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Learning objectives

• This module will focus on combining a model for repeated measures
with a model for survival times using a joint regression model

I Chapters 1–4 of Rizopoulous (2012)
I See also Asar et al. (2015)

• Case studies will be used to discuss analysis strategies, the application
of appropriate analysis methods, and the interpretation of results,
with implementation in R, particularly the JM package

• Some theoretical background and technical details will be provided;
our goal is to translate statistical theory into practical application

• At the conclusion of this course, you should be able to apply
appropriate exploratory and regression techniques to summarize
and generate inference from longitudinal and survival data
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Example 1

Longitudinal changes in peripheral monocytes (Yoshida et al., 2019)

• Adult Health Study
I Subset of Life Span Study of atomic bomb survivors
I Biennial clinic examinations since 1958
I Detailed questionnaire and laboratory data

• DS02R1 radiation doses estimated from dosimetry system

• Outcomes of interest
I Monocyte count (longitudinal) as a measure of inflammation
I Time to death due to any cause (1958–2010)

• Research questions
I What is the association between radiation and monocyte counts?
I What is the association between monocyte counts and mortality?
I Others?
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AHS data
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Example 2

Mayo Clinic trial in primary biliary cirrhosis (Murtaugh et al., 1994)

• Primary biliary cirrhosis
I Chronic and fatal but rare liver disease
I Inflammatory destruction of small bile ducts within the liver
I Patients referred to Mayo Clinic, 1974–1984

• 158 patients randomized to treatment with D-penicillamine;
154 randomized to placebo

• Outcomes of interest
I Serum bilirubin levels (longitudinal) as a measure of liver function
I Time to death and/or time to liver transplantation

• Research questions
I What is the association between treatment and serum bilirubin levels?
I What is the association between serum bilirubin levels and mortality?
I Others?
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PBC data
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Analysis framework

Radiation
dose

Monocyte
count Death

(a) AHS data

Treatment

Serum
bilirubin Death

(b) PBC data

• Treatment can be associated with both bilirubin and mortality

• Bilirubin levels (and trends) can be associated with mortality

• Occurrence of death precludes observation of bilirubin levels
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Analysis choices

Analysis methods should be selected based on the scientific question

• Focus on the association between treatment and bilirubin levels
I Standard longitudinal data analysis (separate analysis)
I Formulate a regression model for repeated measures of bilirubin level
I Ignores the impact of death on our ability to collect data (−)

• Focus on the association between bilirubin levels and mortality risk
I Standard survival data analysis (separate analysis)
I Formulate a Cox regression model for time to death or transplantation
I Potentially adjust for risk differences due to treatment; mediation
I Treats bilirubin levels as fixed, but these are measured with error (−)

(−)s motivate application of joint regression models (joint analysis)
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Statistics

Estimation
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Regression

X Y
β1

E[Y | X = x ] = β0 + β1x

Estimation

• Coefficient estimate β̂1

• Standard error for β̂1

Inference

• Confidence interval for β1

• Hypothesis test for β1 = 0
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Analysis approaches

Must account for correlation due to repeated measurements over time

• Failure to account for correlation ⇒ incorrect standard estimates,
resulting in incorrect confidence intervals and hypothesis tests

• Approaches: Include all observed data in a regression model
for the mean response and account for longitudinal correlation

I Generalized estimating equations (GEE): A marginal model
for the mean response and a model for longitudinal correlation

g(E[Yij | xij ]) = xijβ and Corr[Yij ,Yij′ ] = ρ(α), j 6= j ′

I Generalized linear mixed-effects models (GLMM): A conditional
model for the mean response given subject-specific random effects,
which induce a (possibly hierarchical) correlation structure

g(E[Yij | xij , bi ]) = xijβ + zijbi with bi ∼ N(0,D)

NB: Differences in interpretation of β between GEE and GLMM
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Repeated measures
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Mixed-effects models

? Contrast outcomes both within and between individuals

• Assume that each subject has a regression model characterized
by subject-specific parameters; a combination of

