
REGRESSION METHODS: CONCEPTS & 
APPLICATIONS

LECTURE 1: SIMPLE LINEAR REGRESSION
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Motivation
n Objective: Investigate associations between two or more variables
n What tools do you already have?

n t-test
n Comparison of means in two populations

n Chi-squared test
n Comparison of proportions in two populations

n What will we cover in this module?
n Linear Regression

n Association of a continuous outcome with one or more predictors 
(categorical or continuous)

n Analysis of Variance (as a special case of linear regression)
n Comparison of a continuous outcome over a fixed number of groups

n Logistic and Relative Risk Regression
n Association of a binary outcome with one or more predictors (categorical 

or continuous)
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Module structure

n Lectures and hands-on exercises in R over 2.5 days

n Day 1
n Simple linear regression
n Model checking

n Day 2
n Multiple linear regression
n ANOVA

n Day 3
n Logistic regression
n Generalized linear models
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Outline: Simple Linear Regression

n Motivation
n The equation of a straight line
n Least Squares Estimation
n Inference

n About regression coefficients
n About predictions

n Model Checking
n Residual analysis
n Outliers & Influential observations
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Motivation: Cholesterol Example

n Linear regression is concerned with a continuous outcome
n Data: Factors related to serum total cholesterol (continuous 

outcome), 400 individuals, 11 variables

n Our first goal: 
n Investigate the relationship between cholesterol (mg/dl) and age in 

adults
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> head(cholesterol)

  ID  DM age chol  BMI  TG APOE rs174548 rs4775401 HTN chd
   1   1  74  215 26.2 367    4        1         2   1   1
   2   1  51  204 24.7 150    4        2         1   1   1
   3   0  64  205 24.2 213    4        0         1   1   1
   4   0  34  182 23.8 111    2        1         1   1   0
   5   1  52  175 34.1 328    2        0         0   1   0
   6   1  39  176 22.7  53    4        0         2   0   0



Motivation: Cholesterol Example
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Motivation: Cholesterol Example

n Is cholesterol associated with age?  
n You could dichotomize age and compare cholesterol between two age 

groups
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> group = 1*(age > 55)
> group=factor(group,levels=c(0,1), labels=c("30-55","56-80"))
> table(group)
group 
30-55 56-80 
  201   199 
> boxplot(chol~group,ylab=“Total cholesterol(mg/dl)”)



Motivation: Cholesterol Example

n Is cholesterol associated with age?  

n You could compare mean cholesterol between two groups: t-test
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> t.test(chol ~ group)

 Welch Two Sample t-test

data:  chol by group 
t = -3.637, df = 393.477, p-value = 0.0003125
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -12.200209  -3.638487 
sample estimates:
mean in group 30-55 mean in group 56-80  
       179.9751        187.8945
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Motivation: Cholesterol Example

n Question: What do the boxplot and the t-test tell us about the 
relationship between age and cholesterol?

> t.test(chol ~ group)

 Welch Two Sample t-test

data:  chol by group 
t = -3.637, df = 393.477, p-value = 0.0003125
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -12.200209  -3.638487 
sample estimates:
mean in group 30-55 mean in group 56-80  
       179.9751        187.8945



Motivation: Cholesterol Example

n Using the t-test:
n There is a statistically significant association between 

cholesterol and age

n There appears to be a positive association between 
cholesterol and age

n Is there any way we could estimate the magnitude of this 
association without breaking the “continuous” measure of 
age into subgroups? 

n With the t-test, we compared mean cholesterol in 
two age groups, could we compare mean cholesterol 
across “continuous” age? 
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Motivation: Cholesterol Example

n  We might assume that mean cholesterol changes linearly with age:

n Can we find the equation for a straight line
that best fits these data?
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Linear Regression

n A statistical method for modeling the relationship between a 
continuous variable [response/outcome/dependent] and other 
variables [predictors/exposure/independent]
n Most commonly used statistical model
n Flexible
n Well-developed and understood properties
n Easy interpretation
n Building block for more general models

n Goals of analysis:
n Estimate the association between response and predictors 
or,
n Predict response values given the values of the predictors.

