Genetic Variation: What is it and why is it important?

"Nothing in biology makes sense except in light of evolution"

Theodosius Dobzhansky 1973

"Nothing in evolution makes sense except in light of population genetics" Michael Lynch 2007

• The study of distribution and change in allele frequencies and genotype frequencies over time

- The study of distribution and change in allele frequencies and genotype frequencies over time
 - * Evolution defined as change in allele frequency in gene pool
 - * Influenced by:
 - ➤Natural Selection
 - ≫Random Genetic Drift
 - ➤Mutation
 - ≫Gene Flow
 - >Recombination
 - ➢Population structure

- The study of distribution and change in allele frequencies and genotype frequencies over time
 - Evolution defined as change in allele frequency in gene pool
 - * Influenced by:
 - ➤Natural Selection
 - ➢Random Genetic Drift
 - ➤Mutation
 - ≫Gene Flow
 - ➢Recombination
 - ➢Population structure

- The study of distribution and change in allele frequencies and genotype frequencies over time
 - Evolution defined as change in allele frequency in gene pool
 - * Influenced by:
 - ➤Natural Selection
 - ≫Random Genetic Drift
 - ➤Mutation
 - ≫Gene Flow
 - >Recombination
 - ➢Population structure
- Goal: To determine the genetic basis of evolution

"Nothing in biology makes sense except in light of evolution"

Theodosius Dobzhansky 1973

"Nothing in evolution makes sense except in light of population genetics" Michael Lynch 2007

- Continuous variation: Complete range of measurements from one extreme to the other
 - Color

 Continuous variation: Complete range of measurements from one extreme to the other

– Color

Donax variabilis

- Continuous variation: Complete range of measurements from one extreme to the other
 - Color
 - Height

- Continuous variation: Complete range of measurements from one extreme to the other
 - Color
 - Height
 - Milk production in cows

- Continuous variation: Complete range of measurements from one extreme to the other
 - Color
 - Height

. . .

Milk production in cows

- Continuous variation: Complete range of measurements from one extreme to the other
- Discrete variation: Individuals fall into a number of distinct classes or categories

- Continuous variation: Complete range of measurements from one extreme to the other
- Discrete variation: Individuals fall into a number of distinct classes or categories
 - Bristle number in *D. melanogaster*

- Continuous variation: Complete range of measurements from one extreme to the other
- Discrete variation: Individuals fall into a number of distinct classes or categories
 - Bristle number in D. melanogaster

Tilney L G & DeRosier D J 2005

Lyman & Mackay 1998

- Continuous variation: Complete range of measurements from one extreme to the other
- Discrete variation: Individuals fall into a number of distinct classes or categories
 - Bristle number in D. melanogaster
 - Human blood groups

- Continuous variation: Complete range of measurements from one extreme to the other
- Discrete variation: Individuals fall into a number of distinct classes or categories

Discrete Genetic Variation

- Chromosomal variation
- Protein variation
- DNA variation

• Variation in chromosome number, gene number, gene order etc.

Н	G	F	Е	D	С	В	A
TIRE		13 B M		1961		NITE L	

From Dobzhansky and Sturtevant 1938

ABO blood groups

- Allozymes: variant forms of an enzyme encoded by different alleles at the same locus
- Variation revealed using electrophoresis

Figure 4: Schematic of devices used in protein electrophoresis

- Allozymes: variant forms of an enzyme encoded by different alleles at the same locus
- Variation revealed using electrophoresis

How does it work?

