0.1 0.0 0.0 0.0
Eastern Europe 61 0.2 0.5 1.0 0.1 0.3 0.7
Northern Europe 45 0.0 0.3 0.8 0.0 0.2 0.5
Southern Europe 60 0.0 0.2 0.5 0.0 0.1 0.3
Western Europe 13 0.1 0.7 2.1 0.0 0.5 1.8
Anglo New World 13 0.1 0.5 1.7 0.0 0.3 1.4
Latin America 25 0.5 1.3 2.4 0.6 1.3 2.4

predominantly European ancestry. The Anglo New World
has slightly lower estimates than Western Europe, but Latin
America has a higher FST estimate, presumably due to ad-
mixture with non-European populations.

The indirect method gives lower FST estimates than the
direct method, which is expected because the ancestral
allele fractions are inferred to be towards the centre of the
subpopulation values. However, the FST values for Latin
America are almost unchanged and are again the highest,
because inference of ancestral allele fractions is dominated by
the European populations.

EA3

The mixed subpopulations of West, Central-Southern and
East Africa, as well as Unknown IC3, have lower FST es-
timates under the direct method than the national subpop-
ulations of Ghana, Kenya, Nigeria, and Sierra Leone. The
FST estimate for other Caribbean is high, much higher than
for Jamaica. Jamaicans have a predominantly African origin
(Caribbean Community Capacity Development Programme,
2009), and there are approximately 800 000 people of
Jamaican descent living in the UK (International Organi-
sation for Migration, 2007), which is close to half the UK
population categorised as black (Office for National Statis-
tics, (2011)). Therefore the EA3 database may be expected to
include a large number of Jamaicans.

Indirect estimation (Table 4b) gives noticeably different
results than the direct method. In most cases they are greatly
reduced, the exception being Kenya which is geographically
remote from the majority of subpopulations, which are in
West Africa or the Caribbean. We have noted above that
Kenya fits almost equally well with both EA3 and EA6 using
direct estimation, suggesting some genetic influence from
the Arab world.

Table 4 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA3 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC3 n 2.5 50 97.5 2.5 50 97.5

Ghana 214 0.8 1.1 1.6 0.2 0.3 0.5
Jamaica 166 0.5 0.7 1.0 0.0 0.1 0.2
Kenya 51 0.7 1.2 1.9 0.8 1.3 1.9
Nigeria 444 0.9 1.2 1.5 0.2 0.3 0.3
Sierra Leone 41 0.7 1.3 2.2 0.1 0.3 0.8
Uganda 63 0.3 0.5 1.0 0.0 0.2 0.4
Unknown IC3 864 0.4 0.5 0.7 0.0 0.0 0.0
Other Caribbean 20 0.5 1.5 2.9 0.1 0.4 1.3
Other C/S Africa 55 0.3 0.6 1.1 0.0 0.1 0.3
Other E Africa 66 0.3 0.7 1.1 0.0 0.1 0.4
Other W Africa 48 0.1 0.5 1.0 0.0 0.1 0.3

Table 5 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA4 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC4 n 2.5 50 97.5 2.5 50 97.5

Afghanistan 47 0.1 0.3 0.9 0.1 0.4 0.9
Bangladesh 53 0.1 0.4 0.9 0.0 0.1 0.4
India 49 0.0 0.3 0.8 0.0 0.1 0.4
Pakistan 60 0.0 0.2 0.5 0.0 0.2 0.5
Unknown IC4 76 0.0 0.2 0.5 0.0 0.1 0.2

EA4, EA5, and EA6

For EA4 and EA5, the FST estimates are all low for both direct
and indirect methods, with no outliers (Tables 5 and 6). The
FST estimates for India and Bangladesh are much lower for
the indirect than the direct method. The FST estimate for NE
Asia is higher than that for SE Asia using the direct method,
but lower using the direct method. This suggests the EA5
database largely consists of individuals from NE Asia.

Most IC6 subpopulations have low sample sizes, and so we
will here discuss the posterior median of FST rather than the
97.5 percentile. Iraq has low FST estimates, much lower than
its neighbour Iran (Table 7). Unsurprisingly, large FST esti-
mates were obtained for Somalia. Results are largely congru-
ent between the direct and indirect method, however, Turkey
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FST values are expressed in %.

