GENETIC DATA

Section 1.1

Sources of Population Genetic Data

- Phenotype Mendel's peas Blood groups
- Protein Allozymes Amino acid sequences
- DNA Restriction sites, RFLPs Length variants: VNTRs, STRs Single nucleotide polymorphisms, SNPs Single nucleotide variants, SNVs

Mendel's Data

Do	minant Form	Recessive Form								
Seed characters										
5474	Round	1850	Wrinkled							
6022	Yellow	2001	Green							
Plant characters										
705	Grey-brown	224	White							
882	Simply inflated	299	Constricted							
428	Green	152	Yellow							
651	Axial	207	Terminal							
787	Long	277	Short							

Genetic Data

Human ABO blood groups discovered in 1900.

Elaborate mathematical theories constructed by Sewall Wright, R.A. Fisher, J.B.S. Haldane and others. This theory was challenged by data from new data from electrophoretic methods in the 1960's:

"For many years population genetics was an immensely rich and powerful theory with virtually no suitable facts on which to operate. ... Quite suddenly the situation has changed. The motherlode has been tapped and facts in profusion have been pored into the hoppers of this theory machine. ... The entire relationship between the theory and the facts needs to be reconsidered."

Lewontin RC. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press.

Section 1.1

STR markers: CTT set

http://www.cstl.nist.gov/biotech/strbase/seq_info.htm

			Usual No.
Locus	Structure	Chromosome	of repeats
CSF1PO	$[AGAT]_n$	5q	6-16
TPOX	$[AATG]_n$	2p	5-14
TH01*	$[AATG]_n$	11p	3-14

* "9.3" is $[AATG]_6ATG[AATG]_3$

Length variants detected by capillary electrophoresis.

"CTT" Data - Forensic Frequency Database

CSF1P0		ΤF	POX	TH01			
11	12	8	11	7	8		
11	13	8	8	6	7		
11	12	8	11	6	7		
10	12	8	8	6	9		
11	12	8	12	9	9.3		
10	12	9	11	6	7		
10	13	8	11	6	6		
11	12	8	8	6	9.3		
9	10	8	9	7	9.3		
11	12	8	8	6	8		
11	13	8	11	7	9		
11	12	8	11	6	9.3		
10	11	8	8	7	9.3		
10	10	8	11	7	9.3		
9	10	8	8	6	9.3		
11	12	9	11	9	9.3		
9	11	9	11	9	9.3		
11	12	8	8	6	7		
10	10	9	11	6	9.3		
10	13	8	8	8	9.3		

Sequencing of STR Alleles

"STR typing in forensic genetics has been performed traditionally using capillary electrophoresis (CE). Massively parallel sequencing (MPS) has been considered a viable technology in recent years allowing high-throughput coverage at a relatively affordable price. Some of the CE-based limitations may be overcome with the application of MPS ... generate reliable STR profiles at a sensitivity level that competes with current widely used CEbased method."

Zeng XP, et al. 2015. High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing. Forensic Science International: Genetics 16:38-47.

Single Nucleotide Polymorphisms (SNPs)

"Single nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the human genome, with the total number of SNPs reported in public SNP databases currently exceeding 9 million. SNPs are important markers in many studies that link sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular bases of diseases. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large number of distinct approaches. "

Kim S. Misra A. 2007. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289-320.

AMD SNP Data

SNP	SNP Individual															
rs6424	4140	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
rs149	5555 S	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2
rs133	3382	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
rs104	92936	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
rs104	39589	3	1	1	1	2	2	1	2	1	1	1	3	1	1	1
rs104	39588	3	1	1	1	2	2	1	2	1	1	1	3	1	1	1
rs447	2706	1	3	3	3	2	2	3	2	3	3	3	1	3	3	3
rs458 [°]	7514	3	3	3	3	3	2	2	3	2	2	2	3	3	1	3
rs104	92941	3	3	3	3	3	3	3	3	2	3	3	2	3	3	1
rs111	2213	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
rs464	3462	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
rs245	5122	2	1	1	0	1	2	1	1	1	1	1	1	1	1	2
rs245	5124	2	1	1	2	1	2	1	1	1	1	1	1	1	1	2
rs104	92940	2	1	1	1	1	2	1	2	1	1	1	2	1	1	2
rs104	92939	1	2	1	1	1	1	3	2	1	2	3	2	2	1	1
rs104	92938	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
rs104	92937	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3
rs754	5189	1	2	3	3	1	3	2	2	3	3	2	2	2	2	2
rs112	3474	3	2	3	2	3	3	2	3	3	3	3	3	2	1	3

Genotype key: 0 -; 1 AA; 2 AB; 3 BB.

Phase 3 1000Genomes Data

- 84.4 million variants
- 2504 individuals
- 26 populations

https://www.internationalgenome.org/data

Whole-genome Sequence Studies

Largest amount of sequence data currently is from the NHLBI Trans-Omics for Precision Medicine (TOPMed) project. www.nhlbiwgs.

For data freeze 9 of this study:

158,470 genomes.

843 million genetic variants; 781m SNVs and 62m indels.

46.4% of SNVs are singletons; 49.7% of indels are singletons.

3.4-4.5 million variants per genome.

1,000-15,000 singletons per genome.