

LECTURE 1: SIMPLE LINEAR REGRESSION

Motivation

- Objective: Investigate associations between two or more variables
- What tools do you already have?
 - t-test
 - Comparison of means in two populations
 - Chi-squared test
 - Comparison of proportions in two populations
- What will we cover in this module?
 - Linear Regression
 - Association of a continuous outcome with one or more predictors (categorical or continuous)
 - Analysis of Variance (as a special case of linear regression)
 - Comparison of a continuous outcome over a fixed number of groups
 - Logistic and Relative Risk Regression
 - Association of a binary outcome with one or more predictors (categorical or continuous)

Module structure

- Lectures and hands-on exercises in R over 2.5 days
- Day 1
 - Simple linear regression
 - Model checking
- Day 2
 - Multiple linear regression
 - ANOVA
- Day 3
 - Logistic regression
 - Generalized linear models

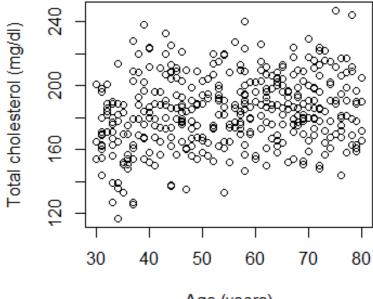
Outline: Simple Linear Regression

- Motivation
- The equation of a straight line
- Least Squares Estimation
- Inference
 - About regression coefficients
 - About predictions
- Model Checking
 - Residual analysis
 - Outliers & Influential observations

- Linear regression is concerned with a continuous outcome
- Data: Factors related to serum total cholesterol (continuous outcome), 400 individuals, 11 variables

>	> head(cholesterol)											
	ID	DM	age	chol	BMI	ΤG	APOE	rs174548	rs4775401	HTN	chd	
	1	1	74	215	26.2	367	4	1	2	1	1	
	2	1	51	204	24.7	150	4	2	1	1	1	
	3	0	64	205	24.2	213	4	0	1	1	1	
	4	0	34	182	23.8	111	2	1	1	1	0	
	5	1	52	175	34.1	328	2	0	0	1	0	
	6	1	39	176	22.7	53	4	0	2	0	0	

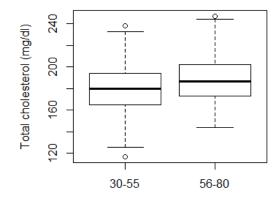
- Our first goal:
 - Investigate the relationship between cholesterol (mg/dl) and age in adults



Age (years)

- Is cholesterol associated with age?
 - You could dichotomize age and compare cholesterol between two age groups

```
> group = 1*(age > 55)
> group=factor(group,levels=c(0,1), labels=c("30-55","56-80"))
> table(group)
group
30-55 56-80
201 199
> boxplot(chol~group,ylab="Total cholesterol(mg/dl)")
```



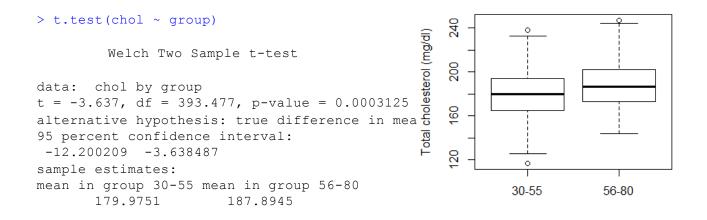
- Is cholesterol associated with age?
 - You could compare mean cholesterol between two groups: t-test

```
> t.test(chol ~ group)
```

Welch Two Sample t-test

```
data: chol by group
t = -3.637, df = 393.477, p-value = 0.0003125
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-12.200209 -3.638487
sample estimates:
mean in group 30-55 mean in group 56-80
179.9751 187.8945
```

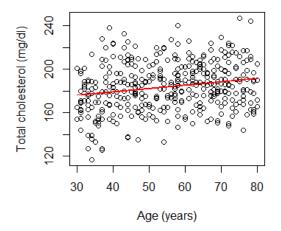
Question: What do the boxplot and the t-test tell us about the relationship between age and cholesterol?



- Using the t-test:
 - There is a statistically significant association between cholesterol and age
 - There appears to be a positive association between cholesterol and age
 - Is there any way we could estimate the magnitude of this association without breaking the "continuous" measure of age into subgroups?
 - With the t-test, we compared mean cholesterol in two age groups, could we compare mean cholesterol across "continuous" age?

• We might assume that mean cholesterol changes linearly with age:

Can we find the equation for a straight line that best fits these data?

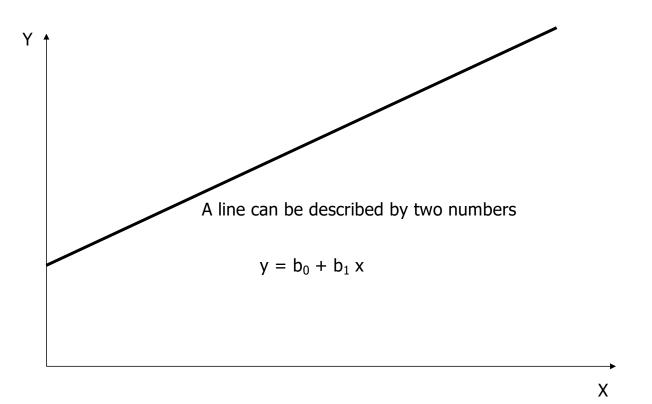


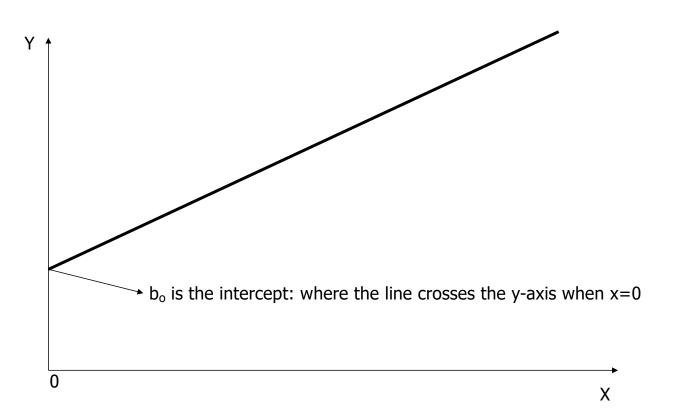
Linear Regression

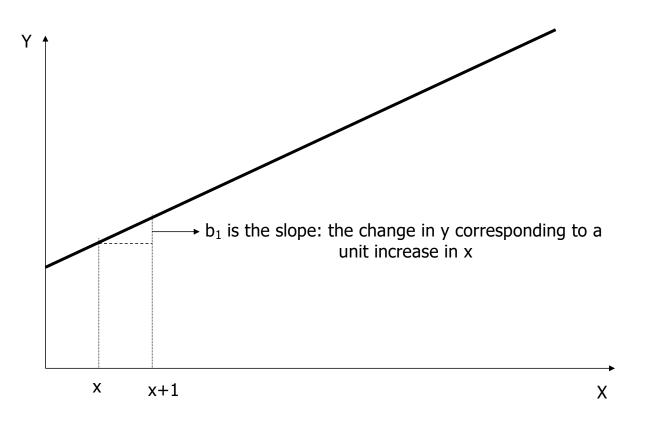
- A statistical method for modeling the relationship between a continuous variable [response/outcome/dependent] and other variables [predictors/exposure/independent]
 - Most commonly used statistical model
 - Flexible
 - Well-developed and understood properties
 - Easy interpretation
 - Building block for more general models
- Goals of analysis:
 - Estimate the association between response and predictors