- Nonsynonymous mutations can change enzyme's overall ionic charge
- Leads to differences in electrophoretic mobility

Amino Acid	3-Letter	1-Letter	Side chain polarity	Side chain charge (pH 7.4)
Alanine	Ala	А	nompolar	neutral
Arginine	Arg	R	polar	positive
Asparagine	Asn	Ν	polar	neutral
A spartic acid	Asp	D	polar	negative
Cysteine	Cys	С	nonpolar	neutral
Glutamicacid	Glu	E	polar	negative
Glutamine	Gln	Q	polar	neutral
Glycine	Gly	G	nonpolar	neutral
Histidine	His	Н	polar	positive(10%), neutral(90%)
Isoleucine	lle	Ι	nonpolar	neutral
Leucine	Leu	L	nonpolar	neutral
Lysine	Lys	K	polar	positive
Methionine	Met	М	nonpolar	neutral
Phenylalanine	Phe	F	nonpolar	neutral
Proline	Pro	Р	nonpolar	neutral
Serine	Ser	S	polar	neutral
Threonine	Thr	Т	polar	neutral
Tryptophan	Trp	W	nonpolar	neutral
Tyrosine	Tyr	Y	polar	neutral
Valine	Val	V	nonpolar	neutral

- Amino acid variation
 - Alternative forms of proteins arising from variation in the amino acid sequence
 - Sickle-cell disease (HbS): ONE amino acid change in beta-globin chain of hemoglobin

Sickle-cell phenotype

Normal phenotype

- RFLP: Restriction fragment length polymorphism
 - Created by mutation that changes a restriction site

GCCGCATTCTA CGGC<mark>G</mark>TAAGAT GCCG<mark>A</mark>ATTCTA CGGC<mark>T</mark>TAAGAT

- RFLP: Restriction fragment length polymorphism
 - Created by mutation that changes a restriction site

- RFLP
- RAPD: Random amplification of polymorphic DNA
 - Like PCR, but segments are amplified randomly
 - Employs several arbitrary, short primers
 - Need no knowledge of underlying sequence
 - Variation in RAPD profile comes from variation in primer binding sites across individuals

- RFLP
- RAPD: Random amplification of polymorphic DNA

Strains of Lactobacillus from 18 types of Cheddar Cheese

Teagasc 1998

- RFLP
- RAPD
- Microsatellites/minisatellites/VNTRs/SSRs: Tandemly repeated short sequences

- RFLP
- RAPD
- Microsatellites/minisatellites/VNTRs/SSRs:

Leishmania (Viannia) isolates

From London School of Hygiene and Tropical Medicine

- RFLP
- RAPD
- Microsatellites/minisatellites/VNTRs/SSRs
- Insertion/Deletion: Gain or loss of DNA segment

JF330184	GTA IGATGCAGGCATGCAGGCTACAGTGTATGAA IGTATGTTGGATGIGITTAACATCA TAT—A TACTT—
JF330186	GTA TGATGCAGGCATGCAGCTACAGTGTATGAA TGTATGTTGGATGTGTTTAACATCA TAT—A TACTT—
JF330197	GTA TGATGCAGGCATGCAGGTGTATGAA TGTATGTTGGATGTGTTTAACATCA TAT—A TACTT—
JF330194	GTA TGATGCAGGCATGCAGCTACAGTGTATGAA TGTATGTTGGATGTGTTTAACATCA TAT—A TACTT—
JF330195	GTA TGATGCAGGCATGCAGCTACAGTGTATGAA TGTATGTTGGATGTGTTTAACATCA TAT—ATACTT—
JF330191	GTA TGATGCAGGCATQCAGCTACAGTGTATGAA TGTATGTTQGATGTGTTTAACATCA TAT—ATACTT—
JF330188	GTA TGATGCAGGCATQCAGCTACAGTGTATGAA TGTATGTTQGATGTGTTTAACATCA TAT—ATACTT—
JF330185	GTA TGATG TAGCTACAGTGTATGAA TCTATGTTGAATGTGTTTAACTTCA TCA TCA TCA TACTTTA TCAAAAACTTTAAAGAAA TGATA TTGAAA TGATA TT
JF330190	GTA TGA TG TA GALAGE CGTA TGA A TCTA TGT TGA A TG TG TT TAAC TTCA TCA TCA TCA TCA TA CT TTA TCA AAAAC TT TAAAGAAA TGA TA TTGAAA TGA TA TTGAAA TGA TA TT
JF330192	GTA TGATGTAGCTACAGTGTATGAA TCTATGTTGAATGTGTTTAACTTCA TCA TCA TACTTTA TCAAAAACTTTAAAGAAA TGATA TT
JF330193	GTA TGA TG A TG TA CAG TG TA TG A TC TA TG T TG A TG TT TA A C TTCA TCA TCA TCA TA CT TTA TC A A A A
JF330198	GTA TGA TG TA CALE TA CALE TA CALE TA
JF330189	GTA TGATG TAGCTACAGTGTATGAA TCTATGTTGGATGTGTTTAACTTCA TCA TCA TACTTTA TCAAAAACTTTAAAGGAA TGATA TTGGAA TGATA TT
JF330196	GTA TGA TG TAGCTACAG TG TA TGAA TC TA TGG TGA ATG TG TT TAAC TTCA ACA TCA TACT TTA TCA TAAAC ATTCA TAC TTA CGGAA TGA TA TT
JF330187	GTA TGA TGCAGCTACOGTGTA TGAA TCTA TGTTGAA TG TGTTTAACTTCAACA TCA TACTTTA TCAAAAACTTTTTTTT
	From Wei <i>et al.</i> 2011

