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Hardy-Weinberg Law

For a random mating population, expect that genotype frequen-

cies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

These are also the results of setting the inbreeding coefficient f

to zero.

For a locus with several alleles Ai:

PAiAi = (pAi)
2

PAiAj = 2pAipAj
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Why would HWE not hold?

• Natural selection.

• LD with trait in trait-only sample.

• Population Structure/Admixture.

• Problems with data.

• etc.
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Problems with Data

A SNP with genotype counts 40,0,60 for AA,Aa, aa is likely to

cause HWE rejection. What about 4,0,6?

Typing systems may report heterozygotes as homozygotes, as

was the likely explanation for

“To justify applying the classical formulas of population genetics

in the Castro case, the Hispanic population must be in Hardy-

Weinberg equilibrium. In fact, Lifecodes’ own data show that it

is not. ... Applying this test to the Hispanic sample, one finds

spectacular deviations from Hardy-Weinberg equilibrium: 17 per

cent observed homozygotes at D2S44 and 13 per cent observed

homozygotes at D17S79 compared with only 4 per cent expected

at each locus, indicating, perhaps not surprisingly, the presence

of genetically distinct subgroups within the Hispanic sample.”

Lander ES. 1989. DNA fingerprinting on trial. Nature 339:501-

505.
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Population Structure

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Admixture: Departures from HWE

A population might represent the recent admixture of two parental
populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25

Population 2 is in HWE, but Population 1 has 51% heterozygotes

instead of the expected 49.8%.
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Inference about HWE

If f̂ is the MLE of the within-population inbreeding coefficient

f , it has a normal distribution for large sample sizes n (and for

large np). It can be transformed into a standard normal variable

z by

z =
f̂ − f

√

Var(f̂)

If the true value f is zero, then Var(f̂) = 1/n, and X2 = z2 has

a chi-square distribution with one degree of freedom:

X2 =







f̂ − 0
√

1/n







2

= nf̂2 ∼ χ2(1)

The HWE hypothesis is rejected at the 5% significance level if

X2 > 3.84.
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Aside: Inference about HWE

Departures from HWE can be described by the within-population

inbreeding coefficient f . This has an MLE that can be written

as

f̂ = 1 − P̃AB
2p̃Ap̃B

=
4nAAnBB − n2

AB

(2nAA + nAB)(2nBB + nAB)

and we can use “Delta method” to find

E(f̂) = f

Var(f̂) ≈ 1

2npApB
(1 − f)[2pApB(1 − f)(1 − 2f) + f(2 − f)]

If f̂ is assumed to be normally distributed then, (f̂−f)/
√

Var(f̂) ∼
N(0,1). When H0 is true, the square of this quantity has a chi-

square distribution.

Section 2 Slide 9



Aside: Inference about HWE

Since Var(f̂) = 1/n when f = 0:

X2 =







f̂ − f
√

Var(f̂)







2

=
f̂2

1/n

= nf̂2

is appropriate for testing H0 : f = 0. When H0 is true, X2 ∼ χ2
(1)

.

Reject HWE if X2 > 3.84.
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Significance level of HWE test
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Probability=0.05

X^2=3.84

The area under the chi-square curve to the right of X2 = 3.84

is the probability of rejecting HWE when HWE is true. This is

the significance level of the test.
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Goodness-of-fit Test

An alternative, but equivalent, test is the goodness-of-fit test.

Genotype Observed Expected (Obs.−Exp.)2

Exp.

AA nAA np̃2A np̃2af̂
2

Aa nAa 2np̃Ap̃a 2np̃Ap̃af̂
2

aa naa np̃2a np̃2Af̂
2

The test statistic is

X2 =
∑ (Obs.− Exp)2

Exp.
= nf̂2
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Goodness-of-fit Test

Does a sample of 6 AA, 3 Aa, 1 aa support Hardy-Weinberg?

