ALLELE FREQUENCIES

Binomial Distribution

The binomial probability of x successes in n trials is

$$
\operatorname{Pr}(x \mid p)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

The same quantity, written as $L(p \mid x)$, is the likelihood of the parameter, p, when the value x has been observed. The terms that do not involve p are not needed, so

$$
L(p \mid x) \propto p^{x}(1-p)^{(n-x)}
$$

Normal Approximation

Provided $n p$ is not too small the binomial distribution can be approximated by the normal distribution with the same mean and variance. In particular:

$$
\tilde{p} \sim N\left(p, \frac{p(1-p)}{n}\right)
$$

The standard normal variable z is

$$
z=\frac{\tilde{p}-p}{\sqrt{p(1-p) / n}}
$$

and 95% of z-values lie in

$$
p \pm 1.96 \sqrt{p(1-p) / n}
$$

A 95% confidence interval for the binomial parameter p is

$$
\tilde{p} \pm 1.96 \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n}}
$$

Multinomial Distribution

If $\left\{P_{i}\right\}$ are the probabilities for a series of categories, the probability for counts $\left\{n_{i}\right\}$ is

$$
\operatorname{Pr}\left(\left\{n_{i}\right\}\right)=\frac{n!}{\Pi_{i} n_{i}!} \Pi_{i}\left(P_{i}\right)^{n_{i}}
$$

The sample proportions $\tilde{P}_{i}=n_{i} / n$ have these moments:

$$
\begin{aligned}
\mathcal{E}\left(\tilde{P}_{i}\right) & =P_{i} \\
\operatorname{Var}\left(\tilde{P}_{i}\right) & =\frac{1}{n} P_{i}\left(1-P_{i}\right) \\
\operatorname{Cov}\left(\tilde{P}_{i}, \tilde{P}_{j}\right) & =-\frac{1}{n} P_{i} P_{j}, \quad i \neq j
\end{aligned}
$$

Genotype and Allele Counts

The set of genotype counts $\left\{n_{A A}, n_{A B}, n_{B B}\right\}$ are multinomially distributed. The individual genotype counts ($n_{A A}, n-n_{A A}$) are binomially distributed.

The allele counts $n_{A}=2 n_{A A}+n_{A B}$ and $n_{B}=2 n_{B B}+n_{A B}$ are not binomially distributed unless there is Hardy-Weinberg equilibrium:

$$
\operatorname{Var}\left(\tilde{p}_{A}\right)=\frac{1}{2 n}\left[p_{A}\left(1-p_{A}\right)+\left(P_{A A}-p_{A}^{2}\right)\right]
$$

Within-population Inbreeding Coefficient

Reparameterize genotype frequencies with the within-population inbreeding coefficient f :

$$
\begin{gathered}
P_{A A}=p_{A}^{2}+f p_{A} p_{B} \\
P_{A B}=2 p_{A} p_{B}-2 f p_{A} p_{B} \\
P_{B B}=p_{B}^{2}+f p_{A} p_{B} \\
\max \left(-\frac{p_{A}}{1-p_{A}},-\frac{1-p_{A}}{p_{A}}\right) \leq f \leq 1
\end{gathered}
$$

Maximum Likelihood Estimation of f

If \tilde{p}_{l} is the sample frequency for the reference allele at SNP l, the MLEs for p_{l} and f are:

$$
\begin{aligned}
\hat{p}_{l} & =\tilde{p}_{l} \\
\widehat{f} & =1-\frac{\tilde{H}_{l}}{2 \tilde{p}_{l}\left(1-\tilde{p}_{l}\right.}
\end{aligned}
$$

where \tilde{H}_{l} is the sample proportion of heterozygotes for SNP l.

This MLE has mean and variance

$$
\begin{aligned}
\mathcal{E}(\hat{f}) & \approx f \\
\operatorname{Var}(\hat{f}) & \approx \frac{1}{n}, \text { if } f=0
\end{aligned}
$$

The bias of \hat{f} is reduced by using large numbers of SNPs, as shown in Section 4.

EM Algorithm for Gamete Frequencies

There are nine distinguishable two-locus counts:

	$B B$	$B b$	$b b$	Total
$A A$	$n_{A A B B}$	$n_{A A B b}$	$n_{A A b b}$	$n_{A A}$
$A a$	$n_{A a B B}$	$n_{A a B b}$	$n_{A a b b}$	$n_{A a}$
$a a$	$n_{a a B B}$	$n_{a a B b}$	$n_{a a b b}$	$n_{a a}$
Total	$n_{B B}$	$n_{B b}$	$n_{b b}$	n

and there is one unknown gamete count $x=n_{A B}$ for $A B$:

	B	b	Total
A	$n_{A B}=x$	$n_{A b}=n_{A}-x$	$n_{A}=2 n_{A A}+n_{A a}$
a	$n_{a B}=n_{B}-x$	$n_{a b}=x+n_{b}-n_{A}$	$n_{a}=2 n_{a a}+n_{A a}$
Total	$n_{B}=2 n_{B B}+n_{B b}$	$n_{b}=2 n_{b b}+n_{B b}$	$2 n$

The EM equation for the MLE of x is

$$
x^{\prime}=2 n_{A A B B}+n_{A A B b}+n_{A a B B}+\frac{2 n_{A B} n_{a b}}{2 n_{A B} n_{a b}+2 n_{A b} n_{a B}} n_{A a B b}
$$

Breakout Group Tasks

For the following allele dosage data: estimate the allele frequency and inbreeding coefficient for each of the 5 SNPs.

	Individual											
SNP	1	2	3	4	5	6	7	8	9	10		
rs10492936	0	0	0	0	0	0	0	0	0	0		
rs10489589	2	0	0	0	1	1	0	0	0	0		
rs10489588	2	0	0	1	0	0	0	1	0	0		
rs4472706	2	2	2	2	1	1	2	1	2	1		
rs4587514	2	2	2	2	2	1	1	2	1	1		

1. Estimate the allele frequency and inbreeding coefficient for each of the 5 SNPs.
2. Estimate f with all the SNPs, using $\hat{f}=1-\sum_{l} \tilde{H}_{l} / \sum_{l} 2 \widetilde{p}_{l}\left(1-\tilde{p}_{l}\right)$.
3. Estimate the gamete frequency for the reference alleles for SNPs rs10489589 and rs10489588.
4. Estimate the gamete frequency for the reference alleles for SNPs rs10489588 and rs4472706.
