
ALLELE FREQUENCIES
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Probability

Probability provides the language of data analysis.

Equiprobable outcomes definition:

Probability of event E is number of outcomes favorable to E

divided by the total number of outcomes. e.g. Probability of a

head = 1/2.

Long-run frequency definition:

If event E occurs n times in N identical experiments, the prob-

ability of E is the limit of n/N as N goes to infinity.

Subjective probability:

Probability is a measure of belief.
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First Law of Probability

Law says that probability can take values only in the range zero

to one and that an event which is certain has probability one.










0 ≤ Pr(E) ≤ 1

Pr(E|E) = 1 for any E

i.e. If event E is true, then it has a probability of 1. For example:

Pr(Seed is Round|Seed is Round) = 1
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Second Law of Probability

If G and H are mutually exclusive events, then:

Pr(G or H) = Pr(G) + Pr(H)

For example,

Pr(Seed is Round or Wrinkled) = Pr(Round) + Pr(Wrinkled)

More generally, if Ei, i = 1, . . . r, are mutually exclusive then

Pr(E1 or . . . or Er) = Pr(E1) + . . . + Pr(Er)

=
∑

i

Pr(Ei)
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Complementary Probability

If Pr(E) is the probability that E is true then Pr(Ē) denotes the

probability that E is false. Because these two events are mutually

exclusive

Pr(E or Ē) = Pr(E) + Pr(Ē)

and they are also exhaustive in that between them they cover all

possibilities – one or other of them must be true. So,

Pr(E) + Pr(Ē) = 1

Pr(Ē) = 1 − Pr(E)

The probability that E is false is one minus the probability it is

true.
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Third Law of Probability

For any two events, G and H, the third law can be written:

Pr(G and H) = Pr(G) Pr(H|G)

There is no reason why G should precede H and the law can also

be written:

Pr(G and H) = Pr(H) Pr(G|H)

For example

Pr(Seed is round & is type AA)

= Pr(Seed is round|Seed is type AA) × Pr(Seed is type AA)

= 1 × p2
A
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Independent Events

If the information that H is true does nothing to change uncer-

tainty about G, then

Pr(G|H) = Pr(G)

and

Pr(H and G) = Pr(H)Pr(G)

Events G, H are independent.
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Law of Total Probability

If G, Ḡ are two mutually exclusive and exhaustive events (Ḡ =

not G), then for any other event E, the law of total probability

states that

Pr(E) = Pr(E|G)Pr(G) + Pr(E|Ḡ)Pr(Ḡ)

This generalizes to any set of mutually exclusive and exhaustive

events {Si}:

Pr(E) =
∑

i

Pr(E|Si)Pr(Si)

For example

Pr(Seed is round) = Pr(Round|Type AA)Pr(Type AA)

+ Pr(Round|Type Aa)Pr(Type Aa)

+ Pr(Round|Type aa)Pr(Type aa)

= 1 × p2
A + 1 × 2pApa + 0 × p2

a

= pA(2 − pA)
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Bayes’ Theorem

Bayes’ theorem relates Pr(G|H) to Pr(H|G):

Pr(G|H) =
Pr(GH)

Pr(H)
, from third law

=
Pr(H|G) Pr(G)

Pr(H)
, from third law

If {Gi} are exhaustive and mutually exclusive, Bayes’ theorem

can be written as

Pr(Gi|H) =
Pr(H|Gi)Pr(Gi)

∑

i Pr(H|Gi)Pr(Gi)
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Bayes’ Theorem Example

Suppose G is event that a man has genotype A1A2 and H is the

event that he transmits allele A1 to his child. Then Pr(H|G) =

0.5.

Now what is the probability that a man has genotype A1A2 given

that he transmits allele A1 to his child?

Pr(G|H) =
Pr(H|G) Pr(G)

Pr(H)

=
0.5 × 2p1p2

p1

= p2
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Sampling

Statistical sampling: The variation among repeated samples

from the same population (“fixed” sampling). Inferences can

be made about that particular population.