First need to estimate allele frequencies:

p̃A = P̃AA +
1

2
P̃Aa = 0.75

p̃a = P̃aa +
1

2
P̃Aa = 0.25

Then form “expected” counts:

nAA = n(p̃A)2 = 5.625

nAa = 2np̃Ap̃a = 3.750

naa = n(p̃a)
2 = 0.625
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Goodness-of-fit Test

Perform the chi-square test:

Genotype Observed Expected (Obs.− Exp.)2/Exp.

AA 6 5.625 0.025

Aa 3 3.750 0.150

aa 1 0.625 0.225

Total 10 10 0.400

Note that f̂ = 1 − 0.3/(2 × 0.75 × 0.25) = 0.2 and X2 = nf̂2.
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Sample size determination

Although Fisher’s exact test (below) is generally preferred for

small samples, the normal or chi-square test has the advantage

of simplifying power calculations.

When the Hardy-Weinberg hypothesis is not true, the test statis-

tic nf̂2 has a non-central chi-square distribution with one degree

of freedom (df) and non-centrality parameter λ = nf2. To reach

90% power with a 5% significance level, for example, it is nec-

essary that λ ≥ 10.51.

> pchisq(3.84,1,0)

[1] 0.9499565

> pchisq(3.84,1,10.51)

[1] 0.09986489
> qchisq(0.95,1,0)

[1] 3.841459

> qchisq(0.10,1,10.51)

[1] 3.843019

Section 2 Slide 15



Power of HWE test
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The area under the non-central chi-square curve to the right

of X2 = 3.84 is the probability of rejecting HWE when HWE

is false. This is the power of the test. In this plot, the non-

centrality parameter is λ = 10.5.
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Sample size determination

To achieve 90% power to reject HWE at the 5% significance

level when the true inbreeding coefficient is f , need sample size

n to make nf2 ≥ 10.51.

For f = 0.01, need n ≥ 10.51/(0.01)2 = 105,100.

For f = 0.05, need n ≥ 10.51/(0.05)2 = 4,204.

For f = 0.10, need n ≥ 10.51/(0.10)2 = 1,051.
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Significance Levels and p-values

The significance level α of a test is the probability of a false

rejection. It is specified by the user, and along with the null

hypothesis, it determines the rejection region. The specified, or

“nominal” value may not be achieved for an actual test.

Once the test has been conducted on a data set, the probability

of the observed test statistic, or a more extreme value, if the

null hypothesis is true is the p-value. The chi-square and normal

tests shown above give approximate p-values because they use a

continuous distribution for discrete data (and because the sample

allele frequencies are not normally distributed).

An alternative class of tests, “exact tests,” use a discrete distri-

bution for discrete data and provide accurate p-values. It may

be difficult to construct an exact test with a particular nominal

significance level.

Section 2 Slide 18



Exact Tests

Section 2 Slide 19



HWE Exact Test

If the counts of genotypes AA,Aa, aa are nAA, nAa, naa in a sample

of n individuals, and if the sample allele counts are nA = 2nAA+

nAa and na = 2naa + nAa, then the probability of the genotypic

data conditional on the allele counts if there is HWE is

Pr(nAA, nAa, naa|nA, na) =
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

HWE is rejected if this probability is amongst the smallest prob-

abilities for all possible sets of genotype counts for those allele

counts.

The p-value for the dataset is this probability plus probabilities

for other possible sets of genotype counts that are smaller than

this probability.
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Aside: Exact HWE Test

The preferred test for HWE is an exact one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2A
etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Aside: Exact HWE Test

Putting these together gives the conditional probability

Pr(nAA, nAa, naa|nA, na) =
Pr(nAA, nAa, naa and nA, na)

Pr(nA, na)

=

n!
nAA!nAa!naa!