I Fixed-effects parameters common to all individuals in the population
I Random-effects parameters unique to each individual subject

• Although covariates allow for differences across subjects, typically
cannot measure all factors that give rise to subject-specific variation

• Subject-specific random effects induce a correlation structure

(Laird and Ware, 1982)
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Set-up

For subject i the mixed-effects model is characterized by

yi = {yi1, yi2, . . . , yimi
}T

β = {β0, β1, β2, . . . , βp}T Fixed effects

xij = {1, xij1, xij2, . . . , xijp}
Xi = {xi1, xi2, . . . , ximi

}T Design matrix for fixed effects

bi = {bi0, bi1, bi2, . . . , biq}T Random effects

zij = {1, zij1, zij2, . . . , zijq}
Zi = {zi1, zi2, . . . , zimi

}T Design matrix for random effects

for i = 1, . . . , n; j = 1, . . . ,mi ; and q ≤ p
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Linear mixed-effects model

Consider a linear mixed-effects model for a continuous outcome yij

1. Model for response given random effects

yij = xijβ + zijbi + εij

with
I xij : vector a covariates
I β: vector of fixed-effects parameters
I zij : subset of xij
I bi : vector of random-effects parameters
I εij : observation-specific measurement error

2. Model for random effects

bi ∼ N(0,D)

εij ∼ N(0, σ2)

with bi and εij assumed to be independent
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Choices for random effects

Consider the linear mixed-effects models that include

• Random intercepts

yij = β0 + β1tij + bi0 + εij

= (β0 + bi0) + β1tij + εij

• Random intercepts and slopes

yij = β0 + β1tij + bi0 + bi1tij + εij

= (β0 + bi0) + (β1 + bi1)tij + εij
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Choices for random effects

Fixed intercept, random slope Random intercept, random slope
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Choices for random effects: D

D quantifies random variation in trajectories across subjects

D =

[
D11 D12

D21 D22

]
• √D11 is the typical deviation in the level of the response

• √D22 is the typical deviation in the change in the response

• D12 is the covariance between subject-specific intercepts and slopes
I D12 = 0 indicates subject-specific intercepts and slopes are uncorrelated
I D12 > 0 indicates subjects with high level have high rate of change
I D12 < 0 indicates subjects with high level have low rate of change

(D12 = D21)
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Induced correlation structure

What is the correlation between measurements on the same subject?

• Random intercepts model
I Assuming Var[εij ] = σ2 and Cov[εij , εij′ ] = 0

yij = β0 + β1tij + bi0 + εij

yij ′ = β0 + β1tij ′ + bi0 + εij ′

Var[Yij ] = Varb[EY (Yij | bi0)] + Eb[VarY (Yij | bi0)]

= D11 + σ2

Cov[Yij , Yij ′ ] = Covb[EY (Yij | bi0), EY (Yij ′ | bi0)]

+ Eb[CovY (Yij , Yij ′ | bi0)]

= D11
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Induced correlation structure

• Random intercepts model (continued)

Corr[Yij ,Yij ′ ] =
D11√

D11 + σ2
√

D11 + σ2

=
D11

D11 + σ2

=
‘Between’

‘Between’ + ‘Within’

≥ 0 (and ≤ 1)

I Any two measurements on the same subject have the same correlation;
does not depend on time nor the distance between measurements

I Longitudinal correlation is constrained to be positive (D11 ≥ 0, σ2 ≥ 0)
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Induced correlation structure

• Random intercepts and slopes model
I Assuming Var[εij ] = σ2 and Cov[εij , εij′ ] = 0

yij = (β0 + β1tij) + (bi0 + bi1tij) + εij

yij ′ = (β0 + β1tij ′) + (bi0 + bi1tij ′) + εij ′

Var[Yij ] = Varb[EY (Yij | bi )] + Eb[VarY (Yij | bi )]

= D11 + 2D12tij + D22t
2
ij + σ2

Cov[Yij ,Yij ′ ] = Covb[EY (Yij | bi ), EY (Yij ′ | bi )]