n We will start our discussion studying the relationship between a 
response and a single predictor 
n Simple linear regression model 12



The straight line equation

13
X

Y

A line can be described by two numbers

y = b0 + b1 x



The straight line equation
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bo is the intercept: where the line crosses the y-axis when x=0

X

Y

0



The straight line equation
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X

Y

b1 is the slope: the change in y corresponding to a 
                        unit increase in x

x x+1



The straight line equation
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X

Y

b1 is the slope: the change in y corresponding to a 
                        unit increase in x

x x+1

b0+b1x

b0+b1(x+1)
Difference is b1



The straight line equation
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X

Y

b1 is the slope: the change in y corresponding to a unit 
                       increase in x

The same across the entire line!



The straight line equation

X

Y

Two values of “x” 2 units apart will have a difference in
“y” values of 2*b1 
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The straight line equation

n Slope b1 is the change in y corresponding to a one 
unit increase in x

n Slope gives information about magnitude and 
direction of the association between x and y
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The straight line equation
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x

y

x

y

x

y

(b1=0)  No association between x and y 
(values of y are the same regardless of x) 

(b1 > 0) Positive association between x and y 
(values of y increase as values of x increase) 

(b1 < 0) Negative association between x and y 
(values of y decrease as values of x increase) 



Simple Linear Regression

n We can use linear regression to model how the mean of 
an outcome Y changes with the level of a predictor, X

n The individual Y observations will be scattered about the 
mean
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We estimate a straight
line describing trend in
the mean of an outcome Y 
as a function of predictor X



Simple Linear Regression

n In regression: 
n X  is used to predict or explain outcome Y.

n Response or dependent variable (Y): 
n continuous variable we want to predict or explain  

n Explanatory or independent or predictor variable (X):
n attempts to explain the response

n Simple Linear Regression Model:
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The model consists of two components:

§ Systematic component:
                     
    Mean population value of Y at X=x

§ Random component:
  
  Variance does not depend on x

Simple Linear Regression

€ 

E[Y | X = x] = β0 + β1 x

),0(~, 2
10 seebb Nxy ++=

€ 

Var[Y | X = x]=σ2
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b0:intercept

b1: slope



Simple Linear Regression: Assumptions
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Compare with the boxplots for 
two age groups



Simple Linear Regression: 
Interpreting model coefficients

n Model: E[Y|x] = b0+b1x     Var[Y|x] = s2

n Question: How do you interpret b0?
n Answer: 
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Your turn: interpret b1!

b0 = E[Y|x=0] , that is, the mean response when x=0



Simple Linear Regression: 
Interpreting model coefficients

n Model: E[Y|x] = b0+b1x     Var[Y|x] = s2

n Question: How do you interpret b1?
n Answer: 
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E[Y|x]     = β0 + β1x
E[Y|x+1] = β0 + β1(x+1) =  β0 + β1x+ β1
 
E[Y|x+1] – E[Y|x] =  β1  independent of x (linearity)

i.e. β1 is the difference in the mean response associated with a one 
unit positive difference in x 



Example: Cholesterol and age

n Recall: Our motivating example was to determine if 
there is an association between age (a continuous 
predictor) and cholesterol (a continuous outcome)

n Suppose: We believe they are associated via the 
linear relationship E[Y|x] = b0+b1x

n Question: How would you interpret b1?

n Answer: 
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Example: Cholesterol and age

n Recall: Our motivating example was to determine if 
there is an association between age (a continuous 
predictor) and cholesterol (a continuous outcome)

n Suppose: We believe they are associated via the 
linear relationship E[Y|x] = b0+b1x

n Question: How do you interpret b1?

n Answer: 
β1 is the difference in mean cholesterol 
associated with a one year increase in age 
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Least Squares Estimation

n Question: How to find a “best-fitting” line?
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Least Squares Estimation

n Question: How to find a “best-fitting” line?