(p2A)nAA(2pApa)
nAa(p2a)

naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this quantity, the prob-

ability of the genotypic array conditional on the allelic array, is

considered too small to allow that outcome if HWE holds. Is

the probability for the data among the smallest of its possible

values?
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Exact HWE Test Example

For convenience, write the probability of the genotypic array,

conditional on the allelic array and HWE, as Pr(nAa|n, nA). Re-

ject the HWE hypothesis for a data set if this value is among

the smallest probabilities.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAa|n, nA)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99

The p-value is 1/99=0.01 and HWE is rejected at the 5% level.
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Exact HWE Test Example

In this example, f̂ = 0 and the chi-square test statistic is X2 =

50. The resulting p-value is 1.54× 10−12, substantially different

from the exact value of 0.01.

> 1-pchisq(50,1,0)

[1] 1.537437e-12
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Exact HWE Test Example

As another example, the sample with nAA = 6, nAa = 3, naa = 1

has allele counts nA = 15, na = 5. There are two other sets of

genotype counts possible and the probabilities of each set for a

HWE population are:

nAA nAa naa nA na Pr(nAA, nAa, naa|nA, na)

7 1 2 15 5 10!
7!1!2!

2115!5!
20! = 15

323 = 0.047

6 3 1 15 5 10!
6!3!1!

2315!5!
20! = 140

323 = 0.433

5 5 0 15 5 10!
5!5!0!

2515!5!
20! = 168

323 = 0.520

The p-value is 0.433+0.047 = 0.480. Compare this to the chi-square p-value
for X2 = 0.40:

> pchisq(0.4,1)

[1] 0.4729107
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Exact HWE Test Example

For a sample of size n = 100 with minor allele frequency of 0.07,

there are 8 sets of possible genotype counts:

Exact Chi-square

nAA nAa naa Prob. p value X2 p value

93 0 7 0.0000 0.0000∗ 100.00 0.0000∗
92 2 6 0.0000 0.0000∗ 71.64 0.0000∗
91 4 5 0.0000 0.0000∗ 47.99 0.0000∗
90 6 4 0.0002 0.0002∗ 29.07 0.0000∗
89 8 3 0.0051 0.0053∗ 14.87 0.0001∗
88 10 2 0.0602 0.0655 5.38 0.0204∗
87 12 1 0.3209 0.3864 0.61 0.4348
86 14 0 0.6136 1.0000 0.57 0.4503

So, for a nominal 5% significance level, the actual significance

level is 0.0053 for an exact test that rejects when nAa ≤ 8 and

is 0.0204 for an exact test that rejects when nAB ≤ 10.
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Modified Exact HWE Test

Traditionally, the p-value is the probability of the data plus the

probabilities of all the less-probable datasets. The probabilities

are all calculated assuming HWE is true and are conditional on

the observed allele frequencies. More recently Graffelman and

Moreno showed that the test has a significance value closer to

the nominal value if the p-value is half the probability of the

data plus the probabilities of all datasets that are less probably

under the null hypothesis. For the (nAA = 1, nAa = 0, naa = 49)

example then, the p-value is 1/198.

Graffelman J, Moreno V. 2013. Statistical Applications in Genetics and Molec-

ular Biology 12:433-448
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Graffelman and Moreno, 2013

Computation of the p-value in an exact test for HWP, for a sample of 50 individuals with a

minor allele count of 23, for which 13 heterozygotes were observed. (C) Standard two-sided

p-value, (D) Mid p-value based on half the probability of the observed sample.
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Usual vs Mid p values

p value
AA Aa aa Pr(nAa|n, nA) Usual Mid

5 5 0 0.520 1.000 0.740

6 3 1 0.433 0.480 0.287

7 1 2 0.047 0.047 0.023
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Modified Exact HWE Test Example

For a sample of size n = 100 with minor allele frequency of 0.07,

there are 8 sets of possible genotype counts:

Exact Chi-square

nAA nAa naa Prob. Mid p value X2 p value

93 0 7 0.0000 0.0000∗ 100.00 0.0000∗
92 2 6 0.0000 0.0000∗ 71.64 0.0000∗
91 4 5 0.0000 0.0000∗ 47.99 0.0000∗
90 6 4 0.0002 0.0002∗ 29.07 0.0000∗
89 8 3 0.0051 0.0028∗ 14.87 0.0001∗
88 10 2 0.0602 0.0353∗ 5.38 0.0204∗
87 12 1 0.3209 0.2262 0.61 0.4348
86 14 0 0.6136 0.6832 0.57 0.4503