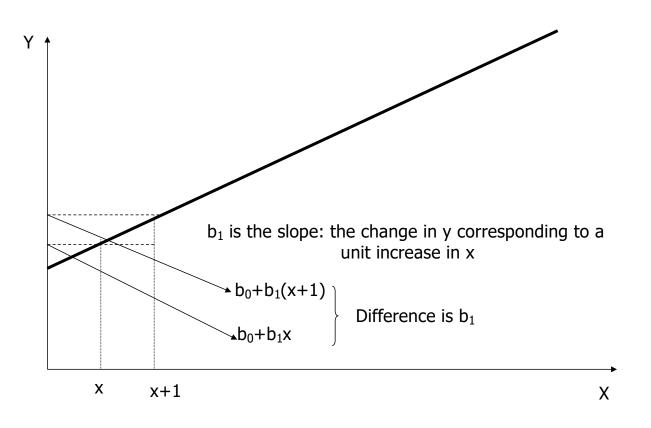
or,

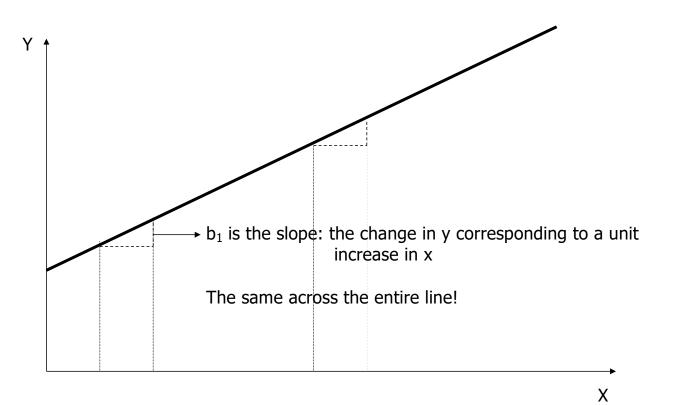
- Predict response values given the values of the predictors.
- We will start our discussion studying the relationship between a response and <u>a single predictor</u>
 - Simple linear regression model



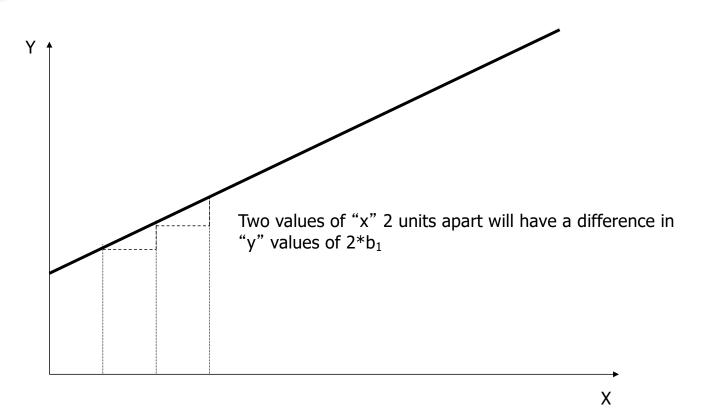




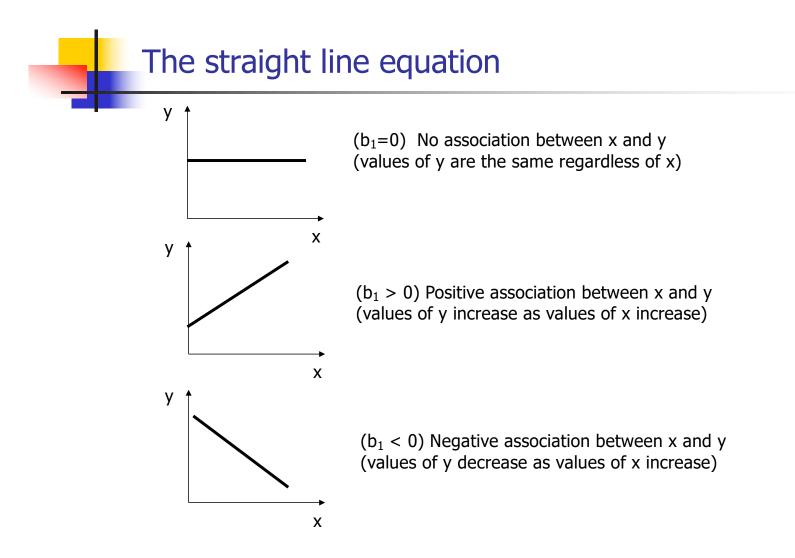




The straight line equation

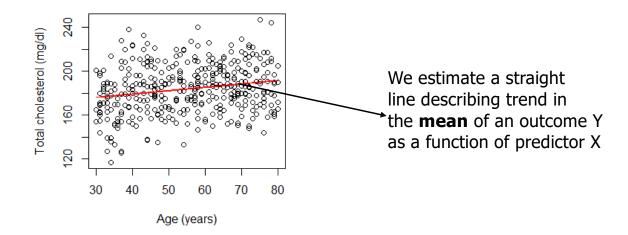


- Slope b₁ is the change in y corresponding to a one unit increase in x
- Slope gives information about magnitude and direction of the association between x and y



Simple Linear Regression

- We can use linear regression to model how the mean of an outcome Y changes with the level of a predictor, X
- The individual Y observations will be scattered about the mean



Simple Linear Regression

In regression:

• X is used to predict or explain outcome Y.

Response or dependent variable (Y):

continuous variable we want to predict or explain

• Explanatory or independent or predictor variable (X):

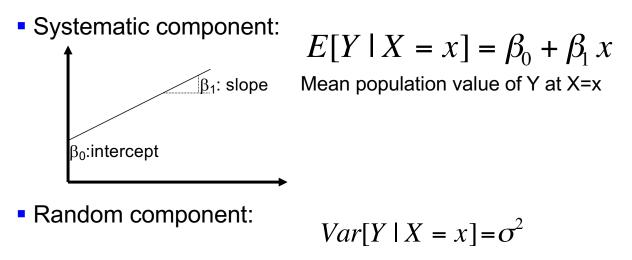
- attempts to explain the response
- Simple Linear Regression Model:

$$y = \beta_0 + \beta_1 x + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

Simple Linear Regression

$$y = \beta_0 + \beta_1 x + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

The model consists of two components:

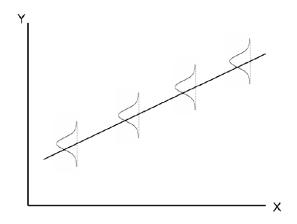


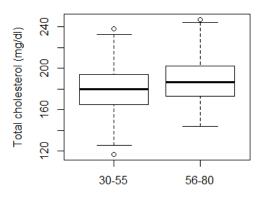
Variance does not depend on x

Simple Linear Regression: Assumptions

MODEL:
$$E[Y | X = x] = \beta_0 + \beta_1 x$$
 $Var[Y | X = x] = \sigma^2$

Distribution of Y at different x values:





Compare with the boxplots for two age groups

Simple Linear Regression: Interpreting model coefficients

- Model: $E[Y|x] = \beta_0 + \beta_1 x$ $Var[Y|x] = \sigma^2$
- Question: How do you interpret β_0 ?
- Answer:

 $\beta_0 = E[Y|x=0]$, that is, the mean response when x=0

Your turn: interpret $\beta_1!$

Simple Linear Regression: Interpreting model coefficients

• Model: $E[Y|x] = \beta_0 + \beta_1 x$ $Var[Y|x] = \sigma^2$

- Question: How do you interpret β_1 ?
- Answer:

 $\begin{array}{l} \mathsf{E}[\mathsf{Y}|\mathsf{x}] &= \beta_0 + \beta_1 \mathsf{x} \\ \mathsf{E}[\mathsf{Y}|\mathsf{x}{+}1] &= \beta_0 + \beta_1 (\mathsf{x}{+}1) = \ \beta_0 + \beta_1 \mathsf{x}{+} \ \beta_1 \end{array}$

 $E[Y|x+1] - E[Y|x] = \beta_1$ independent of x (linearity)

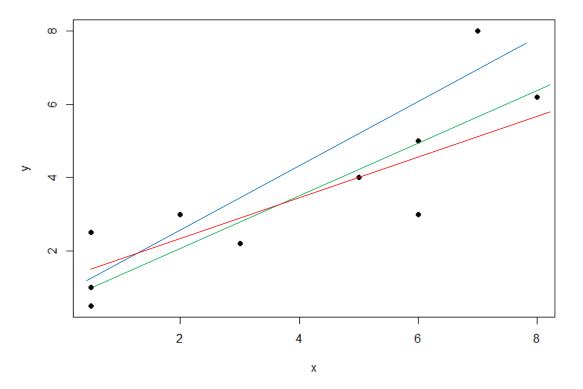
i.e. β_1 is the difference in the mean response associated with a one unit positive difference in \boldsymbol{x}

- Recall: Our motivating example was to determine if there is an association between age (a continuous predictor) and cholesterol (a continuous outcome)
- Suppose: We believe they are associated via the linear relationship E[Y|x] = β₀+β₁x
- Question: How would you interpret β_1 ?
- Answer:

- Recall: Our motivating example was to determine if there is an association between age (a continuous predictor) and cholesterol (a continuous outcome)
- Suppose: We believe they are associated via the linear relationship E[Y|x] = β₀+β₁x
- Question: How do you interpret β₁?
- Answer:

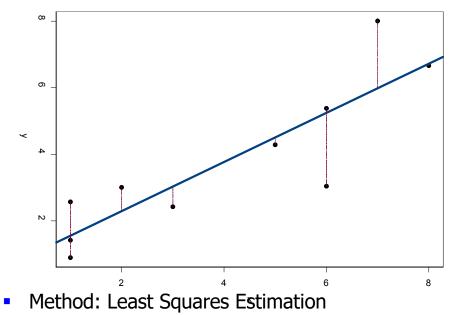
 β_1 is the difference in mean cholesterol associated with a one year increase in age

• Question: How to find a "best-fitting" line?



Least Squares Estimation

Question: How to find a "best-fitting" line?



Idea: chooses the line that minimizes the sum of squares of the vertical distances from the observed points to the line.

Least Squares Estimation

• The least squares regression line is given by

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 So the (squared) distance between the data (y) and the least squares regression line is

$$D = \sum_{i} (y_i - \hat{y}_i)^2$$

- We estimate β₀ and β₁ by finding the values that minimize D
- We can use these estimates to get an estimate of the variance about the line (σ²)

• These values are:

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

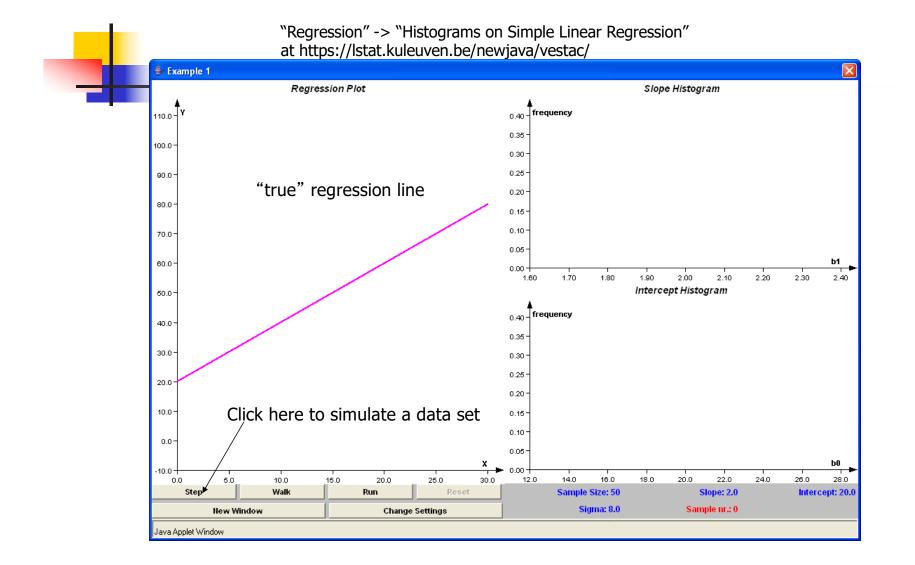
$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}}$$

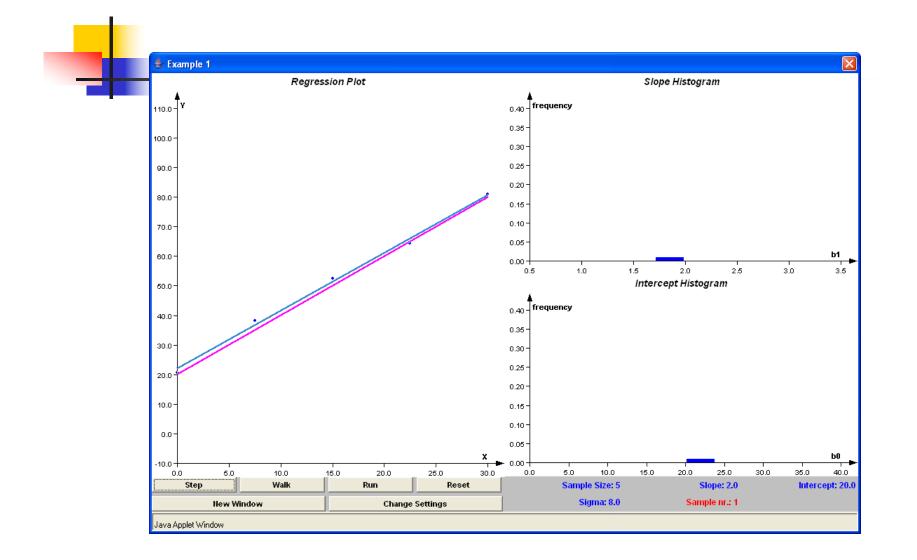
• We estimate the variance as:

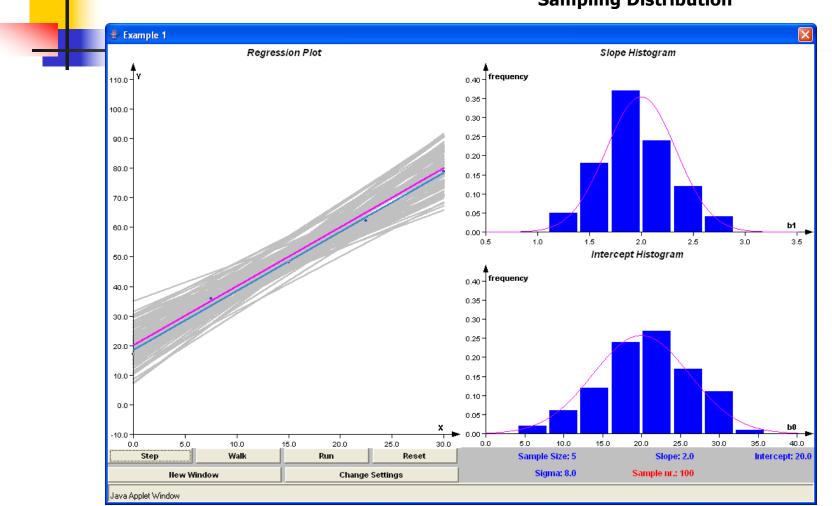
$$\hat{\sigma}^{2} = \frac{\sum_{i=1}^{n} r_{i}^{2}}{n-2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2}}{n-2}$$

Estimated Standard Errors

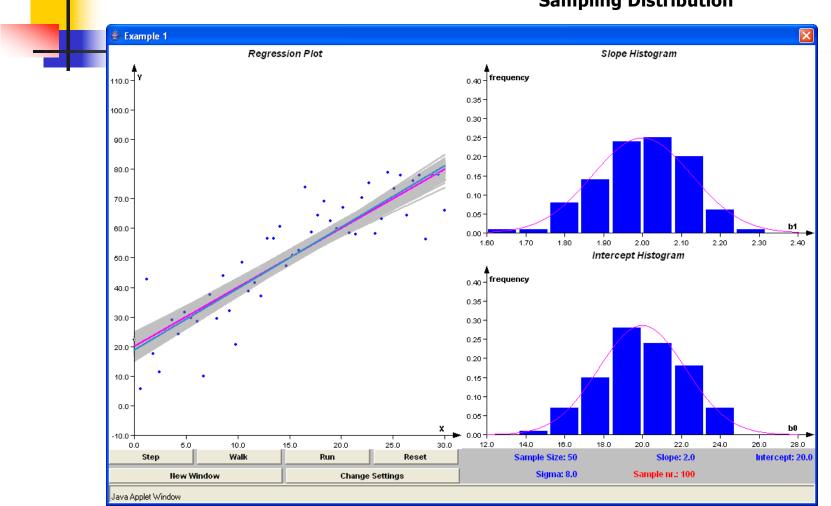
- Recall that, when estimating parameters from a sample, there will be sampling variability in the estimates
- This is true for regression parameter estimates
- Looking at the formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$, we can see that they are just complicated means
- In repeated sampling we would get different estimates
- Knowledge of the sampling distribution of parameter estimates can help us make inference about the line
- Statistical theory shows that the sampling distributions are Normal and provides expressions for the mean and standard error of the estimates over repeated samples







Sampling Distribution



Sampling Distribution

Inference

- About regression model parameters
 - Hypothesis testing: H₀: β_j=0 (j=0,1)
 - Test Statistic:
 - Large Samples:

$$\frac{\hat{\beta}_j - (null \ hyp)}{se(\hat{\beta}_j)} \sim N(0,1)$$

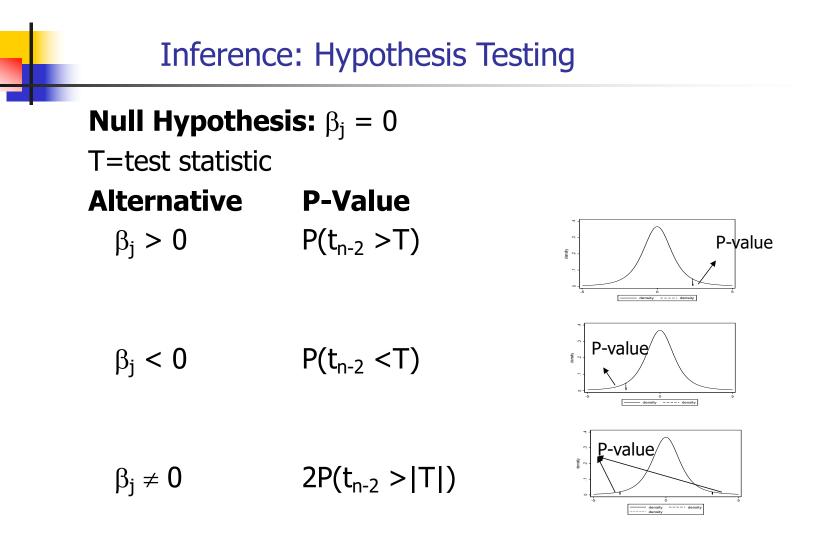
Small Samples:

$$\frac{\hat{\beta}_j - (null \ hyp)}{se(\hat{\beta}_j)} \sim t_{n-2}$$

Confidence Intervals:

$$\hat{\beta}_{j} \pm (critical \ value) \times se(\hat{\beta}_{j})$$

[Don't worry about these formulae: we will use R to fit the models!]



100 (1- α)% Confidence Interval for β_j (j=0,1)

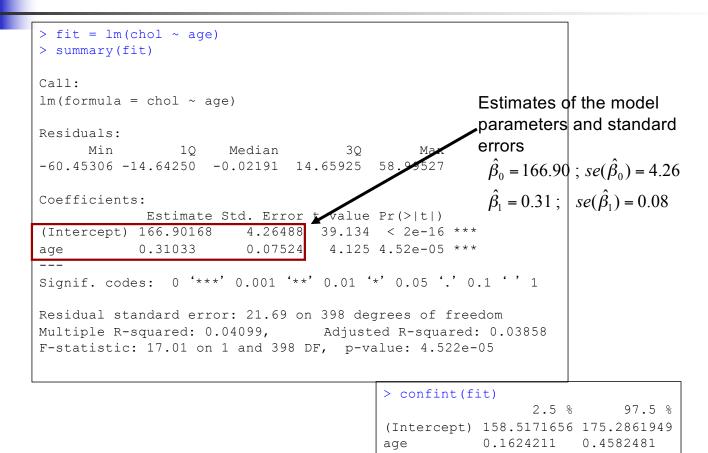
$$\hat{\beta}_j \pm t_{n-2, \frac{\alpha}{2}} SE(\hat{\beta}_j)$$

Gives intervals that $(1 - \alpha)100\%$ of the time will cover the true parameter value (β_0 or β_1).