- RFLP
- RAPD
- Microsatellites/minisatellites/VNTRs/SSRs
- Insertion/Deletion
- Single Nucleotide Polymorphism: Differences at a single nucleotide

Sequence reads from 4 individuals

Discrete Genetic Variation

- Chromosomal variation
 - Inversions, chromosomes fusions/fissions
- Protein variation
 - Immunological, allozymes, amino acid variation
- DNA variation
 - RFLP, RAPD, VNTR, Indel, SNP

Where does genetic variation come from?

- All (genetic) polymorphisms originate with mutation
- Point mutation (one base for another)

Fig. 4. Drug transport function of wild-type and two MDR1 haplotypes. The drug efflux of vaccinia infected/transfected HeLa cells was determined by FACS analysis (*14*). Cells were transfected with pTM1 (control; purple), MDR1, (wild-type P-gp; green), C1236T-G2677T-C3435T (red), and C1236T-G2677T-C3435A (brown). (**A**) 0.5 μ M bodipy-FL-verapamil in the presence of 500 μ M digoxin; (**B**) 0.5 μ M Rh123 in the presence of 150 μ M digoxin.

Kimchi-Sarfaty et al. 2007

Sickle-cell phenotype

Normal phenotype

- All polymorphisms originate with mutation
- Point mutation (one base for another)
- Insertion (addition of DNA)

- All polymorphisms originate with mutation
- Point mutation (one base for another)
- Insertion (addition of DNA)
- Deletion (loss of DNA)

- All polymorphisms originate with mutation
- Point mutation (one base for another)
- Insertion (addition of DNA)
- Deletion (loss of DNA)
- Chromosomal mutations

Mutation is the substrate of evolution ABC F D F D Е E A С Deletion AB D ABB E F D E F С С Duplication C D C BF D A Е в Inversion F JK AB ABC С J κ D GH G H Е D Translocation

F

Genetic Variation

- All genetic variation originates with mutation
 - Mutation is the substrate of evolution
- All levels of organization from single base pairs to entire genomes
- Understanding genetic variation has deep implications
- Population genetics aimed at understanding genetic variation within populations

- Genetic variation underlies phenotypic differences among individuals
 - Including disease risk and responses to drugs and environmental factors

- Genetic variation underlies phenotypic differences among individuals
 - Including disease risk and responses to drugs and environmental factors
- Individual identification

- Genetic variation underlies phenotypic differences among individuals
 - Including disease risk and responses to drugs and environmental factors
- Individual identification
- Manage resources

- Genetic variation underlies phenotypic differences among individuals
 - Including disease risk and responses to drugs and environmental factors
- Individual identification
- Manage resources
- Public Health