+ Eb[CovY (Yij , Yij ′ | bi )]

= D11 + D12(tij + tij ′) + D22tij tij ′
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Induced correlation structure

• Random intercepts and slopes model (continued)

Corr[Yij ,Yij ′ ]

=
D11 + D12(tij + tij ′) + D22tij tij ′√

D11 + 2D12tij + D22t2
ij + σ2

√
D11 + 2D12tij ′ + D22t2

ij ′ + σ2

I Any two measurements on the same subject may not have the same
correlation; depends on the specific observation times
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Likelihood-based estimation of β

Requires specification of a complete probability distribution for the data

• Likelihood-based methods are designed for fixed effects, so integrate
over the assumed distribution for the random effects

L(β, σ,D) =
n∏

i=1

∫
fY (yi | bi , β, σ)× fb(bi | D)dbi

where fb is typically the density function of a Normal random variable
I For linear models the required integration is straightforward

because yi and bi are both normally distributed (easy to program)

I For non-linear models the integration is difficult and requires
either approximation or numerical techniques (hard to program)
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Likelihood-based estimation of β
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Likelihood-based inference for β

Consider testing fixed effects in nested linear mixed-effects models

H: β =

[
β1

0

]
versus K : β =

[
β1

β2

]
,

i.e., H: β2 = 0

• Likelihood ratio test is valid with maximum likelihood estimation

• Likelihood ratio test may not be valid with other estimation methods

• Wald test (based on coefficient and standard error) is generally valid

B French (Module 14) Joint Models SISCER 2022 28 / 74



Likelihood-based inference for β
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Effect modification

• Association of interest varies across levels of another variable, or
another variable modifies the association of the variable of interest

• Modeling of effect modification is achieved by interaction terms

E[Y | x , t] = β0 + β1x + β2t + β3x × t

with
I A binary variable x for drug: 0 for placebo, 1 for treatment
I A continuous variable t for time since randomization

• Wish to examine whether treatment modifies the association
between time since randomization and serum bilirubin

Placebo: E[Y | x = 0, t] = β0 + β2t

Treatment: E[Y | x = 1, t] = β0 + β1 + β2t + β3t

= (β0 + β1) + (β2 + β3)t
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Effect modification
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Effect modification

• Contrasts for t (time) depend on the value for x (drug)

E[Y | x , t + 1]− E[Y | x , t]

= {β0 + β1 · x + β2 · (t + 1) + β3 · x · (t + 1)}
− {β0 + β1 · x + β2 · t + β3 · x · t}

= β2 + β3x

• β2 compares the mean bilirubin level between two placebo-treated
populations whose time since randomization differs by 1 year (x = 0)

• β2 + β3 compares the mean bilirubin level between two drug-treated
populations whose time since randomization differs by 1 year (x = 1)

• Hence β3 represents a difference evaluating whether the association
between time and serum bilirubin differs between treatment groups

• A hypothesis test of β3 = 0 can be used to evaluate the difference
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Likelihood-based inference for D

Consider testing whether a random intercept model is adequate

H: D =

[
D11 0

0 0

]
versus K : D =

[
D11

D12 D22

]
,

i.e., H: D12 = D22 = 0

• Adequate covariance modeling is useful for the interpretation
of the random variation in the data

• Over-parameterization of the covariance structure leads to inefficient
estimation of fixed-effects parameters β

• Covariance model choice determines the standard error estimates
for β̂; correct model is required for correct standard error estimates

• Generally recommend against this inferential procedure
I Specification for the covariance structure should be guided

by a priori scientific knowledge and exploratory data analysis
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Assumptions

Valid inference from a linear mixed-effects model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of xijβ + zijbi

I Included important covariates in the model
I Correctly specified any transformations or interactions

• Covariance model: Correct covariance model (random-effects
specification) is required for correct standard error estimates for β̂

• Normality: Normality of εij and bi is required for normal likelihood
function to be the correct likelihood function for yij
• n sufficiently large for asymptotic inference to be valid

