Statistical Genetics

Summer Institute in Statistical Genetics University of Washington July 22-24, 2020

Jérôme Goudet and Bruce Weir

with

Sanne Aalbers, Tristan Cumer

Ana Paula Machado, Lluvia Xia

Reminder

Please complete the pre-module survey on the SISG website.

https://si.biostat.washington.edu/suminst/sisg2020/modules/SM2013

Thanks!

Zoom Poll 1: I currently live in:

- A North America.
- **B** South America.
- C Africa.
- **D** Asia.
- E Europe.
- **F** Rest of the world.

Zoom Poll 2: I am a:

- A Student in biological sciences.
- **B** Student in mathematical sciences.
- C Postdoc or faculty.
- **D** Private sector scientist.
- E Public sector scientist.
- **F** None of the above.

Zoom Poll 3: I know most about:

- A Mathematics and statistics.
- **B** Computer science.
- C Genetics.
- **D** Other biological sciences.
- E Something else.

Zoom Poll 4: I study or work on:

- A Humans.
- B Non-human animals other than fish.
- C Fish.
- **D** Plants.
- E Micro organisms.
- **F** I do not study or work on biological material.

Zoom Poll 5: The organisms I work with are:

- A Diploid.
- B Haploid.
- C Polyploid.
- **D** I don't work with organisms.

Zoom Poll 6: The data I work with are:

- A Non-genetic.
- B Microsatellite.
- C DNA sequence, SNP.
- **D** Other omic data.
- E I don't work with data.

Zoom Poll 7: About R, I:

- **A** Have no experience with R.
- **B** Have run an R program someone else gave me.
- C Have downloaded and run an R package.
- **D** Have written and run an R program.
- E Have written and distributed an R package.

Zoom Poll 8: I have:

- A Performed a test for Hardy-Weinberg equilibrium.
- **B** Estimated F_{ST} .
- C Estimated kinship.
- **D** Tested for association between a marker and a trait.
- E Two or more of A, B, C or D.
- **F** None of the above.

GENETIC DATA

- Microsatellite / STR.
- SNP, SNV.
- Trait value.

Axioms of Probability

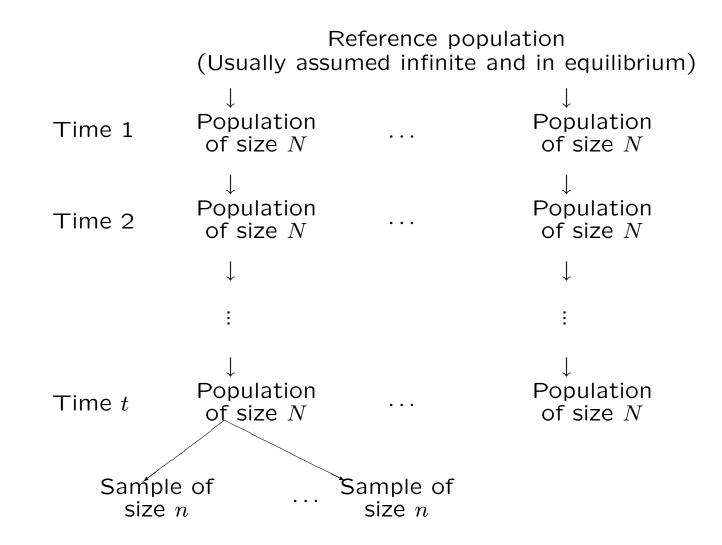
1. $0 \le \Pr(G) \le 1, \Pr(G|G) = 1.$

2. Pr(G or H) = Pr(G) + Pr(H) if G, H mutually exclusive.

3. $\Pr(G \text{ and } H) = \Pr(G) \Pr(H|G)$.

Law of Total Probability

For any event *E* and any set of mutually exclusive and exhaustive events $\{S_i\}$:


$$\Pr(E) = \sum_{i} \Pr(E|S_i) \Pr(S_i)$$

Bayes' Theorem

$$\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}$$

Section 1

Sampling

Section 1

Mendel and Fisher

Discuss Fisher's criticism of Mendel, and current criticism of Fisher, in your break-out groups.