Genetic sampling: The variation among replicate (conceptual)

populations (“random” sampling). Inferences are made to all

populations with the same history.
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Classical Model

Sample of
size n · · · Sample of

size n

�
�

�
�

�
��=

H
H

H
H

H
H

H
H

HHj

Time t
Population
of size N · · · Population

of size N

↓ ↓

... ...

↓ ↓

Time 2
Population
of size N · · · Population

of size N

↓ ↓

Time 1 Population
of size N · · · Population

of size N

↓ ↓

Reference population
(Usually assumed infinite and in equilibrium)
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Aside: Coalescent Theory

An alternative framework works with genealogical history of a

sample of alleles. There is a tree linking all alleles in a current

sample to the “most recent common ancestral allele.” Allelic

variation is due to mutations since that ancestral allele.

The coalescent approach requires mutation and may be more

appropriate for long-term evolution and analyses involving more

than one species. The classical approach allows mutation but

does not require it: within one species variation among popula-

tions may be due primarily to drift.
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Binomial Distribution
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Properties of Estimators

Consistency Increasing accuracy
as sample size increases

Unbiasedness Expected value is the parameter

Efficiency Smallest variance

Sufficiency Contains all the information
in the data about parameter
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Binomial Distribution

Most population genetic data consists of numbers of observa-

tions in some categories. The values and frequencies of these

counts form a distribution.

Toss a coin n times, and note the number of heads. There

are (n+1) outcomes, and the number of times each outcome is

observed in many sets of n tosses gives the sampling distribution.

Or: sample n alleles from a population and observe x copies of

type A.
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Binomial distribution

If every toss has the same chance p of giving a head:

Probability of x heads in a row of independent tosses is

p × p × . . . × p = px

Probability of n − x tails in a row of independent tosses is

(1 − p) × (1 − p) × . . . × (1 − p) = (1 − p)n−x

The number of ways of ordering x heads and n − x tails among

n outcomes is n!/[x!(n − x)!].

The binomial probability of x successes in n trials is

Pr(x|p) =
n!

x!(n − x)!
px(1 − p)n−x
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Binomial Likelihood

The quantity Pr(x|p) is the probability of the data, x successes

in n trials, when each trial has probability p of success.

The same quantity, written as L(p|x), is the likelihood of the

parameter, p, when the value x has been observed. The terms

that do not involve p are not needed, so

L(p|x) ∝ px(1 − p)(n−x)

Each value of x gives a different likelihood curve, and each curve

points to a p value with maximum likelihood. This leads to

maximum likelihood estimation.
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Likelihood L(p|x, n = 4)
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Binomial Mean

If there are n trials, each of which has probability p of giving a

success, the mean or the expected number of successes is np.

The sample proportion of successes is

p̃ =
x

n

(This is also the maximum likelihood estimate of p.)

The expected, or mean, value of p̃ is p.

E(p̃) = p
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Binomial Variance

The expected value of the squared difference between the num-

ber of successes and its mean, (x − np)2, is np(1 − p). This is

the variance of the number of successes in n trials, and indicates

the spread of the distribution.

The variance of the sample proportion p̃ is

Var(p̃) =
p(1 − p)

n
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Normal Approximation

Provided np is not too small (e.g. not less than 5), the binomial

distribution can be approximated by the normal distribution with

the same mean and variance. In particular:

p̃ ∼ N

(

p,
p(1 − p)

n

)

To use the normal distribution in practice, change to the standard

normal variable z with a mean of 0, and a variance of 1:

z =
p̃ − p

√

p(1 − p)/n

For a standard normal, 95% of the values lie between ±1.96.

The normal approximation to the binomial therefore implies that

95% of the values of p̃ lie in the range

p ± 1.96
√

p(1 − p)/n
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Confidence Intervals

A 95% confidence interval is a variable quantity. It has end-

points which vary with the sample. It is expected that 95% of

samples will lead to an interval that includes the unknown true

value p.