? These assumptions must be verified to evaluate any fitted model
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Missing data

• Missing values arise in longitudinal studies whenever the intended
serial observations collected on a subject over time are incomplete

I Collect fewer data than planned ⇒ decreased efficiency (power)
I Missingness can depend on outcome values ⇒ potential bias

• Important to distinguish between missing data and unbalanced data,
although missing data necessarily result in unbalanced data

• Missing data require consideration of the factors that influence the
missingness of intended observations

• Also important to distinguish between intermittent missing values
(non-monotone) and dropouts in which all observations are missing
after subjects are lost to follow-up (monotone)

Pattern t1 t2 t3 t4 t5

Monotone 3.8 3.1 2.0 2 2

Non-monotone 4.1 2 3.8 2 2

B French (Module 14) Joint Models SISCER 2022 35 / 74



Mechanisms

Partition the complete set of intended observations into the observed and
missing data; what factors influence missingness of intended observations?

• Missing completely at random (MCAR)
Missingness does not depend on either the observed or missing data

I Example: Administrative censoring at a fixed calendar time
I Mixed-effects models are valid

• Missing at random (MAR)
Missingness depends only on the observed data

I Example: Individuals with no current weight loss in a weight-loss study
I Mixed-effects models are valid (with additional assumptions)

• Missing not at random (MNAR)
Missingness depends on both the observed and missing data

I Example: Subjects in a prospective study based on disease prognosis
I Mixed-effects models are not valid

(Rubin, 1976; Ibrahim and Molenberghs, 2009)
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Models under MNAR

U

T Y

(a) Selection

U

T Y

(b) Pattern-mixture

U

T Y

(c) Shared-parameter

(a) Subject-specific random effects or latent characteristics influence the
outcome, which subsequently determines the propensity to drop out

(b) Subject-specific characteristics initially determine propensity to drop out,
with consequential variation in the outcome between drop-out cohorts

(c) Outcome and drop-out processes jointly respond to unobserved subject-
specific characteristics, observation of which would convert the model
into one in which the outcome and drop-out time are independent

? Joint regression models and shared-parameter models are analogous
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Summary

• Mixed-effects models assume that each subject has a regression
model characterized by subject-specific parameters; a combination of

I Fixed-effects parameters common to all individuals in the population
I Random-effects parameters unique to each individual subject

• Estimation and inference can focus both on average outcome levels
and trends, and on heterogeneity across subjects in levels and trends

• Subject-specific random effects induce a correlation structure

• Must consider the potential for bias due to missing data (drop-out)
I Ignores the impact of death on our ability to collect data (−)

• Further reading: Verbeke and Molenberghs (2000)
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Censoring

Analysis methods must account for censoring of event-time outcomes

• Types of censoring
I Location of true event time w.r.t. censoring time: right, left, interval
I Probabilistic relationship between true event time and censoring time:

informative, non-informative (similar to MNAR and MAR)

• Implications
I Standard approaches (e.g., t test, linear regression) cannot be used
I Inference can be sensitive to the assumed distribution of event times

? Our focus: Non-informative right censoring

• Event of interest is not fully observed for all subjects
I Do not experience the event before the end of the study period
I Are (randomly) lost to follow-up during the study period

⇒ event time (or, survival time) is not known for these subjects

• But, subjects contribute time at risk up until their censoring time
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Censoring
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Set-up

• Notation
I True event time Ti

I Censoring time Ci

• Observed data
I Observed event time T ?

i = min(Ti ,Ci )
I Event indicator δi = 1 if event observed, δi = 0 if censored

• Objective: Generate inference for Ti using {T ?
i , δi}
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Hazard functions

• Probability density function for the true event time T : fT (t)

• Cumulative distribution function: Probability of failure by time t

FT (t) = P[T ≤ t] =

∫ t

0
fT (s)ds

• Survival function: Probability of survival beyond time t

ST (t) = P[T > t] = 1− FT (t) =

∫ ∞
t

fT (s)ds

• Hazard function: Probability of failure in an very small time period
between time t and t + ∆t given survival up until time t

hT (t) =
fT (t)