2 4 6 8

x

2
4

6
8

y

30

§ Method: Least Squares Estimation

Idea: chooses the line that minimizes the sum of squares of the 
vertical distances from the observed points to the line. 



Least Squares Estimation

n The least squares regression line is given by 
            

n So the (squared) distance between the data (y) and the 
least squares regression line is

n We estimate β0 and β1 by finding the values that 
 minimize D

n We can use these estimates to get an estimate of the 
variance about the line (σ2)

xy 10
ˆˆˆ ββ +=
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Least Squares Estimation

n These values are:

n We estimate the variance as:

( )( )
( )∑

∑
−

−−
= 21̂ xx

yyxx

i

iiβ

xy 10
ˆˆ ββ −=

2

)ˆˆ(

2

)ˆ(

2
ˆ 1

2
10

1

2

1

2

2

−

−−
=

−

−
=

−
=

∑∑∑
===

n

xy

n

yy

n

r
n

i
ii

n

i
ii

n

i
i ββ

σ

32



Estimated Standard Errors

n Recall that, when estimating parameters from a sample, 
there will be sampling variability in the estimates

n This is true for regression parameter estimates

n Looking at the formulas for    and    , we can see that they 
are just complicated means

n In repeated sampling we would get different estimates

n Knowledge of the sampling distribution of parameter 
estimates can help us make inference about the line

n Statistical theory shows that the sampling distributions are 
Normal and provides expressions for the mean and 
standard error of the estimates over repeated samples 33
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“Regression” -> “Histograms on Simple Linear Regression”
at https://lstat.kuleuven.be/newjava/vestac/

“true” regression line

Click here to simulate a data set
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Sampling Distribution
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Sampling Distribution
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Inference

n About regression model parameters
n Hypothesis testing: H0: bj=0 (j=0,1)

n Test Statistic:
n Large Samples:

n Small Samples: 

n Confidence Intervals: 

 [Don’t worry about these formulae: we will use R to fit the models!]
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Inference: Hypothesis Testing

Null Hypothesis: bj = 0
T=test statistic
Alternative P-Value   
   bj > 0  P(tn-2 >T) 

   bj < 0  P(tn-2 <T)

   bj ¹ 0  2P(tn-2 >|T|)
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Inference: Confidence Intervals

 100 (1-a)% Confidence Interval for bj (j=0,1)

Gives intervals that (1- α)100% of the time will cover the 
true parameter value ( β0 or β1). 

 
We say we are “(1- α)100% confident” the interval covers βj.

22,
ˆ ˆ( )j jnt SEαβ β−±
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> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
      Min        1Q    Median        3Q       Max 
-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05 
 

> confint(fit)
                  2.5 %      97.5 %
(Intercept) 158.5171656 175.2861949
age      0.1624211   0.4582481

Example:
Scientific Question: Is cholesterol associated with age?
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> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
      Min        1Q    Median        3Q       Max 
-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age         0.31033      0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05 
 

> confint(fit)
                  2.5 %      97.5 %
(Intercept) 158.5171656 175.2861949
age         0.1624211   0.4582481

Estimates of the model
parameters and standard 
errors

08.0)ˆ(;31.0ˆ
26.4)ˆ(;90.166ˆ
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==

==

ββ

ββ

se

se

Example:
Scientific Question: Is cholesterol associated with age?
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> confint(fit)
                  2.5 %      97.5 %
(Intercept) 158.5171656 175.2861949
age           0.1624211   0.4582481

> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
      Min        1Q    Median        3Q       Max 
-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05 
 

95% Confidence
intervals

Example:
Scientific Question: Is cholesterol associated with age?
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Example:
Scientific Question: Is cholesterol associated with age?

n What do these model results mean in terms of 
our scientific question?
n Parameter estimates and confidence intervals:

31.0ˆ
90.166ˆ

1

0

=

=

b

b 95% CI: (158.5, 175.3)

95% CI: (0.16, 0.46)

0b̂

1̂b

: The estimated average serum cholesterol for 
someone of age = 0 is 166.9 

Your turn: What about      ?

