Multinomial Distribution

For a SNP with alleles A, a the three genotypes and their probabilities are

Genotype	Probability
$A A$	$P_{A A}$
$A a$ or $a A$	$P_{A a}$
$a a$	$P_{a a}$

The multinomial distribution gives the probability of x of $A A, y$ of $A a$ and z of $a a$. The probability of x genotypes $A A$ is $\left(P_{A A}\right)^{x}$, etc. The numbers of ways of ordering x, y, z occurrences of the three outcomes is $n!/(x!y!z!)$ where $n=x+y+z$.

The multinomial probability is:

$$
\operatorname{Pr}(x, y, z)=\frac{n!}{x!y!z!}\left(P_{A A}\right)^{x}\left(P_{A a}\right)^{y}\left(P_{a a}\right)^{z}
$$

Multinomial Variances and Covariances

If $\left\{P_{i}\right\}$ are the probabilities for a series of categories, the sample proportions \tilde{P}_{i} from a sample of n observations have these properties:

$$
\begin{aligned}
\mathcal{E}\left(\tilde{P}_{i}\right) & =P_{i} \\
\operatorname{Var}\left(\tilde{P}_{i}\right) & =\frac{1}{n} P_{i}\left(1-P_{i}\right) \\
\operatorname{Cov}\left(\tilde{P}_{i}, \tilde{P}_{j}\right) & =-\frac{1}{n} P_{i} P_{j}, \quad i \neq j
\end{aligned}
$$

The covariance is defined as $\mathcal{E}\left[\left(\tilde{P}_{i}-P_{i}\right)\left(\tilde{P}_{j}-P_{j}\right)\right]$.
For the sample counts:

$$
\begin{aligned}
\mathcal{E}\left(n_{i}\right) & =n P_{i} \\
\operatorname{Var}\left(n_{i}\right) & =n P_{i}\left(1-P_{i}\right) \\
\operatorname{Cov}\left(n_{i}, n_{j}\right) & =-n P_{i} P_{j}, \quad i \neq j
\end{aligned}
$$

Allele Frequency Sampling Distribution

If a locus has alleles A and a, in a sample of size n the allele counts are sums of genotype counts:

$$
\begin{aligned}
n & =n_{A A}+n_{A a}+n_{a a} \\
n_{A} & =2 n_{A A}+n_{A a} \\
n_{a} & =2 n_{a a}+n_{A a} \\
2 n & =n_{A}+n_{a}
\end{aligned}
$$

Genotype counts in a random sample are multinomially distributed. What about allele counts? Approach this question by calculating variance of n_{A}.

Within-population Variance

$$
\begin{aligned}
\operatorname{Var}\left(n_{A}\right) & =\operatorname{Var}\left(2 n_{A A}+n_{A a}\right) \\
& =\operatorname{Var}\left(2 n_{A A}\right)+2 \operatorname{Cov}\left(2 n_{A A}, n_{A a}\right)+\operatorname{Var}\left(n_{A a}\right) \\
& =4 n P_{A A}\left(1-P_{A A}\right)-4 n P_{A A} P_{A a}+n P_{A a}\left(1-P_{A a}\right) \\
& =2 n p_{A}\left(1-p_{A}\right)+2 n\left(P_{A A}-p_{A}^{2}\right)
\end{aligned}
$$

This is not the same as the binomial variance $2 n p_{A}\left(1-p_{A}\right)$ unless $P_{A A}=p_{A}^{2}$. In general, the allele frequency distribution is not binomial.

The variance of the sample allele frequency $\tilde{p}_{A}=n_{A} /(2 n)$ can be written as

$$
\operatorname{Var}\left(\tilde{p}_{A}\right)=\frac{p_{A}\left(1-p_{A}\right)}{2 n}+\frac{P_{A A}-p_{A}^{2}}{2 n}
$$

Within-population Variance

It is convenient to reparameterize genotype frequencies with the within-population inbreeding coefficient f :

$$
\begin{aligned}
P_{A A} & =p_{A}^{2}+f p_{A} p_{a} \\
P_{A a} & =2 p_{A} p_{a}-2 f p_{A} p_{a} \\
P_{a a} & =p_{a}^{2}+f p_{A} p_{a}
\end{aligned}
$$

Then the variance can be written as

$$
\operatorname{Var}\left(\tilde{p}_{A}\right)=\frac{p_{A}\left(1-p_{A}\right)(1+f)}{2 n}
$$

This variance is different from the binomial variance of $p_{A}(1-$ $\left.p_{A}\right) / 2 n$.