The standard normal variable z has 95% of its values between

−1.96 and +1.96. This suggests that a 95% confidence interval

for the binomial parameter p is

p̃ ± 1.96

√

p̃(1 − p̃)

n
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Confidence Intervals

For samples of size 10, the 11 possible confidence intervals are:

p̃ Confidence Interval

0.0 0.0 ± 2
√

0.000 = (0.00,0.00)

0.1 0.1 ± 2
√

0.009 = (0.00,0.29)

0.2 0.2 ± 2
√

0.016 = (0.00,0.45)

0.3 0.3 ± 2
√

0.021 = (0.02,0.58)

0.4 0.4 ± 2
√

0.024 = (0.10,0.70)

0.5 0.5 ± 2
√

0.025 = (0.19,0.81)

0.6 0.6 ± 2
√

0.024 = (0.30,0.90)

0.7 0.7 ± 2
√

0.021 = (0.42,0.98)

0.8 0.8 ± 2
√

0.016 = (0.55,1.00)

0.9 0.9 ± 2
√

0.009 = (0.71,1.00)

1.0 1.0 ± 2
√

0.000 = (1.00,1.00)

Can modify interval a little by extending it by the “continuity

correction” ±1/2n in each direction.
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Confidence Intervals

To be 95% sure that the estimate is no more than 0.01 from

the true value, 1.96
√

p(1 − p)/n should be less than 0.01. The

widest confidence interval is when p = 0.5, and then the sample

size should satisfy

0.01 ≥ 1.96
√

0.5 × 0.5/n

which means that n ≥ 10,000. For a width of 0.03 instead of

0.01, n ≈ 1,000 as is common in public opinion surveys.

If the true value of p was about 0.05, however,

0.01 ≥ 2
√

0.05 × 0.95/n

n ≥ 1,900 ≈ 2,000
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Exact Confidence Intervals: One-sided

The normal-based confidence intervals are constructed to be

symmetric about the sample value, unless the interval goes out-

side the interval from 0 to 1. They are therefore less satisfactory

the closer the true value is to 0 or 1.

More accurate confidence limits follow from the binomial distri-

bution exactly. For events with low probabilities p, how large

could p be for there to be at least a 5% chance of seeing no

more than x (i.e. 0,1,2, . . . x) occurrences of that event among

n events. If this upper bound is pU ,

x
∑

k=0

Pr(k) ≥ 0.05

x
∑

k=0

(

n

k

)

pk
U(1 − pU)n−k ≥ 0.05

If x = 0, then (1 − pU)n ≥ 0.05 if pU ≤ 1 − 0.051/n and this is

0.0295 when n = 100. More generally, pU ≈ 3/n when x = 0.
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Aside: Two-sided Exact Confidence Intervals

A two-sided interval is bounded above by pU for which there is at

least a 2.5% chance of seeing no more than x (i.e. 0,1,2 . . . x)

occurrences, and is bounded below by pL for which there is at

least a 2.5% chance of seeing at least x (i.e. x, x+1, x+2, . . . n)

occurrences:

x
∑

k=0

(

n

k

)

pk
U(1 − pU)n−k ≥ 0.025

n
∑

k=x

(

n

k

)

pk
L(1 − pL)n−k ≥ 0.025

If x = 0, then (1−pU) ≥ 0.0251/n and this gives pU ≤ 0.036 when

n = 100.