!?
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Example:
Scientific Question: Is cholesterol associated with age?

n What do these models results mean in terms of 
our scientific question?
n Parameter estimates and confidence intervals:

n Answer:     : mean cholesterol is estimated to be 0.31 
mg/dl higher for each additional year of age.

n Question: What about the confidence intervals?
€ 

ˆ β 0 =166.90
ˆ β 1 = 0.31

95% CI: (158.5, 175.3)

95% CI: (0.16, 0.46)

1̂b
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Example:
Scientific Question: Is cholesterol associated with age?

n What do these models results mean in terms of 
our scientific question?
n Parameter estimates and confidence intervals:

n Answer: 95% CIs give us a range of values that will 
cover the true intercept and slope 95% of the time

n For instance, we can be 95% confident that the true 
difference in mean cholesterol associated with a one year 
difference in age lies between 0.16 and 0.46 mg/dl

€ 

ˆ β 0 =166.90
ˆ β 1 = 0.31

95% CI: (158.5, 175.3)

95% CI: (0.16, 0.46)
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Example:
Scientific Question: Is cholesterol associated with age?

n Presentation of the results?
n The mean serum total cholesterol is significantly 

higher in older individuals (p < 0.001). 
n For each additional year of age, we estimate that the 

mean total cholesterol differs by approximately 0.31 
mg/dl (95% CI: 0.16, 0.46). Or: 

n For each additional 10 years of age, we estimate that 
the mean total cholesterol differs by approximately 
3.10 mg/dl (95% CI: 1.62, 4.58). 

n Note: 
n Emphasis on slope parameter (sign and magnitude)
n Confidence interval
n Units for predictor and response. Scale matters!
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Inference for predictions

n Given estimates              we can find the predicted 
value, for any value of xi  as

n Interpretation of      :
n Estimated mean value of Y at X = xi 

Be Cautious: This assumes the model is true. 
n May be a reasonable assumption within the range of your data. 
n It may not be true outside the range of your data! 

iŷ10
ˆ,ˆ ββ

ii xy 10
ˆˆˆ ββ +=

iŷ



True model

x

y

Observed values of x No data in this range!

Would you use the regression line to 
“extrapolate”?? 49

Be careful of extrapolating
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Be careful of extrapolating

§ It would not make sense to extrapolate height at age 20 from a study of girls 
aged 4-9 years! 



Prediction

n Prediction of the mean E[Y|X=x]:
n Point Estimate:

n Standard Error:

Note that as x gets further from    ,  variance increases!

n 100 (1-a)% confidence interval for E[Y|X=x]: 
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Prediction

n Prediction of a new future observation, y*, at X=x:
n Point Estimate:

n Standard Error:

n 100 (1-a)% prediction interval for a new future observation:

Standard error for the prediction of a future observation is bigger: 
It depends not only on the precision of the estimated mean, but also on the amount of 

variability in Y around the line. 
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> predict.lm(fit, newdata=data.frame(age=c(46,47,48)), interval="confidence")
       fit      lwr      upr
1 181.1771 178.6776 183.6765
2 181.4874 179.0619 183.9129
3 181.7977 179.4392 184.1563

> predict.lm(fit, newdata=data.frame(age=c(46,47,48)), interval="prediction")
       fit      lwr      upr
1 181.1771 138.4687 223.8854
2 181.4874 138.7833 224.1915
3 181.7977 139.0974 224.4981

Prediction of the mean

Prediction of a new observation

Cholesterol Example: Prediction
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: How do our interpretations for     and    
differ? 

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)
*ŷŷ
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: How do our interpretations for     and    
differ?

n Answer: The point estimates represent our predictions 
for the mean serum cholesterol for individuals age 46 
(   ) and for a single new individual of age 46 (   )

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)

*ŷŷ

ŷ *ŷ
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: Why are the confidence intervals for  and   
   of differing widths?