Bounds on f

Since

$$
\begin{aligned}
p_{A} \geq P_{A A} & =p_{A}^{2}+f p_{A}\left(1-p_{A}\right) \geq 0 \\
p_{a} \geq P_{a a} & =p_{a}^{2}+f p_{a}\left(1-p_{a}\right) \geq 0
\end{aligned}
$$

there are bounds on f :

$$
\begin{gathered}
-p_{A} /\left(1-p_{A}\right) \leq f \leq 1 \\
-p_{a} /\left(1-p_{a}\right) \leq f \leq 1
\end{gathered}
$$

or

$$
\max \left(-\frac{p_{A}}{p_{a}},-\frac{p_{a}}{p_{A}}\right) \leq f \leq 1
$$

This range of values is $[-1,1]$ when $p_{A}=p_{a}$.

An aside: Indicator Variables

A very convenient way to derive many statistical genetic results is to define an indicator variable $x_{i j}$ for allele j in individual i :

$$
x_{i j}= \begin{cases}1 & \text { if allele is } A \\ 0 & \text { if allele is not } A\end{cases}
$$

Then

$$
\begin{aligned}
\mathcal{E}\left(x_{i j}\right) & =p_{A} \\
\mathcal{E}\left(x_{i j}^{2}\right) & =p_{A} \\
\mathcal{E}\left(x_{i j} x_{i j^{\prime}}\right) & =P_{A A}
\end{aligned}
$$

If there is random sampling, individuals are independent, and

$$
\mathcal{E}\left(x_{i j} x_{i^{\prime} j^{\prime}}\right)=\mathcal{E}\left(x_{i j}\right) \mathcal{E}\left(x_{i^{\prime} j^{\prime}}\right)=p_{A}^{2}
$$

These expectations are the averages of values from many samples from the same population.

An aside: Intraclass Correlation

The inbreeding coefficient is the correlation of the indicator variables for the two alleles j, j^{\prime} at a locus carried by an individual i. This is because:

$$
\begin{aligned}
\operatorname{Var}\left(x_{i j}\right) & =\mathcal{E}\left(x_{i j}^{2}\right)-\left[\mathcal{E}\left(x_{i j}\right)\right]^{2} \\
& =p_{A}\left(1-p_{A}\right) \\
& =\operatorname{Var}\left(x_{i j^{\prime}}\right), j \neq j^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Cov}\left(x_{i j}, x_{i j^{\prime}}\right) & =\mathcal{E}\left(x_{i j} x_{i j^{\prime}}\right)-\left[\mathcal{E}\left(x_{i j}\right)\right]\left[\mathcal{E}\left(x_{i j^{\prime}}\right)\right], j \neq j^{\prime} \\
& =P_{A A}-p_{A}^{2} \\
& =f p_{A}\left(1-p_{A}\right)
\end{aligned}
$$

SO

$$
\operatorname{Corr}\left(x_{i j}, x_{i j^{\prime}}\right)=\frac{\operatorname{Cov}\left(x_{i j}, x_{i j^{\prime}}\right)}{\sqrt{\operatorname{Var}\left(x_{i j}\right) \operatorname{Var}\left(x_{i j^{\prime}}\right)}}=f
$$

Allele Dosage

The dosage X of allele A for an individual is the number of copies of $A(0,1,2)$ that individual carries (the sum of its two allele indicators).

The probabilities for X are

$$
\operatorname{Pr}(X=0)=P_{a a}, \operatorname{Pr}(X=1)=P_{A a}, \operatorname{Pr}(X=2)=P_{A A}
$$

so the expected value of X is $2 P_{A A}+P_{A a}=2 p_{A}$.
The expected value of X^{2} is $4 P_{A A}+P_{A a}=2\left(p_{A}+P_{A A}\right)$ and this leads to a variance the dosage for an individual of

$$
\operatorname{Var}(X)=2 P_{A A}+2 p_{a}-4 p_{A}^{2}=2 p_{A}\left(1-p_{A}\right)(1+f)
$$

We will come back to this result, but note here that the f term is usually not included in genetic data analysis packages.