If x = n, then pL ≥ 0.9751/n and this gives pL ≥ 0.964 when

n = 100.
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Exact CIs for n = 10

One-sided Two-sided
x p̃ pU x pL p̃ pU
0 0.00 0.26 0 0.00 0.00 0.31
1 0.10 0.39 1 0.00 0.10 0.45
2 0.20 0.51 2 0.03 0.20 0.56
3 0.30 0.61 3 0.07 0.30 0.65
4 0.40 0.70 4 0.12 0.40 0.74
5 0.50 0.78 5 0.19 0.50 0.81
6 0.60 0.85 6 0.26 0.60 0.88
7 0.70 0.91 7 0.35 0.70 0.93
8 0.80 0.96 8 0.44 0.80 0.97
9 0.90 0.99 9 0.55 0.90 1.00
10 1.00 1.00 10 0.69 1.00 1.00

The two-sided CI is not symmetrical around p̃.
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Bootstrapping

An alternative method for constructing confidence intervals uses

numerical resampling. A set of samples is drawn, with replace-

ment, from the original sample to mimic the variation among

samples from the original population. Each new sample is the

same size as the original sample, and is called a bootstrap sam-

ple.

The middle 95% of the sample values p̃ from a large number of

bootstrap samples provides a 95% confidence interval.
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Allele Frequency Sampling
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Multinomial Distribution

For a SNP with alleles A,a the three genotypes and their prob-

abilities are

Genotype Probability

AA PAA
Aa or aA PAa

aa Paa

For a sample of n independently sampled individuals, the multi-

nomial distribution gives the probability of x of AA, y of Aa

and z of aa. The probability of x genotypes AA is (PAA)x, etc.

The numbers of ways of ordering x, y, z occurrences of the three

outcomes is n!/(x!y!z!) where n = x + y + z.

The multinomial probability is:

Pr(x, y, z) =
n!

x!y!z!
(PAA)x(PAa)

y(Paa)
z
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Multinomial Variances and Covariances

If {Pi} are the probabilities for a series of categories, the sam-

ple proportions P̃i from a sample of n observations have these

properties:

E(P̃i) = Pi

Var(P̃i) =
1

n
Pi(1 − Pi)

Cov(P̃i, P̃j) = −1

n
PiPj, i 6= j

The covariance is defined as E[(P̃i − Pi)(P̃j − Pj)].

For the sample counts:

E(ni) = nPi

Var(ni) = nPi(1 − Pi)

Cov(ni, nj) = −nPiPj, i 6= j
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Allele Frequency Sampling Distribution

If a locus has alleles A and a, in a sample of size n the allele

counts are sums of genotype counts:

n = nAA + nAa + naa

nA = 2nAA + nAa

na = 2naa + nAa

2n = nA + na

Genotype counts in a random sample are multinomially distributed.

What about allele counts? Approach this question by calculating

variance of nA.
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Within-population Variance

Var(nA) = Var(2nAA + nAa)

= Var(2nAA) + 2Cov(2nAA, nAa) + Var(nAa)

= 4nPAA(1 − PAA) − 4nPAAPAa + nPAa(1 − PAa)

= 2npA(1 − pA) + 2n(PAA − p2
A)

This is not the same as the binomial variance 2npA(1−pA) unless

PAA = p2
A. In general, the allele frequency distribution is not

binomial.

The variance of the sample allele frequency p̃A = nA/(2n) can

be written as

Var(p̃A) =
pA(1 − pA)

2n
+

PAA − p2
A

2n
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Within-population Variance

It is convenient to reparameterize genotype frequencies with the

within-population inbreeding coefficient f :

PAA = p2
A + fpApa

PAa = 2pApa − 2fpApa

Paa = p2
a + fpApa

Then the variance can be written as

Var(p̃A) =
pA(1 − pA)(1 + f)

2n

This variance is different from the binomial variance of pA(1 −
pA)/2n.
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Bounds on f

Since

pA ≥ PAA = p2
A + fpA(1 − pA) ≥ 0

pa ≥ Paa = p2
a + fpa(1 − pa) ≥ 0

there are bounds on f :

−pA/(1 − pA) ≤ f ≤ 1

−pa/(1 − pa) ≤ f ≤ 1

or

max

(

−pA

pa
,−pa

pA

)

≤ f ≤ 1

This range of values is [-1,1] when pA = pa.
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An aside: Indicator Variables