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)

*ŷ
ŷ
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Example:
Scientific Question: Is cholesterol associated with age?

n Let’s interpret these predictions
n For x = 46

n Question: Why are the confidence intervals for  and   
   of differing widths? 

n Answer: The interval is broader when we make a 
prediction for a cholesterol level for a single individual 
because it must incorporate random variability around 
the mean.

n Note: Unlike confidence intervals, the formula for the prediction interval depends 
on the normality assumption regardless of sample size.

2.181*ˆ
2.181ˆ

=
=
y
y 95% CI: (178.7, 183.7)

95% CI: (138.5, 223.9)
ŷ

*ŷ



Lab

n Let’s put some of the concepts we have been discussing 
into practice

n Open up the Labs file (2023_SISG_5_Labs.html) and 
RStudio and follow the directions to load the class data set 
and install the R packages you will need for this module

n For our first lab we will work on Exercises 1-3
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Simple Linear Regression: R2

n Given no linear association:
n We could simply use the sample mean to predict E(Y).  The variability using 

this simple prediction is given by SST (to be defined shortly).

n Given a linear association:
n The use of X permits a potentially better prediction of Y by using E(Y|X).  
n Question:  What did we gain by using X?  

Let’s examine this question with the following figure

1



Decomposition of sum of squares
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Decomposition of sum of squares

SST: describes the total variation of the Yi.
SSE: describes the variation of the Yi around the regression line.
SSR: describes the structural variation; how much of the variation is due 

to the regression relationship.

This decomposition allows a characterization of the usefulness 
of the covariate X in predicting the response variable Y.  
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Simple Linear Regression: R2

n Given no linear association:
n We could simply use  the sample mean to predict E(Y).  The variability between the data and 

this simple prediction is given as SST.

n Given a linear association:
n The use of X permits a potentially better prediction of Y by using E(Y| X).  
n Question:  What did we gain by using X?  
n Answer:  We can answer this by computing the proportion of the total variation that can be 

explained by the regression on X

n This R2 is, in fact, the correlation coefficient squared.
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Examples of R2

Low values of R2 indicate that the model is not adequate. However,
high values of R2 do not mean that the model is adequate!! 63



> fit = lm(chol ~ age)
> summary(fit)

Call:
lm(formula = chol ~ age)

Residuals:
      Min        1Q    Median        3Q       Max 
-60.45306 -14.64250  -0.02191  14.65925  58.99527 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858 
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05

> confint(fit)
                  2.5 %      97.5 %
(Intercept) 158.5171656 175.2861949
age           0.1624211   0.4582481

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 

64



n R2=0.04
n What does R2 tell us about our model for cholesterol?

65

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 



n R2=0.04
n What does R2 tell us about our model for cholesterol?
n Answer: 4% of the variability in cholesterol is explained by age.  

Although mean cholesterol increases with age, there is much more 
variability in cholesterol than age alone can explain

66

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 



Decomposition of the Sum of Squares

SSR=
SSE=

Mean Squares: SS/df

Degrees of freedom

F-statistic: MSR/MSE

Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age? 

§  Decomposition of Sum of Squares and the F-statistic

> anova(fit)
Analysis of Variance Table

Response: chol
           Df Sum Sq Mean Sq F value    Pr(>F)    
age         1   8002  8001.7  17.013 4.522e-05 ***
Residuals 398 187187   470.3                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

In simple linear regression:
    F-statistic = (t-statistic for slope)2 

Hypothesis being tested: H0: b1=0, H1: b1¹0.
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Simple Linear Regression: Assumptions

1. E[Y|x]  is related linearly to x 
2. Y’s are independent of each other
3. Distribution of [Y|x] is normal
4. Var[Y|x] does not depend on x

Can we assess if these assumptions are valid?
68
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Independence
Normality
Equal variance



Model Checking: Residuals

n (Raw or unstandardized) Residual: difference 
(ri) between the observed response and the 
predicted response, that is,

  The residual captures the component of the 
measurement yi that cannot be “explained” by xi.