Direct means relative to a forensic database;

Indirect reference population is a hypothetical ancestral population.
3A preliminary analysis indicated that Somalia fit better with Middle East/North

Africa and is not shown here.
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Inter-continental FST

Worldwide FST Estimates from STR Loci

Table 6 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA5 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC5 n 2.5 50 97.5 2.5 50 97.5

NE Asia 260 0.1 0.2 0.3 0.1 0.4 0.8
SE Asia 44 0.0 0.2 0.7 0.0 0.1 0.4

Table 7 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA6 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC6 n 2.5 50 97.5 2.5 50 97.5

Iran 12 0.1 0.9 2.4 0.1 0.9 2.7
Iraq 28 0.0 0.2 0.7 0.0 0.2 0.7
Somalia 494 1.1 1.3 1.7 1.2 1.6 2.1
Turkey 20 0.1 0.5 1.6 0.2 0.9 2.1
Middle East 24 0.1 0.7 1.8 0.1 0.5 1.6
N Africa 26 0.2 0.7 1.7 0.1 0.6 1.5

has a larger FST estimate using the indirect method, which
may be due to Turkish individuals being well represented in
the EA6 database.

Fringe Regions

We use the term “fringe” for subpopulations that have sim-
ilar affinity to two populations (difference in median FST

<0.001). Broadly speaking these regions reflect an overall
smooth change in allele frequencies with geography, so that
the fringe regions are at the boundaries of our continental-
scale populations (Table 8). Thus, Afghanistan is near the
boundary between IC4 and IC6, and fits them approximately
equally well, S Europe is at the boundary between IC1 and
IC6, and Kenya is the IC3 country nearest to IC6. These re-
sults suggest a relatively low differentiation between IC6 and
all three surrounding populations (IC1, IC3, IC4). Only IC5
is not linked to other populations through a fringe subpopu-
lation, perhaps due to the mountains separating China from
South Asia, and its geographical remoteness from IC1 and
IC3. This agrees with a previous report that East Asian pop-

Table 8 Posterior median FST (%) for fringe subpopulations: These
are subpopulations for which another reference population gives a
median FST estimate using the direct method within 0.001 of the
lowest (best fit) value.

Reference

Fringe EA1 EA3 EA4 EA5 EA6

Afghanistan 1.17 2.90 0.78 1.87 0.78
Kenya 2.32 1.39 2.51 2.32 1.36
Southern Europe 0.30 2.99 1.20 2.03 0.34
Unknown IC4 1.68 2.80 0.62 1.17 0.72

Table 9 Posterior median FST (%):Populations IC1-6 were com-
pared to each reference population in turn using the direct method.
The indirect method was used to compare each population to a
hypothetical global ancestral population.

Reference

Global n EA1 EA3 EA4 EA5 EA6 Indirect

IC1 3582 0.4 3.1 1.9 1.9 0.9 2.7
IC3 2032 1.7 0.7 1.7 1.4 1.1 1.0
IC4 285 1.4 3.1 0.7 1.3 0.8 2.3
IC5 304 3.1 4.2 2.4 0.5 2.0 3.3
IC6 604 1.8 1.7 1.9 1.7 0.9 1.4

ulations are distinct from those of South Asia, but are close
to South East Asian populations (HUGO Pan-Asian SNP
Consortium, 2009).

Inter-Population Comparisons

Above we have compared subpopulations with continental-
scale reference populations, and now we make comparisons
among those populations. Each column of Table 9 shows a
different FST analysis of the five IC populations, using an EA
database as the reference database in the direct method, or
using the indirect method.

For the direct method, each IC database showed the best fit
(lowest FST estimate) with its cognate EA database, reflecting
a reasonable consistency of definitions between IC and EA
databases. The highest FST value for IC1, IC4 and IC5 are
all obtained relative to EA3. Conversely, looking down the
columns of Table 9, IC5 shows the highest FST value for each
EA database except EA5. The IC6 database is influenced by
the large sample size from Somalia, and shows similar FST

values with respect to all four EA databases other than EA6.

Annals of Human Genetics (2014) 78,468–477 475C⃝ 2014 The Authors.
Annals of Human Genetics published by University College London (UCL) and John Wiley & Sons Ltd

EA1/IC1 European

EA3/IC3 Afro-Caribbean

EA4/IC4 South Asian

EA5/IC5 East Asian

EA6/IC6 Middle East/North African

EA refers to an older
10-locus database, IC is a
newer 16-locus database.
Above results use the 10
common loci.
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Conclusions

I’ve highlighted several advantages of a flexible likelihood-based
approach to inference based on FST .

The main disadvantage is that the assumed likelihood may not be
exactly correct, but

it has been shown to fit well for SNP data;
validity of inferences can be checked by simulation.

Another disadvantage of likelihood methods is computational speed
for very large numbers of loci, but some calculations are still feasible.
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