ST (t)
= lim

∆t→0

P[t ≤ T < t + ∆t | T ≥ t]

∆t
= − ∂

∂t
log ST (t)

as a measure of risk; larger hazard ⇒ larger risk of failure
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Hazard models

• Relative risk model: Multiplicative effect of covariates on hazard

hi (t | wi ) = h0(t) exp{wiγ}
log hi (t | wi ) = log h0(t) + γ1wi1 + γ2wi2 + · · ·+ γpwip

with
I hi (t | wi ): hazard of an event for subject i at time t
I h0(t): common baseline hazard function
I wi = {wi1,wi2, . . . ,wip}: time-independent covariates for subject i
I γ = {γ1, γ2, . . . , γp}T: regression parameters of interest

• Excess relative risk model: Additive effect of covariates on hazard

hi (t | wi ) = h0(t){1 + wiγ}
log hi (t | wi ) = log h0(t) + log{1 + γ1wi1 + γ2wi2 + · · ·+ γpwip}

which is a standard model for estimating radiation effects
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Hazard models

• Relative risk model: Multiplicative effect of covariates on hazard

h(t | w1) = h0(t) exp{γ1w1}

h(t | w1 = w) = h0(t) exp{γ1 × w}
h(t | w1 = w + 1) = h0(t) exp{γ1 × (w + 1)}

h(t | w1 = w + 1)

h(t | w1 = w)
= exp(γ1)

so that exp(γ1) is a hazard ratio quantifying the impact of a one-unit
increase in w1 on the hazard of an event

I Does not depend on time t
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Estimation and inference

Cox regression model: Unspecified baseline hazard function

• Semi-parametric: No assumption for distribution of event times

• Assumes proportional hazards across covariate levels

• Estimates and standard errors obtained from (log) partial likelihood

`(γ) =
n∑

i=1

δi

wiγ − log

 ∑
Ti′≥Ti

exp(wi ′γ)




which is a measure of how well the model orders (ranks) the subjects
w.r.t. their survival time

I ‘Partial’ likelihood because h0(t) is not involved in estimation

(Cox, 1972)
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Time-dependent covariates

• Often interested in the association of a time-dependent covariate
I AHS: Association between monocyte counts and mortality
I PBC: Association between serum bilirubin levels and mortality

• Standard Cox model is appropriate for time-independent covariates
I AHS: City, sex, birth cohort, radiation dose
I PBC: Treatment, sex, baseline age, baseline serum bilirubin

• Cox model can be extended for a certain type of covariate
I External or exogenous time-dependent covariate (+)
I Internal or endogenous time-dependent covariate (−)
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Time-dependent covariates

• Exogenous: Future path of the covariate up until any time t > t ′

is not affected by the occurrence of an event at time t ′

P[Yi (t) | Yi (t ′),Ti ≥ t ′] = P[Yi (t) | Yi (t ′),Ti = t ′]

with 0 < t ′ ≤ t and Yi (t) = {yi (s), 0 ≤ s < t} denotes the history
I Allows the covariate to be associated with the failure rate
I But its future values are the same whether a failure occurs or not
I Examples: Season of the year, treatment regimen, air pollution level

• Endogenous: Not exogenous
I Typically arise as time-dependent measurements on study subjects
I Subject must survive in order for the covariate to exist
I Examples: Monocyte count (AHS), serum bilirubin level (PBC)
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Extended Cox model

• Model formulated using counting processes (Andersen and Gill, 1982)

hi (t | Yi (t),wi ) = h0(t)Ri (t) exp{wiγ + αyi (t)}

with
I {Ni (t),Ri (t)}: event process for subject i
I Ni (t): number of events for subject i by time t
I Ri (t): at-risk indicator for subject i at time t
I hi (t): intensity process for Ni (t)
I h0(t): common baseline intensity function
I wi = {wi1,wi2, . . . ,wip}: time-independent covariates for subject i
I yi (t): time-dependent covariate for subject i at time t
I α, γ = {γ1, γ2, . . . , γp}T: regression parameters of interest