69

)ˆˆ(

ˆ

10 ii

iii

xy

yyr

ββ +−=

−=



Model Checking: Residuals

n Residuals can be used to
n Identify poorly fit data points

n Identify unequal variance (heteroscedasticity)

n Identify nonlinear relationships

n Identify additional variables

n Examine normality assumption
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Model Checking: Residuals

Linearity Plot residual vs X or vs Ŷ
Q: Is there any structure?

Independence
Q: Any scientific concerns?

Normality Residual histogram or qq-plot
Q: Symmetric? Normal?

Equal variance Plot residual vs X
Q: Is there any structure?

71



Model Checking: Residuals

n If the linear model is appropriate we should see an 
unstructured horizontal band of points centered at 
zero as seen in the figure below 
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Model Checking: Residuals

73

The model does not provide a 
good fit in these cases!

Violations of the model assumptions? How?
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Linearity

n The linearity assumption is important: interpretation of the slope 
estimate depends on the assumption of the same rate of change in 
E(Y|X) over the range of X

n Preliminary Y-X scatter plots and residual plots can help 
identify non-linearity

n If linearity cannot be assumed, consider alternatives such as 
polynomials, fractional polynomials, splines or categorizing X
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Independence

n The independence assumption is also important: whether 
observations are independent will be known from the study 
design

n There are statistical approaches to accommodate 
dependence, e.g. dependence that arises from cluster 
designs
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Normality

n The Normality assumption can be visually assessed by a histogram of the residuals or a normal 
QQ-plot of the residuals

n A QQ-plot is a graphical technique that allows us to assess whether a data set follows a given 
distribution (such as the Normal distribution)

n The data are plotted against a given theoretical distribution 
o Points should approximately fall in a straight line
o Departures from the straight line indicate departures from the specified distribution.  

n However, for moderate to large samples, the Normality assumption can be relaxed
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See, e.g., Lumley T et al. The importance of the normality assumption in large public 
health data sets. Annu Rev Public Health 2002; 23: 151-169.



Equal variance

n Sometimes variance of Y is not constant across the range of X 
(heteroscedasticity)

n Little effect on point estimates but variance estimates may be 
incorrect

n This may affect confidence intervals and p-values
n To account for heteroscedasticity we can

n Use robust standard errors 
n Transform the data
n Fit a model that does not assume constant variance (GLM)
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Robust standard errors

n Robust standard errors correctly estimate variability of parameter 
estimates even under non-constant variance
n These standard errors use empirical estimates of the variance in y at each x 

value rather than assuming this variance is the same for all x values

n Regression point estimates will be unchanged

n Robust or empirical standard errors will give correct confidence 
intervals and p-values
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Plot of residuals versus fitted values
  Structure?
  Heteroscedasticity?

R COMMAND:
plot(fit$fitted, fit$residuals)

Plot of residuals versus quantiles of a 
normal distribution(for n > 30)
  Normality?

R COMMAND:
qqnorm(fit$residuals)

Cholesterol-Age example: Residuals
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Another example

n Linear regression for association between age and triglycerides

80

> fit.tg=lm(TG~age)



Robust standard errors

n Residual analysis 
suggests mean-
variance relationship

n Use robust standard 
errors to get correct 
variance estimates

81
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Cholesterol example: Robust standard errors

n Linear regression results:

n Results incorporating robust SEs:

82

> summary(fit.tg)

Call:
lm(formula = TG ~ age)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -53.3059    11.1339  -4.788 2.38e-06 ***
age           4.2090     0.1964  21.429  < 2e-16 *** 

> fit.tg.robust = coeftest(fit.tg, vcov = sandwich)
> fit.tg.robust

t test of coefficients:

             Estimate Std. Error t value  Pr(>|t|)    
(Intercept) -53.30593    8.73874  -6.100 2.515e-09 ***
age           4.20896    0.18134  23.211 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Point estimates 
are unchanged



Cholesterol example: Robust standard errors

n Linear regression results:

n Results incorporating robust SEs:

83

> summary(fit.tg)

Call:
lm(formula = TG ~ age)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -53.3059    11.1339  -4.788 2.38e-06 ***
age           4.2090     0.1964  21.429  < 2e-16 *** 