So, for a nominal 5% significance level, the actual significance

level is 0.0353 for an exact test that rejects when nAa ≤ 10 and

is 0.0204 for a chi-square test that also rejects when nAB ≤ 10.
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Effect of Minor Allele Frequency

Even though the nominal significance level for a HWE test may

be set at 0.05, for example, the actual significance level can be

quite different. (e.g. 0.0353 vs 0.05 on the previous slide.)

The difference between nominal and actual values depends on

the sample size and the minor allele frequency, as shown on the

next slide.
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Graffelman and Moreno, 2013

Type I error rate against minor allele count for sample sizes 100 and 1000 and significance

levels (0.05, 0.01, and 0.001) for exact tests with standard two-sided (red), doubled one-sided

(blue) and mid p-values (green).
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Power of Exact Test

Calculating the power of an HWE test is easy for the chi-square

test statistic as it follows from the non-central chi-square distri-

bution.

It is more complicated for the exact test, and the power de-

pends on the quantity ψ = PAa/(
√
PAAPaa), involving the geno-

type probabilities in the population. This quantity depends on

both the inbreeding coefficient f and the allele probabilities pA, pa

in the population.
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Aside: Power of exact test

If there is not HWE:

Pr(nAa|nA, na) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

=
n!

nAA!nAa!nAA!
(PAA)

nA−nAa
2 (PAa)

nAa(Paa)
na−nAa

2

=
n!

nAA!nAa!naa!

√

P
nA
AA

√

Pnaaa

(

PAa√
PAAPaa

)nAa

=
CψnAa

nAA!nAa!naa!

where ψ = PAa/(
√
PAAPaa) measures the departure from HWE.

The constant C makes the probabilities sum to one over all

possible nAa values: C = 1/[
∑

nAa
ψnAa/(nAA!nAa!naa!)].
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Power of Exact Test

Once the rejection region has been determined, the power of the

test (the probability of rejecting) can be found by adding these

probabilities for all sets of genotype counts in the region. HWE

corresponds to ψ = 2. What is the power to detect HWE when

ψ = 1(f > 0), the sample size is n = 10 and the sample allele

frequencies are p̃A = 0.75, p̃a = 0.25?

Pr(nAa|nA, n)
nAA nAa naa ψ = 2 ψ = 1

7 1 2 0.047 0.374
6 3 1 0.433 0.364
5 5 0 0.520 0.262

The ψ = 2 column shows that the rejection region is nAa = 1,

and significance level is 4.7%.

The ψ = 1 column shows that the power (the probability nAa = 1

when ψ = 1) is 37.4%.
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Power Examples

For given values of n, na, the rejection region is determined from

null hypothesis and the power is determined from the multinomial

distribution.

Pr(nAa|na = 16, n = 100)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .631 .398 .157 .000 −.062 −.081 −.085

0 .0042 .0000 .0000 .0000 .0000 .0000 .0000
2 .0956 .0026 .0000 .0000 .0000 .0000 .0000
4 .3172 .0349 .0003 .0000 .0000 .0000 .0000
6 .3568 .1569 .0056 .0000 .0000 .0000 .0000
8 .1772 .3116 .0441 .0008 .0000 .0000 .0000

10 .0433 .3047 .1725 .0123 .0003 .0000 .0000

12 .0054 .1506 .3411 .0974 .0098 .0007 .0000
14 .0003 .0356 .3223 .3681 .1485 .0422 .0109
16 .0000 .0032 .1142 .5214 .8414 .9571 .9890

Power∗ .9943 .8107 .2225 .0131 .0003 .0000 .0000
∗ Pr(nAa ≤ 10).
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Graffelman and Moreno, 2013

Power ofmHWE exact tests against minor allele count for sample sizes 100 and 1000 and

disequilibria 1,2,4,8,16. Standard two-sided (red), double one-sided (blue) and mid p-values

(green).
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.