We say we are " $(1-\alpha)100\%$ confident" the interval covers β_j .

```
> fit = lm(chol ~ age)
> summary(fit)
Call:
lm(formula = chol ~ age)
Residuals:
     Min
              10 Median
                                   30
                                            Max
-60.45306 -14.64250 -0.02191 14.65925 58.99527
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 166.90168 4.26488 39.134 < 2e-16 ***
age
             0.31033 0.07524 4.125 4.52e-05 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858
F-statistic: 17.01 on 1 and 398 DF, p-value: 4.522e-05
                                       > confint(fit)
```

2.5 % 97.5 % (Intercept) 158.5171656 175.2861949 age 0.1624211 0.4582481



```
> fit = lm(chol ~ age)
> summary(fit)
Call:
lm(formula = chol ~ age)
Residuals:
     Min
              10 Median
                                   30
                                            Max
-60.45306 -14.64250 -0.02191 14.65925 58.99527
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 166.90168 4.26488 39.134 < 2e-16 ***
             0.31033 0.07524 4.125 4.52e-05 ***
aqe
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
                                                               95% Confidence
Residual standard error: 21.69 on 398 degrees of freedom
                                                               intervals
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858
F-statistic: 17.01 on 1 and 398 DF, p-value: 4.522e-05
                                        > confint(fit)
                                                         2.5 %
                                                                    97.5 %
                                        (Intercept) 158.5171656 175.2861949
                                                      0.1624211
                                                                 0.4582481
                                        age
```


- What do these model results mean in terms of our scientific question?
 - Parameter estimates and confidence intervals:

$$\hat{\beta}_0 = 166.90$$
 95% CI: (158.5, 175.3)
 $\hat{\beta}_1 = 0.31$ 95% CI: (0.16, 0.46)

 $\hat{\beta}_0$: The estimated average serum cholesterol for someone of age = 0 is 166.9 !?

Your turn: What about $\hat{\beta}_1$?

- What do these models results mean in terms of our scientific question?
 - Parameter estimates and confidence intervals:

$$\hat{\beta}_0 = 166.90$$
 95% CI: (158.5, 175.3)
 $\hat{\beta}_1 = 0.31$ 95% CI: (0.16, 0.46)

- Answer: $\hat{\beta}_1$: mean cholesterol is estimated to be 0.31 mg/dl higher for each additional year of age.
- Question: What about the confidence intervals?

- What do these models results mean in terms of our scientific question?
 - Parameter estimates and confidence intervals:

$$\hat{\beta}_0 = 166.90$$
 95% CI: (158.5, 175.3)
 $\hat{\beta}_1 = 0.31$ 95% CI: (0.16, 0.46)

Answer: 95% CIs give us a range of values that will cover the true intercept and slope 95% of the time

 For instance, we can be 95% confident that the true difference in mean cholesterol associated with a one year difference in age lies between 0.16 and 0.46 mg/dl

Presentation of the results?

- The mean serum total cholesterol is significantly higher in older individuals (p < 0.001).
- For each additional year of age, we estimate that the mean total cholesterol differs by approximately 0.31 mg/dl (95% CI: 0.16, 0.46). Or:
- For each additional 10 years of age, we estimate that the mean total cholesterol differs by approximately 3.10 mg/dl (95% CI: 1.62, 4.58).
 - Note:
 - Emphasis on slope parameter (sign and magnitude)
 - Confidence interval
 - <u>Units</u> for predictor and response. Scale matters!

Inference for predictions

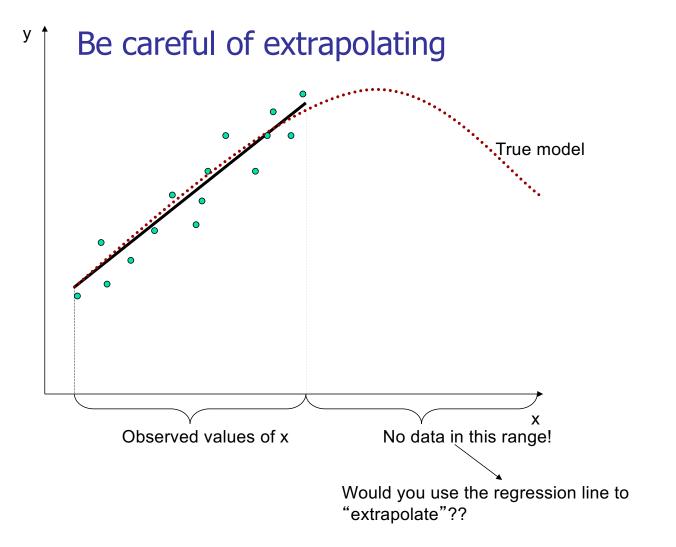
Given estimates $\hat{\beta}_0$, $\hat{\beta}_1$ we can find the **predicted** \hat{y}_i **value**, for any value of x_i as

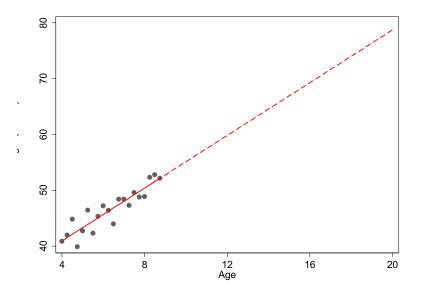
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

- Interpretation of \hat{y}_i :
 - Estimated mean value of Y at $X = x_i$

Be Cautious: This assumes the model is true.

- May be a reasonable assumption within the range of your data.
- It may not be true outside the range of your data!





 It would not make sense to extrapolate height at age 20 from a study of girls aged 4-9 years!

Prediction

- Prediction of the mean $\underline{E[Y|X=x]}$: Point Estimate: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

 - Standard Error:

$$se(\hat{y}) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Note that as x gets further from \overline{x} , variance increases!

100 (1-α)% confidence interval for E[Y|X=x]: $\hat{y} \pm t_{n-2,1-\alpha/2} se(\hat{y})$

Prediction

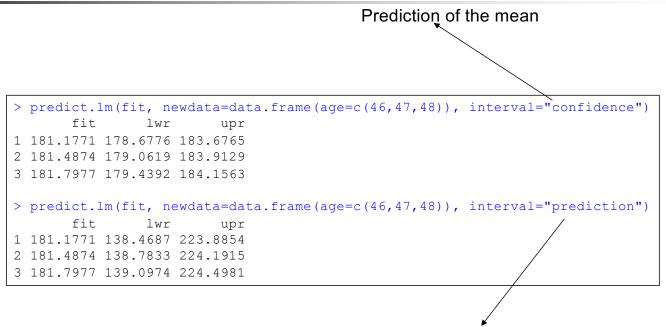
- Prediction of a <u>new future observation</u>, y*, at X=x:
 Point Estimate: $\hat{y}^* = \hat{\beta}_0 + \hat{\beta}_1 x$
 - Point Estimate:
 - $se(\hat{y}^*) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x \bar{x})^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}}$ Standard Error:
 - 100 $(1-\alpha)$ % prediction interval for a new future observation:

$$\hat{y}^* \pm t_{n-2,1-\alpha/2} se(\hat{y}^*)$$

Standard error for the prediction of a future observation is bigger:
It depends not only on the precision of the estimated mean, but also on the amount of
variability in Y around the line.