A very convenient way to derive many statistical genetic results

is to define an indicator variable xjk for allele k in individual j:

xjk =

{

1 if allele is A
0 if allele is not A

Then

E(xjk) = pA

E(x2
jk) = pA

E(xjkxjk′) = PAA

If there is random sampling, individuals are independent, and

E(xjkxj′k′) = E(xjk)E(xj′k′) = p2
A

These expectations are the averages of values from many sam-

ples from the same population.
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An aside: Intraclass Correlation

In general, the inbreeding coefficient is the correlation of the

indicator variables for the two alleles k, k′ at a locus carried by

an individual j. This is because:

Var(xjk) = E(x2
jk) − [E(xjk)]

2

= pA(1 − pA)

= Var(xjk′), k 6= k′

and

Cov(xjk, xjk′) = E(xjkxjk′) − [E(xjk)][E(xjk′)], k 6= k′

= PAA − p2
A

= fpA(1 − pA)

so

Corr(xjk, xjk′) =
Cov(xjk, xjk′)

√

Var(xjk)Var(xjk′)
= f
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Allele Dosage

The dosage X of allele A for an individual is the number of

copies of A (0,1,2) that individual carries (the sum of its two

allele indicators).

The probabilities for X are

Pr(X = 0) = Paa,Pr(X = 1) = PAa,Pr(X = 2) = PAA

so the expected value of X is 2PAA + PAa = 2pA.

The expected value of X2 is 4PAA +PAa = 2(pA +PAA) and this

leads to a variance of the dosage for an individual of

Var(X) = 2PAA + 2pa − 4p2
A = 2pA(1 − pA)(1 + f)

We will come back to this result, but note here that the f term

is usually not included in genetic data analysis packages.
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Maximum Likelihood Estimation: Allele Data

For a sample of n independent alleles, the likelihood of pA when

there are nA alleles of type A is

L(pA|nA) = C(pA)nA(1 − pA)n−nA

and this is maximized when

∂L(pA|nA)

∂pA
= 0 or when

∂ lnL(pA|na)

∂pA
= 0

Now

lnL(pA|nA) = lnC + nA ln(pA) + (n − nA) ln(1 − pA)

so

∂ lnL(pA|nA)

∂pA
=

nA

pA
− n − nA

1 − pA

and this is zero when pA = nA/n. The MLE of pA is its sample

value: p̂A = p̃A.
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Maximum Likelihood Estimation: Genotype Data

If {ni} are multinomial with parameters n and {Pi}, then the

MLE’s of Pi are ni/n. This will always hold for genotype propor-

tions, but not always for allele proportions.

For two alleles, the MLE’s for genotype proportions are:

P̂AA = nAA/n

P̂Aa = nAa/n

P̂aa = naa/n

Does this lead to estimates of allele proportions and the within-

population inbreeding coefficient?

Section 1 Slide 41



Maximum Likelihood Estimation: f

Because

PAA = p2
A + fpA(1 − pA)

PAa = 2pA(1 − pA)− 2fpA(1 − pA)

Paa = (1 − pA)2 + fpA(1 − pA)

The likelihood function for pA, f is

L(pA, f) =
n!

nAA!nAa!naa!
[p2

A + pA(1 − pA)f ]nAA

×[2pA(1 − pA)f ]nAa[(1 − pA)2 + pA(1 − pA)f ]naa

and it is difficult to find, algebraically, the values of pA and f

that maximize this function or its logarithm.

