Statistical Genetics

Summer Institute in Statistical Genetics University of Washington

 July 22-24, 2020Jérôme Goudet and Bruce Weir
with
Sanne Aalbers, Tristan Cumer
Ana Paula Machado, Lluvia Xia

Reminder

Please complete the pre-module survey on the SISG website.
https://si.biostat.washington.edu/suminst/sisg2020/modules/SM2013

Thanks!

Zoom Poll 1: I currently live in:

- A North America.
- B South America.
- C Africa.
- D Asia.
- E Europe.
- F Rest of the world.

Zoom Poll 2: I am a:

- A Student in biological sciences.
- B Student in mathematical sciences.
- C Postdoc or faculty.
- D Private sector scientist.
- E Public sector scientist.
- F None of the above.

Zoom Poll 3: I know most about:

- A Mathematics and statistics.
- B Computer science.
- C Genetics.
- D Other biological sciences.
- E Something else.

Zoom Poll 4: I study or work on:

- A Humans.
- B Non-human animals other than fish.
- C Fish.
- D Plants.
- E Micro organisms.
- F I do not study or work on biological material.

Zoom Poll 5: The organisms I work with are:

- A Diploid.
- B Haploid.
- C Polyploid.
- D I don't work with organisms.

Zoom Poll 6: The data I work with are:

- A Non-genetic.
- B Microsatellite.
- C DNA sequence, SNP.
- D Other omic data.
- E I don't work with data.

Zoom Poll 7: About R, I:

- A Have no experience with R.
- B Have run an R program someone else gave me.
- C Have downloaded and run an R package.
- D Have written and run an R program.
- E Have written and distributed an R package.

Zoom Poll 8: I have:

- A Performed a test for Hardy-Weinberg equilibrium.
- B Estimated $F_{S T}$.
- C Estimated kinship.
- D Tested for association between a marker and a trait.
- E Two or more of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}.
- F None of the above.

GENETIC DATA

- Microsatellite / STR.
- SNP, SNV.
- Trait value.

Axioms of Probability

1. $0 \leq \operatorname{Pr}(G) \leq 1, \operatorname{Pr}(G \mid G)=1$.
2. $\operatorname{Pr}(G$ or $H)=\operatorname{Pr}(G)+\operatorname{Pr}(H)$ if G, H mutually exclusive.
3. $\operatorname{Pr}(G$ and $H)=\operatorname{Pr}(G) \operatorname{Pr}(H \mid G)$.

Law of Total Probability

For any event E and any set of mutually exclusive and exhaustive events $\left\{S_{i}\right\}$:

$$
\operatorname{Pr}(E)=\sum_{i} \operatorname{Pr}\left(E \mid S_{i}\right) \operatorname{Pr}\left(S_{i}\right)
$$

Bayes' Theorem

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

Sampling

Mendel and Fisher

Discuss Fisher's criticism of Mendel, and current criticism of Fisher, in your break-out groups.