Cholesterol Example: Prediction



Prediction of a new observation

- Let's interpret these predictions
 - For *x* = 46
 - $\hat{y} = 181.2$ 95% CI: (178.7, 183.7)
 - $\hat{y}^* = 181.2$ 95% CI: (138.5, 223.9)
 - Question: How do our interpretations for ŷ and ŷ* differ?

Let's interpret these predictions

• For *x* = 46

 $\hat{y} = 181.2$ 95% CI: (178.7, 183.7)

 $\hat{y}^* = 181.2$ 95% CI: (138.5, 223.9)

- Question: How do our interpretations for \hat{y} and \hat{y}^* differ?
- Answer: The point estimates represent our predictions for the mean serum cholesterol for individuals age 46 (ŷ) and for a single new individual of age 46 (ŷ*)

Let's interpret these predictions

• For *x* = 46

 $\hat{y} = 181.2$ 95% CI: (178.7, 183.7)

 $\hat{y}^* = 181.2$ 95% CI: (138.5, 223.9)

Question: Why are the confidence intervals for ŷ and ŷ* of differing widths?

Let's interpret these predictions

• For *x* = 46

 $\hat{y} = 181.2$ 95% CI: (178.7, 183.7)

 $\hat{y}^* = 181.2$ 95% CI: (138.5, 223.9)

- Question: Why are the confidence intervals for ŷ and ŷ* of differing widths?
- Answer: The interval is broader when we make a prediction for a cholesterol level for a single individual because it must incorporate random variability around the mean.
- Note: Unlike confidence intervals, the formula for the prediction interval depends on the normality assumption regardless of sample size.

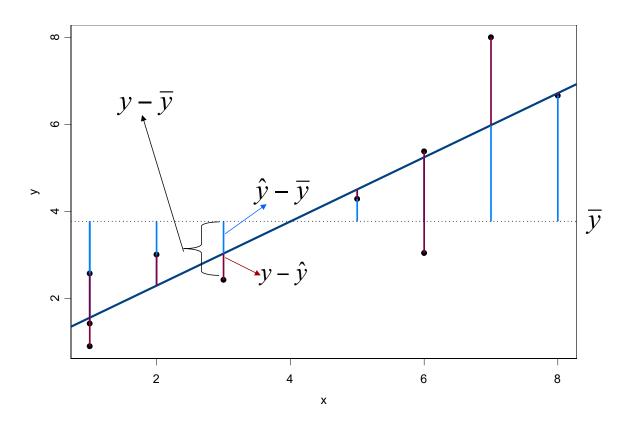
- Let's put some of the concepts we have been discussing into practice
- Open up the Labs file (2023_SISG_5_Labs.html) and RStudio and follow the directions to load the class data set and install the R packages you will need for this module
- For our first lab we will work on Exercises 1-3

Simple Linear Regression: R²

- Given no linear association:
 - We could simply use the sample mean to predict E(Y). The variability using this simple prediction is given by SST (to be defined shortly).
- Given a linear association:
 - The use of *X* permits a potentially better prediction of Y by using E(Y|X).
 - **Question:** What did we gain by using X?

Let's examine this question with the following figure

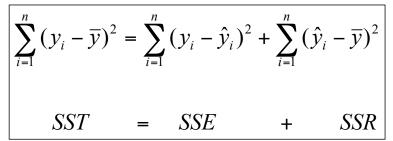
Decomposition of sum of squares



Decomposition of sum of squares

It is always true that: $y_i - \overline{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$

It can be shown that:



SST: describes the total variation of the $Y_{i'}$

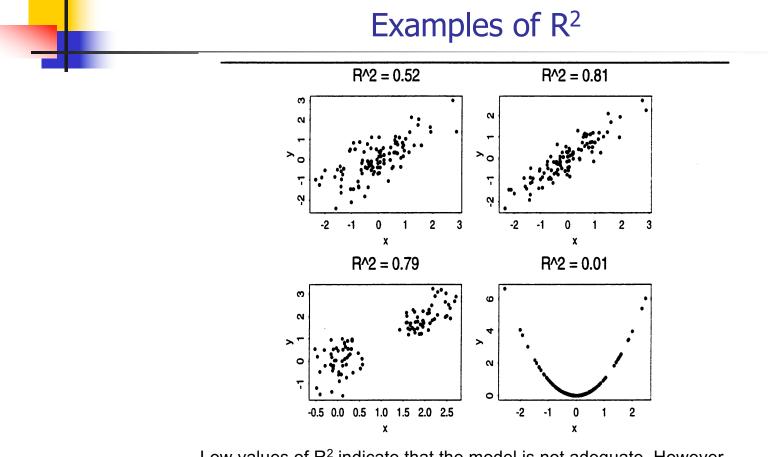
- **SSE:** describes the variation of the Y_i around the regression line.
- **SSR:** describes the structural variation; how much of the variation is due to the regression relationship.
- This decomposition allows a characterization of the usefulness of the covariate X in predicting the response variable Y.

Simple Linear Regression: R²

- Given no linear association:
 - We could simply use the sample mean to predict E(Y). The variability between the data and this simple prediction is given as SST.
- Given a linear association:
 - The use of X permits a potentially better prediction of Y by using E(Y | X).
 - **Question:** What did we gain by using X?
 - **Answer:** We can answer this by computing the proportion of the total variation that can be explained by the regression on *X*

$$R^{2} = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

• This *R*² is, in fact, the correlation coefficient squared.



Low values of R^2 indicate that the model is not adequate. However, high values of R^2 do not mean that the model is adequate!!

Cholesterol Example:

Scientific Question: Can we predict cholesterol based on age?

```
> fit = lm(chol ~ age)
> summary(fit)
Call:
lm(formula = chol ~ age)
Residuals:
      Min
                10 Median
                                    3Q
                                             Max
-60.45306 -14.64250 -0.02191 14.65925 58.99527
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 166.90168 4.26488 39.134 < 2e-16 ***
             0.31033 0.07524 4.125 4.52e-05 ***
age
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099,
                                 Adjusted R-squared: 0.03858
F-statistic: 1/.01 on 1 and 398 DF, p-value: 4.522e-05
```

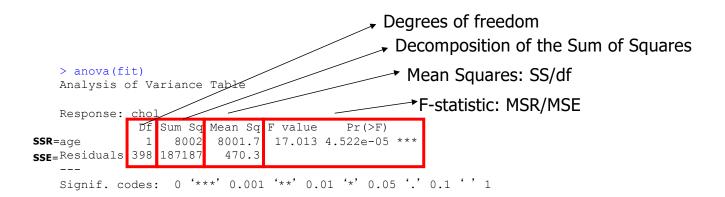
<pre>> confint(fit)</pre>		
	2.5 %	97.5 %
(Intercept)	158.5171656	175.2861949
age	0.1624211	0.4582481

• What does R² tell us about our model for cholesterol?

- R²=0.04
- What does R² tell us about our model for cholesterol?
- Answer: 4% of the variability in cholesterol is explained by age.
 Although mean cholesterol increases with age, there is much more variability in cholesterol than age alone can explain

Scientific Question: Can we predict cholesterol based on age?