There is an alternative way of finding maximum likelihood esti-

mates in this case: equating the observed and expected values

of the genotype frequencies.
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Bailey’s Method

Because the number of parameters (2) equals the number of

degrees of freedom in this case, we can just equate observed

and expected genotype proportions based on the estimates of pA

and f :

nAA/n = p̂2
A + f̂ p̂A(1 − p̂A)

nAa/n = 2p̂A(1 − p̂A) − 2f̂ p̂A(1 − p̂A)

naa/n = (1 − p̂A)2 + f̂ p̂A(1 − p̂A)

Solving these equations (e.g. by adding the first equation to half

the second equation to give solution for p̂A and then substituting

that into one equation):

p̂A =
2nAA + nAa

2n
= p̃A

f̂ = 1 − nAa

2np̃A(1 − p̃A)
= 1 − P̃Aa

2p̃Ap̃a
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Aside: Three-allele Case

With three alleles, there are six genotypes and 5 df. To use

Bailey’s method, would need five parameters: 2 allele frequencies

and 3 inbreeding coefficients. For example

P11 = p2
1 + f12p1p2 + f13p1p3

P12 = 2p1p2 − 2f12p1p2

P22 = p2
2 + f12p1p2 + f23p2p3

P13 = 2p1p3 − 2f13p1p3

P23 = 2p2p3 − 2f23p2p3

P33 = p2
3 + f13p1p3 + f23p2p3

We would generally prefer to have only one inbreeding coefficient

f . It is a difficult numerical problem to find the MLE for f .
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Method of Moments

An alternative to maximum likelihood estimation is the method

of moments (MoM) where observed values of statistics are set

equal to their expected values regardless of degrees of freedom.

In general, this does not lead to unique estimates or to estimates

with variances as small as those for maximum likelihood.

(Bailey’s method is for the special case where the MLEs are also

MoM estimates.)
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Aside: Method of Moments

For the inbreeding coefficient at loci with m alleles Au, two pos-

sible MoM estimates are (for large sample sizes)

f̂LH1 =

∑m
u=1(P̃uu − p̃2

u)
∑m

u=1 p̃u(1 − p̃u)

f̂LH5 =
1

m − 1

m
∑

u=1

(

P̃uu − p̃2
u

p̃u

)

These both have low bias. Their variances depend on the value

of f .

For loci with two alleles, m = 2, the two moment estimates are

equal to each other and to the maximum likelihood estimate:

f̂LH1 = f̂LH5 = 1 − P̃Aa

2p̃Ap̃a

Li CC, Horvitz DG. 1953. Am J Human Genetics 5:107-16. Equations 1 and

5.
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Aside: MLE for Recessive Alleles

Suppose allele a is recessive to allele A, and a sample of n individ-

uals has naa recessive homozygotes. The genotypes of the other

(n−nAa) individuals can be AA or Aa.If there is Hardy-Weinberg

equilibrium, the likelihood for the two phenotypes is

L(pa) = (p2
a)

naa(1 − p2
a)

n−naa

ln[L(pa)] = 2naa ln(pa) + (n − naa) ln(1 − p2
a)

Differentiating wrt pa:

∂ lnL(pa)

∂pa
=

2naa

pa
− 2pa(n − naa)

1 − p2
a

Setting this to zero leads to an equation that can be solved

explicitly: pa =
√

naa/n.

Section 1 Slide 47



Aside: EM Algorithm for Recessive Alleles

An alternative way of finding maximum likelihood estimates when

there are “missing data” involves Estimation of the missing data

and then Maximization of the likelihood. For a locus with allele

A dominant to a the missing information is the counts of the AA

and Aa genotypes. Only the joint count (n − naa) of AA + Aa is

observed.

Estimate the missing genotype counts (assuming independence

of alleles) as proportions of the total count of dominant pheno-

types:

nAA =
(1 − pa)2

1 − p2
a

(n − naa) =
(1 − pa)(n − naa)

(1 + pa)

nAa =
2pa(1 − pa)

1 − p2
a

(n − naa) =
2pa(n − naa)

(1 + pa)
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Aside: EM Algorithm for Recessive Alleles

Maximize the likelihood (using Bailey’s method):

p̂a =
nAa + 2naa

2n

=
1

2n

(

2pa(n − naa)

(1 + pa)
+ 2naa

)

=
2(npa + naa)

2n(1 + pa)

An initial estimate pa is put into the right hand side to give an

updated estimated p̂a on the left hand side. This is then put

back into the right hand side to give an iterative equation for pa.