> fit.tg.robust = coeftest(fit.tg, vcov = sandwich)
> fit.tg.robust

t test of coefficients:

             Estimate Std. Error t value  Pr(>|t|)    
(Intercept) -53.30593    8.73874  -6.100 2.515e-09 ***
age           4.20896    0.18134  23.211 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Standard errors 
are corrected



Transformations
n Some reasons for using data transformations

n Content area knowledge suggests nonlinearity
n Original data suggest nonlinearity 
n Equal variance assumption violated
n Normality assumption violated

n Transformations may be applied to the response, predictor or both
n Be careful with the interpretation of the results

n Rarely do we know which transformation of the predictor provides best 
“linear” fit – best to choose transformation on scientific grounds
n As always, there is a danger in using the data to estimate the best 

transformation to use
- If there is no association of any kind between the response and the predictor, a 
“linear” fit (with a zero slope) is the correct one

- Trying to detect a transformation is thus an informal test for an association
- Multiple testing procedures inflate the Type I error
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Model Checking: Outliers vs Influential 
observations

n Outlier: an observation with a residual that is unusually large 
(positive or negative) as compared to the other residuals.

n Influential point: an observation that has a notable influence in 
determining the regression equation. 
n Removing such a point would markedly change the position of the regression 

line. 
n Observations that are somewhat extreme for the value of x can be influential.
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Outlier vs Influential observations
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Point A is an outlier, but is not influential.
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Outlier vs Influential observations

87

Point B is influential, but not an outlier.
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Cholesterol-Age Example: Residuals

88

No extreme outliers



Model Checking: Deletion diagnostics
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: Standardized Delta-beta

Delta-beta  : tells how much the regression coefficient changed by 
    excluding the ith observation

Standardized delta-beta : approximates how much the t-statistic for a coefficient 
    changed by excluding the ith observation



Cholesterol-Age Example: Deletion diagnostics

90

> dfb = dfbeta(fit)
> index=order(abs(dfb[,2]),decreasing=T)
> cbind(dfb[index[1:15],],age[index[1;15]])

 (Intercept)          age   
114  -0.9893663  0.015268514 34

166  -0.6827966  0.014888475 78

255  -0.6190643  0.013902713 75

186  -0.8544144  0.013279531 33
113   0.5376293 -0.011943495 76

325  -0.7517511  0.011308451 37

365   0.7676508 -0.011297278 39
257  -0.7374003  0.011092575 37

290  -0.7024787  0.010757541 35

144   0.7120264 -0.010710881 37

197  -0.6784150  0.010469720 34
296  -0.6499386  0.010101515 33

231  -0.6293174  0.009712016 34

7     0.4403297 -0.009524470 79

252  -0.5981020  0.009412761 31

No evidence of influential points. The largest (in absolute value) 
delta beta is 0.015 compared to the estimate of 0.31 for the regression coefficient.

(



Model Checking

n What to do if you find an outlier and/or influential observation:

n Check it for accuracy

n Decide (based on scientific judgment) whether it is best to keep it or omit it
n If you think it is representative, and likely would have appeared in a larger sample, keep it
n If you think it is very unusual and unlikely to occur again in a larger sample, omit it
n Report its existence [whether or not it is omitted]
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Non
Linearity

Non
Normality

Unequal 
Variances

Dependence

Estimates Problematic Little impact for 
most departures.  
Extreme outliers 
can be a 
problem.  

Little impact   Mostly little 
impact

Tests/CIs Problematic Little impact for 
most departures. 
CIs for 
correlation are 
sensitive.

Variance 
estimates may 
be wrong, but 
the impact is 
usually not 
dramatic

Variance 
estimates may 
be wrong 

Correction Choose a 
nonlinear 
approach 
(possible within 
the linear 
regression 
framework)

Mostly no 
correction 
needed. 
Delete outliers (if 
warranted) or
use robust 
regression

Use robust 
standard errors

Regression for 
dependent data

92

Simple Linear Regression: 
Impact of Violations of Model Assumptions


