
Maximum Likelihood Estimation: Binomial

For a sample of n independently-sampled alleles, nA of type A

and na = n − nA of type a, the likelihood of pA is

L(pA) = C(pA)nA(1 − pA)n−nA

and this is maximized when pA = nA/n. The maximum likelihood

estimate (MLE) of pA is its sample value:

p̂A = p̃A

Section 2.3 Slide 1



Aside: MLE Details

The likelihood function L(pA) is maximized by setting to zero its

derivative with respect to pA:

∂L(pA|nA)

∂pA
= 0 or when

∂ lnL(pA|na)

∂pA
= 0

Now

lnL(pA|nA) = lnC + nA ln(pA) + (n − nA) ln(1 − pA)

so

∂ lnL(pA|nA)

∂pA
=

nA

pA
−

n − nA

1 − pA

and this is zero when pA = nA/n. The MLE of pA is its sample

value: p̂A = p̃A.

Section 2.3 Slide 2



Maximum Likelihood Estimation: Multinomial

If {ni} are multinomial with parameters n and {Pi}, then the

MLE’s of Pi are ni/n. This will always hold for genotype propor-

tions, but not always for allele proportions.

For two alleles, the MLE’s for genotype proportions are:

P̂AA = nAA/n

P̂Aa = nAa/n

P̂aa = naa/n

Does this lead to estimates of allele proportions and the within-

population inbreeding coefficient?
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Maximum Likelihood Estimation

Because

PAA = p2
A + fpA(1 − pA)

PAa = 2pA(1 − pA)− 2fpA(1 − pA)

Paa = (1 − pA)2 + fpA(1 − pA)

the likelihood function for pA, f is

L(pA, f) = C[p2
A + pA(1 − pA)f ]nAA

×[2pA(1 − pA)f ]nAa[(1 − pA)2 + pA(1 − pA)f ]naa

and it is difficult to find, algebraically, the values of pA and f

that maximize this function or its logarithm.

There is an alternative way of finding maximum likelihood esti-

mates in this case: equating the observed and expected values

of the genotype frequencies.
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Bailey’s Method

Because the number of parameters (2) equals the number of

degrees of freedom in this case, we can just equate observed

and expected genotype proportions based on the estimates of pA

and f :

nAA/n = p̂2
A + f̂ p̂A(1 − p̂A)

nAa/n = 2p̂A(1 − p̂A) − 2f̂ p̂A(1 − p̂A)

naa/n = (1 − p̂A)2 + f̂ p̂A(1 − p̂A)

Solving these equations (e.g. by adding the first equation to half

the second equation to give solution for p̂A and then substituting

that into one equation):

p̂A =
2nAA + nAa

2n
= p̃A

f̂ = 1 −
nAa

2np̃A(1 − p̃A)
= 1 −

P̃Aa

2p̃Ap̃a
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Aside: Three-allele Case

With three alleles, there are six genotypes and 5 df. To use

Bailey’s method, would need five parameters: 2 allele frequencies

and 3 inbreeding coefficients. For example

P11 = p2
1 + f12p1p2 + f13p1p3

P12 = 2p1p2 − 2f12p1p2

P22 = p2
2 + f12p1p2 + f23p2p3

P13 = 2p1p3 − 2f13p1p3

P23 = 2p2p3 − 2f23p2p3

P33 = p2
3 + f13p1p3 + f23p2p3

We would generally prefer to have only one inbreeding coefficient

f . It is a difficult numerical problem to find the MLE for f .
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Method of Moments

An alternative to maximum likelihood estimation is the method

of moments (MoM) where observed values of statistics are set

equal to their expected values regardless of degrees of freedom.

In general, this does not lead to unique estimates or to estimates

with variances as small as those for maximum likelihood.

Bailey’s method is for the special case where the MLEs are also

MoM estimates.

Section 2.3 Slide 7



Aside: MoM for Multiple Alleles

For the inbreeding coefficient at loci with m alleles Au, two pos-

sible MoM estimates are (for large sample sizes)

f̂W =

∑m
u=1(P̃uu − p̃2

u)
∑m

u=1 p̃u(1 − p̃u)

f̂H =
1

m − 1

m
∑

u=1

(

P̃uu − p̃2
u

p̃u

)

These both have low bias. Their variances depend on the value

of f .

For loci with two alleles, m = 2, the two moment estimates are

equal to each other and to the maximum likelihood estimate:

f̂W = f̂H = 1 −
P̃Aa

2p̃Ap̃a
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MLE for Recessive Alleles

Suppose allele a is recessive to allele A, and a sample of n individ-

uals has naa recessive homozygotes. The genotypes of the other

(n−naa) individuals can be AA or Aa. If there is Hardy-Weinberg

equilibrium, the likelihood for the two phenotypes is

L(pa) = (p2
a)

naa(1 − p2
a)

n−naa

ln[L(pa)] = 2naa ln(pa) + (n − naa) ln(1 − p2
a)

Differentiating wrt pa:

∂ lnL(pa)

∂pa
=

2naa

pa
−

2pa(n − naa)

1 − p2
a

Setting this to zero leads to an equation that can be solved

explicitly: pa =
√

naa/n.
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Aside: EM Algorithm for Recessive Alleles

An alternative way of finding maximum likelihood estimates when

there are “missing data” involves Estimation of the missing data

and then Maximization of the likelihood.