- Genetic variation underlies phenotypic differences among individuals
 - Including disease risk and responses to drugs and environmental factors
- Individual identification
- Manage resources
- Public Health
- Improve plant and animal food products
- Understand genetic basis of disease and other complex phenotypes including behaviours
- Insights into evolutionary history, ancestry

Key Terms

- Population: A group of individuals of a single species that, if sexual, is capable of exchanging genes
- Sample: A finite number of individuals collected from a population
- Polymorphism: Character that is variable within a species
- Allele: Variant at a specific locus in the genome
- Genotype: The allelic makeup of an individual
 - Homozygote (identical alleles at a locus in an individual)
 - Heterozygote (different alleles at a locus in an individual)

Key Terms

- Identical by state
 - Nucleotide level: Alleles have identical nucleotide sequences
 - Amino acid level: Alleles have identical amino acid sequences

Key Terms

- Identical by state
 - Nucleotide level: Alleles have identical nucleotide sequences
 - Amino acid level: Alleles have identical amino acid sequences
- Identical by descent: Alleles share a common ancestor allele (in the short term)
 - Need not be identical by state

Individual Allele

1	а	С	Α	Т	Α	G	Α	Α	С	С	Т	G	G	G	С	Α	С	Т	Т	С	Α
2	b				Α	•	Т	-	•	•		G		•	•	С				Т	
3	С			•	G	•	Α	•	•	•		G	•	•	•	Α		•		С	-
4	d				G		Α					Т	•			Α				С	
5	b				А		Т	•				G				С				Т	

 Allele frequency: number of instances of allele/total number of alleles sampled

•
$$p_{\rm a} = 1/5 = 0.2$$

- $p_{\rm b} = 2/5 = 0.4$
- $p_{\rm c} = 1/5 = 0.2$
- $p_{\rm d} = 1/5 = 0.2$

Individual Allele

1	а	С	А	Т	А	G	Α	А	С	С	Т	G	G	G	С	Α	С	Т	Т	С	Α
2	b			-	А		Т	-	•	•		G	•	-	-	С	-	•	•	Т	•
3	С			-	G		Α	•	•	•		G	•	•	-	Α		•		С	•
4	d		-	-	G		Α	•	•	•	-	Т	•	•	•	Α		•	•	С	•
5	b		-	-	Α		Т				-	G		•	-	С		-	•	Т	

 Allele frequency: number of instances of allele/total number of alleles sampled

Individual Allele

1	а	С	А	Т	А	G	Α	Α	С	С	Т	G	G	G	С	Α	С	Т	Т	С	Α
2	b	•	•		А		Т	•	•	•		G		•		С	•			Т	•
3	С	•	•		G		Α	•	•	•		G	•	•	•	Α	•	■	•	С	•
4	d	•	•		G		Α	•	•	•		Т	•	•	•	Α	•	■	•	С	•
5	b		•		Α		Т					G			-	С	•		•	Т	-

 Allele frequency: number of instances of allele/total number of alleles sampled

•
$$p_{\rm A} = 3/5 = 0.6$$

• $p_{\rm G} = 2/5 = 0.4$

Individual Allele

1	а	С	Α	Т	Α	G	Α	Α	С	С	Т	G	G	G	С	Α	С	Т	Т	С	Α
2	b		•		Α	-	Т	•	•	•		G	•	•	•	С		•		Т	•
3	С		•	•	G	-	Α	•		•		G	•		•	Α	•	•	•	С	
4	d		•	•	G	-	Α	•		•		Т	•		•	Α	•	•	•	С	
5	b				А		Т					G				С				Т	

- Allele frequency: number of instances of allele/total number of alleles
 - Whether estimated per locus or per site, allele frequencies must sum to 1

Genotype Frequency

Genotype

 $\mathsf{A}\mathsf{A}$

Aa

aa

Genotype Frequency

Genotype Frequency

Genotype	AA	Aa	аа
Counts	17	15	14
Frequency	0.37	0.33	0.30
	p _A = (2*17 + 15)/	(2*46) = 0.53	

 $p_{\rm a} = (2*14 + 15)/(2*46) = 0.47$