Decomposition of Sum of Squares and the F-statistic



In simple linear regression:

F-statistic = $(t-statistic for slope)^2$

Hypothesis being tested: H_0 : $\beta_1=0$, H_1 : $\beta_1\neq 0$.

Simple Linear Regression: Assumptions

- 1. E[Y|x] is related linearly to x
- 2. Y's are independent of each other
- 3. Distribution of [Y|x] is normal
- 4. Var[Y|x] does not depend on x

Linearity Independence Normality Equal variance

Can we assess if these assumptions are valid?

 (Raw or unstandardized) Residual: difference (r_i) between the observed response and the predicted response, that is,

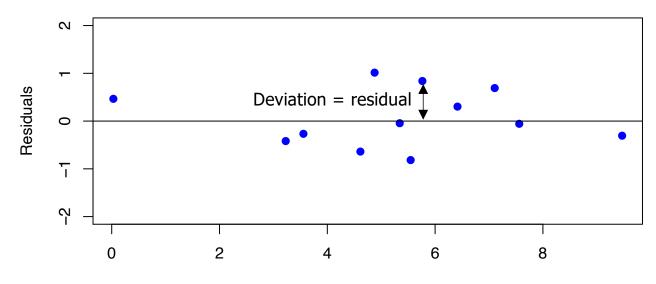
$$\begin{aligned} y_i &= y_i - \hat{y}_i \\ &= y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \end{aligned}$$

The residual captures the component of the measurement y_i that cannot be "explained" by x_i .

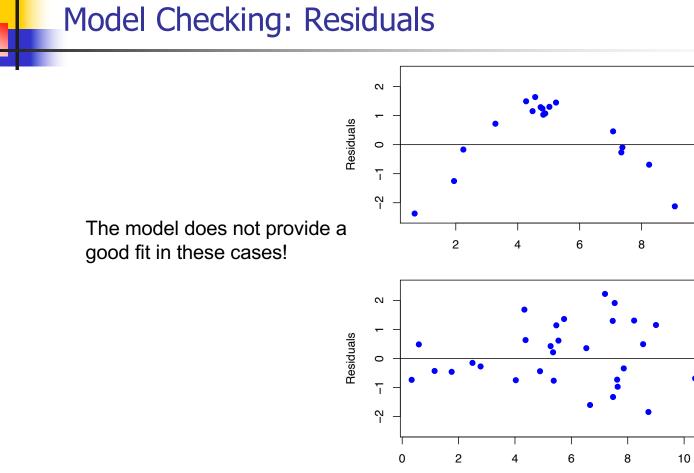
- Residuals can be used to
 - Identify poorly fit data points
 - Identify unequal variance (heteroscedasticity)
 - Identify nonlinear relationships
 - Identify additional variables
 - Examine normality assumption

Linearity	Plot residual vs X or vs Ŷ	
	Q: Is there any structure?	
Independence		
	Q: Any scientific concerns?	
Normality	Residual histogram or qq-plot	
	Q: Symmetric? Normal?	
Equal variance	Plot residual vs X	
	Q: Is there any structure?	

 If the linear model is appropriate we should see an unstructured horizontal band of points centered at zero as seen in the figure below



Х



Violations of the model assumptions? How?

Linearity

- The linearity assumption is important: interpretation of the slope estimate depends on the assumption of the same rate of change in E(Y|X) over the range of X
- Preliminary Y-X scatter plots and residual plots can help identify non-linearity
- If linearity cannot be assumed, consider alternatives such as polynomials, fractional polynomials, splines or categorizing X

Independence

- The independence assumption is also important: whether observations are independent will be known from the study design
- There are statistical approaches to accommodate dependence, e.g. dependence that arises from cluster designs

Normality

- The Normality assumption can be visually assessed by a histogram of the residuals or a normal QQ-plot of the residuals
- A QQ-plot is a graphical technique that allows us to assess whether a data set follows a given distribution (such as the Normal distribution)
 - The data are plotted against a given theoretical distribution
 - Points should approximately fall in a straight line
 - Departures from the straight line indicate departures from the specified distribution.
- However, for moderate to large samples, the Normality assumption can be relaxed

See, e.g., Lumley T et al. The importance of the normality assumption in large public health data sets. Annu Rev Public Health 2002; 23: 151-169.

Equal variance

- Sometimes variance of Y is not constant across the range of X (heteroscedasticity)
- Little effect on point estimates but variance estimates may be incorrect
- This may affect confidence intervals and p-values
- To account for heteroscedasticity we can
 - Use robust standard errors
 - Transform the data
 - Fit a model that does not assume constant variance (GLM)

Robust standard errors

- Robust standard errors correctly estimate variability of parameter estimates even under non-constant variance
 - These standard errors use empirical estimates of the variance in y at each x value rather than assuming this variance is the same for all x values
- Regression point estimates will be unchanged
- Robust or empirical standard errors will give correct confidence intervals and p-values

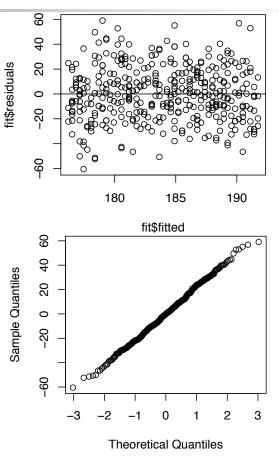
Cholesterol-Age example: Residuals

Plot of residuals versus fitted values Structure? Heteroscedasticity?

R COMMAND: plot(fit\$fitted, fit\$residuals)

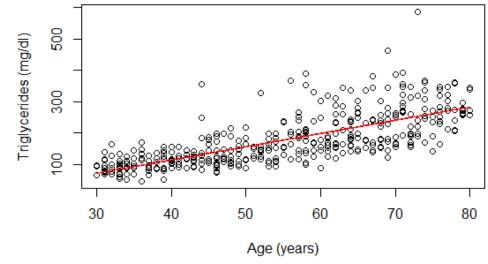
Plot of residuals versus quantiles of a normal distribution(for n > 30) Normality?