This procedure also has explicit solution p̂a =
√

naa/n.
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EM Algorithm for Two Loci

A more interesting application of the EM algorithm is the estimation of two-
locus gamete frequencies from unphased genotype data. For locus A with
alleles A, a and locus B with alleles B, b, the ten two-locus frequencies are:

Genotype Actual Expected Genotype Actual Expected

AB/AB PAB
AB p2

AB AB/Ab PAB
Ab 2pABpAb

AB/aB PAB
aB 2pABpaB AB/ab PAB

ab 2pABpab

Ab/Ab PAb
Ab p2

Ab Ab/aB PAb
aB 2pAbpaB

Ab/ab PAb
ab 2pAbpab aB/aB P aB

aB p2
aB

aB/ab P aB
ab 2paBpab ab/ab P ab

ab p2
ab
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EM Algorithm for Two Loci

Gamete frequencies are marginal sums:

pAB = PAB
AB +

1

2
(PAB

Ab + PAB
aB + PAB

ab )

pAb = PAb
Ab +

1

2
(PAb

AB + PAb
ab + PAb

aB)

paB = P aB
aB +

1

2
(P aB

AB + P aB
ab + P aB

Ab )

pab = P ab
ab +

1

2
(P ab

Ab + P ab
aB + P ab

AB)

Arrange the gamete frequencies as a two-way table to show that

only one of them is unknown when the allele frequencies are

known:

pAB pAb pA
paB pab pa

pB pb 1
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EM Algorithm for Two Loci

The two double heterozygote counts nAB
ab , nAb

aB are “missing data.”

Assume initial value of pAB and Estimate the missing counts as

proportions of the total count nAaBb of double heterozygotes:

nAB
ab =

2pABpab

2pABpab + 2pAbpaB
nAaBb

nAb
aB =

2pAbpaB

2pABpab + 2pAbpaB
nAaBb

and then Maximize the likelihood by setting

pAB =
1

2n

(

2nAB
AB + nAB

Ab + nAB
aB + nAB

ab

)

or

nAB = 2nAB
AB + nAB

Ab + nAB
aB + nAB

ab
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Example

As an example, consider these data:

BB Bb bb Total

AA nAABB = 0 nAABb = 0 nAAbb = 2 nAA = 2
Aa nAaBB = 1 nAaBb = 3 nAabb = 4 nAa = 8
aa naaBB = 0 naaBb = 1 naabb = 4 naa = 5

Total nBB = 1 nBb = 4 nbb = 10 n = 15

There is one unknown gamete count x = nAB for AB:

B b Total

A nAB = x nAb = 12 − x nA = 12
a naB = 6 − x nab = x + 12 na = 18

Total nB = 6 nb = 24 2n = 30

0 ≤ x ≤ 6
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Example

EM iterative equation:

x′ = 2nAABB + nAABb + nAaBB + nAB/ab

= 2nAABB + nAABb + nAaBB +
2pABpab

2pABpab + 2pAbpaB
nAaBb

= 0 + 0 + 1 + 3 × 2x(x + 12)

2x(x + 12) + 2(12− x)(6 − x)

= 1 +
3x(x + 12)

x(x + 12) + (12 − x)(6 − x)
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Example

A good starting value would assume independence of A and B

alleles: x = 2n ∗ pA ∗ pB = (30× 12/30× 6/30) = 2.4. Successive

iterates are:

Iterate x x/2n
1 2.4000 0.0800
2 2.5000 0.0833
3 2.5647 0.0855
4 2.6063 0.0869
5 2.6327 0.0878
6 2.6494 0.0883
7 2.6600 0.0887
8 2.6667 0.0889
9 2.6709 0.0890
10 2.6736 0.0891
11 2.6752 0.0892
12 2.6763 0.0892
13 2.6769 0.0892
14 2.6773 0.0892
15 2.6776 0.0893
16 2.6778 0.0893
... ... ...
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