For a locus with allele A dominant to a the missing information

is the counts of the AA and Aa genotypes. Only the joint count

(n − naa) of AA + Aa is observed.

Estimate the missing genotype counts (assuming independence

of alleles) as proportions of the total count of dominant pheno-

types:

nAA =
(1 − pa)2

1 − p2
a

(n − naa) =
(1 − pa)(n − naa)

(1 + pa)

nAa =
2pa(1 − pa)

1 − p2
a

(n − naa) =
2pa(n − naa)

(1 + pa)
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Aside: EM Algorithm for Recessive Alleles

Maximize the likelihood (using Bailey’s method):

p̂a =
nAa + 2naa

2n

=
1

2n

(

2pa(n − naa)

(1 + pa)
+ 2naa

)

=
2(npa + naa)

2n(1 + pa)

An initial estimate pa is put into the right hand side to give an

updated estimated p̂a on the left hand side. This is then put

back into the right hand side to give an iterative equation for pa.

This procedure also has explicit solution p̂B =
√

naa/n.
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EM Algorithm for Two Loci

An interesting application of the EM algorithm is the estimation of two-locus
gamete frequencies from unphased genotype data. For locus A with alleles
A, a and locus B with alleles B, b, the ten two-locus frequencies are:

Genotype Actual Expected Genotype Actual Expected

AB/AB PAB
AB p2

AB AB/Ab PAB
Ab 2pABpAb

AB/aB PAB
aB 2pABpaB AB/ab PAB

ab 2pABpab

Ab/Ab PAb
Ab p2

Ab Ab/aB PAb
aB 2pAbpaB

Ab/ab PAb
ab 2pAbpab aB/aB P aB

aB p2
aB

aB/ab P aB
ab 2paBpab ab/ab P ab

ab p2
ab
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EM Algorithm for Two Loci

Gamete frequencies are marginal sums:

pAB = PAB
AB +

1

2
(PAB

Ab + PAB
aB + PAB

ab )

pAb = PAb
Ab +

1

2
(PAb

AB + PAb
ab + PAb

aB)

paB = P aB
aB +

1

2
(P aB

AB + P aB
ab + P aB

Ab )

pab = P ab
ab +

1

2
(P ab

Ab + P ab
aB + P ab

AB)

Arrange the gamete frequencies as a two-way table to show that

only one of them is unknown when the allele frequencies are

known:

pAB pAb pA
paB pab pa

pB pb 1
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EM Algorithm for Two Loci

The two double heterozygote counts nAB
ab , nAb

aB are “missing data.”

Assume initial value of pAB and Estimate the missing counts as

proportions of the total count nAaBb of double heterozygotes:

nAB
ab =

2pABpab

2pABpab + 2pAbpaB
nAaBb

nAb
aB =

2pAbpaB

2pABpab + 2pAbpaB
nAaBb

and then Maximize the likelihood by setting

pAB =
1

2n

(

2nAB
AB + nAB

Ab + nAB
aB + nAB

ab

)

or

nAB = 2nAB
AB + nAB

Ab + nAB
aB + nAB

ab

Section 2.3 Slide 14



Example

As an example, consider the data for two SNPs:

BB Bb bb Total

AA nAABB = 0 nAABb = 0 nAAbb = 2 nAA = 2
Aa nAaBB = 1 nAaBb = 3 nAabb = 4 nAa = 8
aa naaBB = 0 naaBb = 1 naabb = 4 naa = 5

Total nBB = 1 nBb = 4 nbb = 10 n = 15

There is one unknown gamete count x = nAB for AB:

B b Total

A nAB = x nAb = 12 − x nA = 12
a naB = 6 − x nab = x + 12 na = 18

Total nB = 6 nb = 24 2n = 30

0 ≤ x ≤ 6
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Example

EM iterative equation:

x′ = 2nAABB + nAABb + nAaBB + nAB/ab

= 2nAABB + nAABb + nAaBB +
2pABpab

2pABpab + 2pAbpaB
nAaBb

= 0 + 0 + 1 + 3 ×
2x(x + 12)

2x(x + 12) + 2(12− x)(6 − x)

= 1 +
3x(x + 12)

x(x + 12) + (12 − x)(6 − x)
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Example

A good starting value would assume independence of A and B

alleles: x = 2n ∗ pA ∗ pB = (30× 12/30× 6/30) = 2.4. Successive

iterates are:

Iterate x x/2n
1 2.4000 0.0800
2 2.5000 0.0833
3 2.5647 0.0855
4 2.6063 0.0869
5 2.6327 0.0878
6 2.6494 0.0883
7 2.6600 0.0887
8 2.6667 0.0889
9 2.6709 0.0890
10 2.6736 0.0891
11 2.6752 0.0892
12 2.6763 0.0892
13 2.6769 0.0892
14 2.6773 0.0892
15 2.6776 0.0893
16 2.6778 0.0893
... ... ...
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