• exp(α) represents the relative increase in risk of an event at time t
that results from a simultaneous one-unit increase in yi (t)
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Extended Cox model

• Estimates and standard errors obtained from (log) partial likelihood

`(α, γ) =
n∑

i=1

∫ ∞
0

[
Ri (t) exp{wiγ + αyi (t)} − log

∑
i′

Ri′ (t) exp{wi′γ + αyi′ (t)}
]
dNi (t)

• Valid estimation and inference requires several assumptions
I Existence of covariate is not related to failure status (exogenous)
I Covariate levels are fixed and known in between measurement times;

French and Heagerty (2009): yi (t) exists only at measurement times
I Covariate values are free of measurement error

? Cox regression analysis of an endogenous time-dependent covariate
? can provide spurious results
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Summary

• Analysis methods must account for censoring of event-time outcomes
I Do not experience the event before the end of the study period
I Are (randomly) lost to follow-up during the study period

• Focus on multiplicative effect of covariates on hazard (risk)

• Semi-parametric Cox regression model under proportional hazards

• Extended Cox model for exogenous time-dependent covariates
I Existence of covariate is not related to failure status
I Covariate levels are constant in between measurement times
I Covariate values are free of measurement error

• Further reading
I Kalbfleisch and Prentice (2002)
I Cologne et al. (2012): Choice of primary time scale
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Overview

Motivation and examples

Longitudinal data analysis

Survival data analysis

Joint regression models
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Review

Mixed-effects models for longitudinal data analysis (separate analysis)

• Estimate population-level and subject-specific levels and trends

• Quantify heterogeneity across subjects in outcome levels and trends

• Subject-specific random effects induce a correlation structure

• Must consider the potential for bias due to missing data (−)

Cox regression models for survival data analysis (separate analysis)

• Focus on multiplicative effect of covariates on event hazard

• Account for non-informative right censoring of event-time outcomes

• Appropriate only for exogenous time-dependent covariates (−)

• Assume that covariate values are free of measurement error (−)

? Motivates development of joint regression models (joint analysis)
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Joint models

Longitudinal model + Survival model = Joint model

1. Describe evolution of marker levels over time for each subject
I Subject-specific random effects

I Flexible adjustment for temporal trends

I Incorporates random error term for measurement error

2. Associate the subject-specific evolutions with event hazard
I Allow censoring of event-time outcome

I Accommodate marker as an endogenous time-dependent covariate

I Marker is not assumed constant in between measurement times

3. Specify a dependence structure between the two models
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Set-up

Step 1: Describe evolution of marker levels over time for each subject

yi (t) = xi (t)β + zi (t)bi + εi (t)

= mi (t) + εi (t)

using a standard linear mixed-effects model with

• True marker value mi (t) = xi (t)β + zi (t)bi
• Fixed-effects parameters β

• Random-effects parameters bi ∼ N(0,D)

• Measurement error εi (t) ∼ N(0, σ2)

NB: Covariate vectors and error terms are functions of time t
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Set-up

Step 2: Associate the subject-specific evolutions with event hazard

hi (t | Mi (t),wi ) = lim
∆t→0

P[t ≤ T < t + ∆t | T ≥ t,Mi (t),wi ]/∆t

= h0(t) exp{wiγ + αmi (t)}

using a standard relative risk model with

• Marker history Mi (t) = {mi (s), 0 ≤ s < t}
• Common baseline hazard function h0(t)

• Parameters γ for time-independent covariates wi

• exp(α) represents the relative increase in risk of an event at time t
that results from a simultaneous one-unit increase in mi (t)
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Set-up

Step 3: Specify a dependence structure between the two models

1. Define a joint distribution for markers yi and event times {T ?
i , δi}

f (yi ,T
?
i , δi ) =

∫
fY (yi | bi ) h(T ?

i | bi )δi S(T ?
i | bi ) fb(bi ) dbi

with
I fY : density function for markers yi
I fb: density function for random effects bi
I h(t): hazard function for event times T ?