R COMMAND: qqnorm(fit\$residuals)



Another example

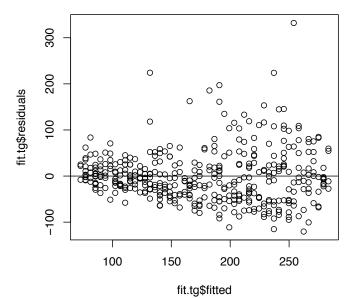
• Linear regression for association between age and triglycerides



> fit.tg=lm(TG~age)

Robust standard errors

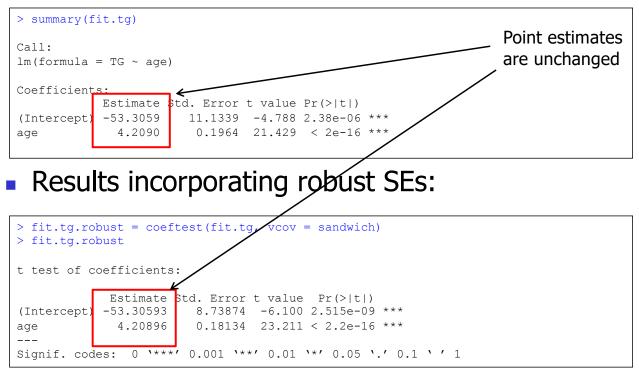
- Residual analysis suggests meanvariance relationship
- Use robust standard errors to get correct variance estimates



81

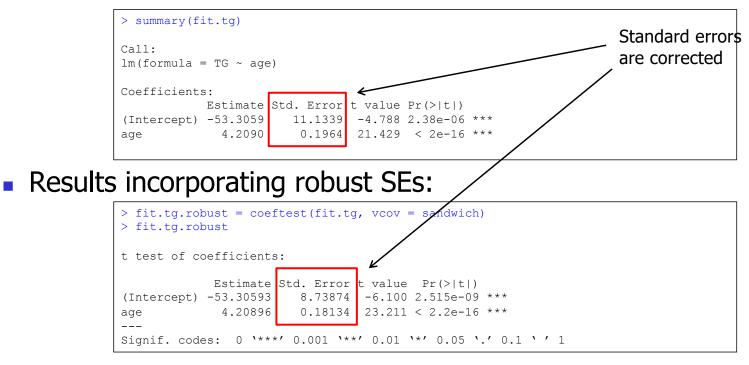
Cholesterol example: Robust standard errors

• Linear regression results:



Cholesterol example: Robust standard errors

• Linear regression results:



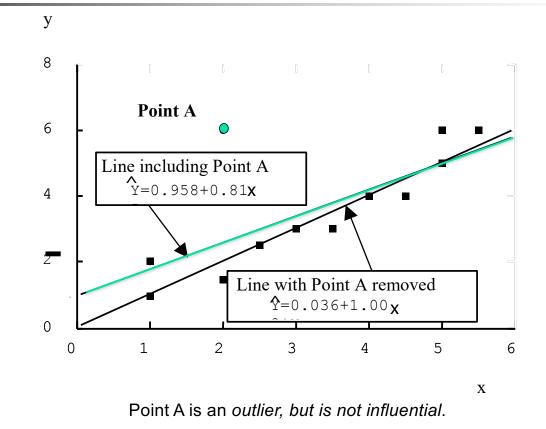
Transformations

- Some reasons for using data transformations
 - Content area knowledge suggests nonlinearity
 - Original data suggest nonlinearity
 - Equal variance assumption violated
 - Normality assumption violated
- Transformations may be applied to the response, predictor or both
 - Be careful with the interpretation of the results
- Rarely do we know which transformation of the predictor provides best "linear" fit – best to choose transformation on scientific grounds
 - As always, there is a danger in using the data to estimate the best transformation to use
 - If there is no association of any kind between the response and the predictor, a "linear" fit (with a zero slope) is the correct one
 - Trying to detect a transformation is thus an informal test for an association
 - Multiple testing procedures inflate the Type I error

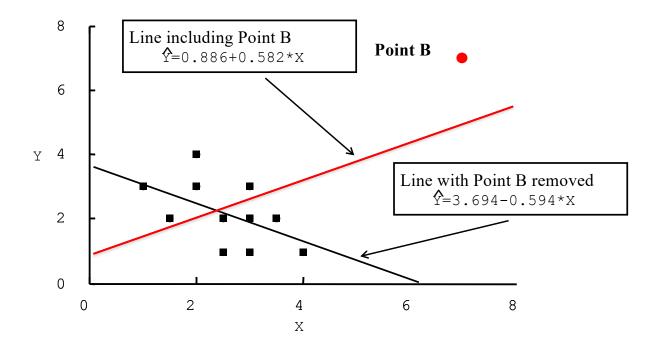
Model Checking: Outliers vs Influential observations

- Outlier: an observation with a residual that is unusually large (positive or negative) as compared to the other residuals.
- Influential point: an observation that has a notable influence in determining the regression equation.
 - Removing such a point would markedly change the position of the regression line.
 - Observations that are somewhat extreme for the value of x can be influential.

Outlier vs Influential observations

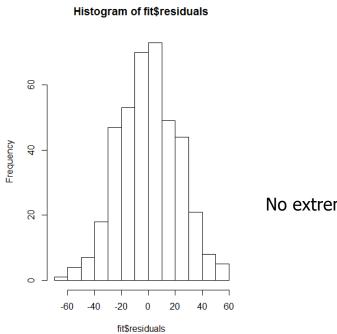


Outlier vs Influential observations



Point B is influential, but not an outlier.

Cholesterol-Age Example: Residuals



No extreme outliers

Model Checking: Deletion diagnostics

$$\begin{split} \Delta \beta_{(i)} &= \hat{\beta} - \hat{\beta}_{(-i)} \; : \text{Delta-beta} \\ \frac{\Delta \beta_{(i)}}{se(\hat{\beta})} \; &: \text{Standardized Delta-beta} \end{split}$$

Delta-beta : tells how much the regression coefficient changed by excluding the ith observation

Standardized delta-beta : approximates how much the t-statistic for a coefficient changed by excluding the ith observation

Cholesterol-Age Example: Deletion diagnostics

(

<pre>> dfb = dfbeta(fit) > index=order(abs(dfb[,2]),decreasing=T) > cbind(dfb[index[1:15],],age[index[1;15]])</pre>						
(In	tercept)	age				
114	-0.9893663	0.015268514	34			
166	-0.6827966	0.014888475	78			
255	-0.6190643	0.013902713	75			
186	-0.8544144	0.013279531	33			
113	0.5376293	-0.011943495	76			
325	-0.7517511	0.011308451	37			
365	0.7676508	-0.011297278	39			
257	-0.7374003	0.011092575	37			
290	-0.7024787	0.010757541	35			
144	0.7120264	-0.010710881	37			
197	-0.6784150	0.010469720	34			
296	-0.6499386	0.010101515	33			
231	-0.6293174	0.009712016	34			
7	0.4403297	-0.009524470	79			
252	-0.5981020	0.009412761	31			

No evidence of influential points. The largest (in absolute value)

delta beta is 0.015 compared to the estimate of 0.31 for the regression coefficient.

Model Checking

- What to do if you find an outlier and/or influential observation:
 - Check it for accuracy
 - Decide (based on scientific judgment) whether it is best to keep it or omit it
 - If you think it is representative, and likely would have appeared in a larger sample, keep it
 - If you think it is very unusual and unlikely to occur again in a larger sample, omit it
 - Report its existence [whether or not it is omitted]

Simple Linear Regression: Impact of Violations of Model Assumptions

	Non Linearity	Non Normality	Unequal Variances	Dependence
Estimates	Problematic	Little impact for most departures. Extreme outliers can be a problem.	Little impact	Mostly little impact
Tests/CIs	Problematic	Little impact for most departures. CIs for correlation are sensitive.	Variance estimates may be wrong, but the impact is usually not dramatic	Variance estimates may be wrong
Correction	Choose a nonlinear approach (possible within the linear regression framework)	Mostly no correction needed. Delete outliers (if warranted) or use robust regression	Use robust standard errors	Regression for dependent data