This procedure is not needed for SNPs with only 2 alleles. The

number of possible arrays is always less than about half the sam-

ple size.
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Multiple Testing

When multiple tests are performed, each at significance level α,

a proportion α of the tests are expected to cause rejection even

if all the hypotheses are true.

Bonferroni correction makes the overall (experimentwise) signif-

icance level equal to α by adjusting the level for each individual

test to α′. If α is the probability that at least one of the L tests

causes rejection, it is also 1 minus the probability that none of

the tests causes rejection:

α = 1 − (1 − α′)L

≈ Lα′

provided the L tests are independent.

If L = 106, the “genome-wide significance level” is 5 × 10−8 in

order for α = 0.05.
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QQ-Plots

An alternative approach to considering multiple-testing issues is
to use QQ-plots. If all the hypotheses being tested are true then
the resulting p-values are uniformly distributed between 0 and 1.

For a set of n tests, the n p-values are expected to be evenly
spread p values between 0 and 1 e.g. 1/2n,3/2n, . . . , (2n−1)/2n.
The observed p-values can be plotted against these expected
values: the smallest against 1/2n and the largest against (2n −
1)/2n. It is more convenient to transform to − log10(p) to ac-
centuate the extremely small p values. The point at which the
observed values start departing from the expected values is an
indication of “significant” values in a way that takes into account
the number of tests.

A useful diagnostic for QQ-plots is the “genomic control” quan-
tity λ. This is the ratio of the median of the observed p-values
to the median of the expected values. If the expected p-values
have a uniform distribution on [0,1], under the null hypothesis of
HWE, the median is 0.5. The λ ratio should be 1.
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QQ-Plots
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The results for 9208 SNPs on human chromosome 1 for 50 AMD

controls (λ = 0.86). Bonferroni would suggest rejecting HWE

when p ≤ 0.05/9208 = 5.4 × 10−6 or − log10(p) ≥ 5.3.
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QQ-Plots
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The same set of results as on the previous slide except now that any SNP

with any missing data was excluded (λ = 1.035, closer to 1 than for all the

SNPs). Now 7446 SNPs and Bonferroni would reject if − log10(p) ≥ 5.2. All

five outliers had zero counts for the minor allele homozygote and at least 32

heterozygotes in a sample of size 50.
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Imputing Missing Data

Instead of discarding an individual for any SNP when there is no

genotype call, it may be preferable to use neighboring SNPs to

impute the missing values. Graffelman applied this procedure to

a study on pre-term birth:

Significant markers are red and non-significant markers are green (α = 0.05).

Ternary plot: distance of point to side of triangle is frequency

of genotype shown on opposite vertex.

Graffelman J, et al. 2015, G3 (Genes, Genomes, Genetics) 5:2365-2373.
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Imputing Missing Data
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p-value
SNP Discard Impute Comment

rs818284 0.000 0.000 Null alleles
rs13022866 0.046 0.571 Het deficiency
rs3766263 0.020 0.539 Het excess
rs2714888 0.192 0.007 Hom deficiency
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Separate Sexes
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HWE Test for X-linked Markers

It is usual to test HWE for X-linked markers using only females.

Under HWE allele frequencies for SNPs in males and females,

on the X chromosome, should be the same. Should examine the

difference allele frequencies when testing for HWE.

If a sample has nm males and nf females, and if the males have

mA,ma alleles of types A, a, and if females have fAA, fAa, faa

genotypes AA,Aa, aa, then the probability of the data, under

HWE, is

nA!na!nm!nf !

mA!ma!fAA!fAa!faa!nt!
2fAa

where nt = nm + 2nf .