i
I S(t): survival function for event times T ?

i
I δi : event indicator (1, event; 0, censored)
I bi : random effects for inter-dependencies

(Tsiatis and Davidian, 2004)
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Set-up

Step 3: Specify a dependence structure between the two models

2. Assume full conditional independence given random effects
I Repeated measurements (longitudinal) are mutually independent

yij ⊥⊥ yij′ | bi , j 6= j ′

? Random effects explain the correlation among repeated measures

I Longitudinal outcome and event-time outcome are independent

yi ⊥⊥ {T ?
i , δi} | bi ∀ i

? Random effects explain the association between the longitudinal
? and event-time outcomes (recall shared-parameter models)

? Random effects explain all the inter-dependencies in the data

NB: Conditional independence is difficult to evaluate using observed data
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Assumptions

• Censoring and observation-time processes are non-informative;
study withdrawal or appearance at study visits for data collection

I Can depend on observed history (covariates and previous responses)
I Cannot depend on unobserved characteristics associated with prognosis

Tan et al. (2014): Dependence on an unobserved latent variable

• Survival function depends on the complete history of the marker

Si (t | Mi (t),wi ) = P[Ti > t | Mi (t),wi ]

= exp

(∫ t

0
h0(s) exp{wiγ + αmi (s)}ds

)
so that development of the mixed-effects model should consider

I Correct specification for subject-specific random effects
I Flexible adjustment for temporal trends (polynomials, splines)
I Time interactions with time-independent covariates
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Assumptions

Baseline hazard function h0(t)

• Unspecified baseline hazard function in standard Cox regression
I Avoid an assumption for the distribution of event times (+)
I In joint model can result in under-estimation of standard errors (−)

• Parametric but with different levels of flexibility
I Fully parametric: Risk function for a parametric distribution

F Exponential: h0(t) = λ
F Weibull: h0(t) = λata−1

I Somewhat parametric: Parametric but flexible risk function
F Piecewise constant step function
F Regression splines

but avoid an over-specified model with too many parameters;
between 1/20 and 1/10 of the total number of events
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Estimation and inference

Given the set-up and assumptions. . .

• Likelihood estimation for {α, β, γ, σ,D} given data {yi ,T ?
i , δi}

`(α, β, γ, σ,D) =
n∑

i=1

log

∫
fY (yi | bi ) h(T ?

i | bi )δi S(T ?
i | bi ) fb(bi ) dbi

with densities fY and fb, hazard h(t) and survival S(t) functions
I Integration requires numerical approximation

F Laplace approximation
F Adaptive Gaussian quadrature

I Maximization requires optimization algorithms
F Expectation-maximization algorithm
F Newton-Raphson algorithm

• Likelihood inference facilitates use of likelihood ratio test;
Wald tests are also available for regression parameters
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jointModel command

?jointModel

?jointModelObject

ml4 <- lme(log(serBilir) ~ year + drug:year, random = ~ year | id,

data=pbc2)

ms1 <- coxph(Surv(years, status==’dead’) ~ drug + sex + I(age-50),

data=pbc2.id, x=TRUE)

mj1 <- jointModel(lmeObject=ml4, survObject=ms1, timeVar=’year’,

method=’weibull-PH-aGH’)
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jointModel arguments

• lmeObject
I Linear mixed-effects model for longitudinal marker
I Multi-record data, ordered in ‘long’ format (pbc2)
I No additional correlation structure beyond random effects

• survObject
I Standard Cox regression model for censored survival outcome
I Single-record data in same order as for lmeObject (pbc2.id)
I x=TRUE so that design matrix is returned

• timeVar
I Time variable in lmeObject
I lmeObject and survObject must have same time scale
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jointModel arguments

• method: Specifies the baseline hazard function, parameterization
of relative risk model, and procedure for numerical integration

I weibull-PH-aGH (default)
I weibull-PH-GH
I weibull-AFT-aGH
I weibull-AFT-GH
I piecewise-PH-aGH
I piecewise-PH-GH
I spline-PH-aGH (allows strata)
I spline-PH-GH (allows strata)
I Cox-PH-aGH
I Cox-PH-GH

PH: proportional hazards; AFT: accelerated failure time
GH or aGH: standard or adaptive Gauss-Hermite quadrature
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Results summary

• Coefficients (SEs) from mixed-effects model and joint model

Variable Mixed model Joint model

Year 0.176 (0.018) 0.182 (0.018)

Year-by-treatment 0.003 (0.024) 0.005 (0.024)

• Coefficients (SEs) from extended Cox model and joint model

Variable Cox model Joint model

Treatment −0.026 (0.173) −0.034 (0.185)

Sex 0.180 (0.235) 0.163 (0.250)

Age 0.068 (0.009) 0.065 (0.009)

Serum bilirubin 1.465 (0.094) 1.358 (0.101)
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Model diagnostics

Evaluate adequacy of the fitted joint model using residual analysis

• Longitudinal submodel
I Subject-specific (or, conditional) residuals

ri (t) = yi (t)− {xi (t)β̂ − zi (t)b̂i}

with focus on constant variance and normality
I Marginal (or, population-averaged) residuals

ri = yi − Xi β̂

with focus on specification of the mean model

• Survival submodel: Martingale residuals

ri (t) = Ni (t)−
∫ t

0

ĥ0(s)Ri (s) exp{wi γ̂ + α̂m̂i (s)}ds

with focus on specification of the model for mi (t)
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Advanced models

Facilitate flexible modeling to fully utilize longitudinal information

• Interaction effects (§5.1.1)

hi (t) = h0(t) exp{wiγ + [wi1 ×mi (t)]α}

Example: Interaction between treatment and bilirubin on mortality

• Time-dependent slopes (§5.1.3)

hi (t) = h0(t) exp{wiγ + α1mi (t) + α2m
′
i (t)}

Example: Effect of level and slope of serum bilirubin on mortality
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Advanced topics

• Discrete markers (§5.7)

• Competing risks (§5.5.1)

• Recurrent events (§5.5.2)

• Mediation (Richiardi et al., 2013)

• Prediction (§7)
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Analysis goals

• Estimation
I Characterize association between exposure and outcome

I Control for observed confounders, modeling effect modification

I What is the association between serum bilirubin and mortality?

• Prediction
I Predict average outcome from covariate values

I Model selection focuses on maximizing prediction accuracy

I Can serum bilirubin be used to predict mortality risk?

(Shmueli, 2010; French et al., 2016)
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Dynamic prediction

Update predictions over time based on new longitudinal data

• Prediction of conditional survival probability

πi (u | t) = P[T ?
i ≥ u | T ?

i > t, Yi (t), wi , Dn ; θ]

at time u > t given survival to time t

• Prediction of longitudinal outcome

ωi (u | t) = E[Yi (u) | T ?
i > t, Yi (t), wi , Dn ; θ]

at time u > t given observed responses Yi (t)

given sample data Dn = {T ?
i , δi , yi ; i = 1, . . . , n}
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Summary

• Longitudinal model + Survival model = Joint model
I Describe evolution of marker levels over time for each subject
I Associate the subject-specific evolutions with event hazard
I Specify a dependence structure between the two models

• Combine a linear mixed-effects model for longitudinal marker
with a relative risk model for a censored survival outcome

• Advantages over separate longitudinal and survival analyses
I Incorporates random error term for measurement error
I Accommodate marker as an endogenous time-dependent covariate
I Marker is not assumed constant in between measurement times
I Flexible modeling to fully utilize longitudinal information

• Model fitting can be complex and computationally intensive;
analysis methods should be selected based on the scientific question

• Software: R, JM::jointmodel; Stata, stjm
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Resources

Textbooks

1. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time
Data, 2002.

2. Rizopoulous D. Joint Models for Longitudinal and Time-to-Event
Data with Applications in R, 2012.

3. Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal
Data, 2000.
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