Graffelman and Weir, 2016, Heredity 116:558-568.
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Example: 10 males, 10 females, 6 A alleles

If there are six A alleles in a sample that has 10 males and 10

females, there are 16 possible datasets:

Set mA ma fAA fAa faa Probability
1 0 10 3 0 7 0.0002
2 6 4 0 0 10 0.0004
3 0 10 0 6 4 0.0026
4 2 8 2 0 8 0.0034
5 4 6 1 0 9 0.0035
6 5 5 0 1 9 0.0085
7 0 10 2 2 6 0.0085
8 1 9 2 1 7 0.0121
9 0 10 1 4 5 0.0340
10 3 7 1 1 8 0.0364
11 4 6 0 2 8 0.0637
12 2 8 1 2 7 0.1091
13 1 9 1 3 6 0.1132
14 1 9 0 5 5 0.1358
15 3 7 0 3 7 0.1940
16 2 8 0 4 6 0.2546
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X-linked Markers: Real Data

Scatter plots of P-values in original and -log10 scale for chi-square tests (a, b) and exact

tests (c, d) for HWE using females only and using both males and females for 4158 SNPs

at the X chromosome of the venous thrombosis database. The horizontal and vertical black

lines in (b) and (d) correspond to a significance level of 5%. Points colored according to

their significance level in Fisher’s test for equality of allele frequencies (range 0-1 from red

to green).

Graffelman J, Weir BS. 2016. Heredity 116:558-568.
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X-linked Markers: Real Data

QQ plots of - log10 transformed P-values of Chi-square and exact tests for HWE for 4158

SNPs of the venous thrombosis database. (a, c) Females only and (b, d) all individuals.

Graffelman J, Weir BS. 2016. Heredity 116:558-568.
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X-linked Markers: Real Data

Cluster plots of allele intensities of four SNPs of the venous thrombosis database. (a and

b) are significant in both the female-only (P=0.0025, P=0.0010) and all-individual test

(P=0.0005, P=0.0023). (c) is non-significant in the female-only test (P=0.4261) but highly

significant in the all-individual test (P=0.0012). (d) is non-significant in the female-only test

(P=0.8732) and close to significant in the all-individual test (P=0.0914).

Graffelman J, Weir BS. 2016. Heredity 116:558-568.
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Separate Male and Female Autosomal Counts

The X-linked test can be extended to autosomal markers when

genotype counts are recorded separately for males and females.

Vicious testing circle: mutual dependency of a test for EAF in males and females and a test

for HWP Notes: A allele frequencies in males and females are represented by pAm and pAf
,

respectively.

Graffeleman J, Weir BS. 2018. Genetic Epidemiology 42:24-48.
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Separate M&F Counts: Scenarios

A) HWP and EAF. (B) Equality of inbreeding coefficients, EAF, and both sexes out of

HWP. (C) Unequal inbreeding coefficients, both sexes out of equilibrium but with equal allele

frequencies. (D) Both sexes in HWP but with different allele frequencies. (E) Each sex out

of equilibrium with identical inbreeding coefficients and different allele frequencies. (F) Both

sexes out of equilibrium, with different inbreeding coefficients and different allele frequencies.

Section 2 Slide 52



Aside: Separate M&F Counts: Joint Exact Test

To test for both Equal Allele Frequencies (EAF) and Hardy-

Weinberg Proportions (HWP):

Pr(mAa, fAa|n, nA, nm) =
nA!na!nm!nf !2

mAa+fAa

mAA!mAa!maa!fAA!fAa!faa!(2n)!

mAA,mAa,maa genotype counts in males
fAA, fAa, faa genotype counts in females
nm = mAA +mAa +maa number of males
nf = fAA + fAa + faa number of females
n = nm + nf total sample size
mA = 2mAA +mAa,ma = 2maa +mAa numbers of A, a alleles in males
fA = 2fAA + fAa, fa = 2faa + fAa numbers of A, a alleles in females
nA = mA + fA, na = ma + fa total numbers of A, a alleles
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Aside: Separate M&F Counts: HWP Exact Test

To test for HWP:

Pr(nAa|n, nA) =
nA!na!n!2nAa

nAA!nAa!naa!

nAA, nAa, naa total genotype counts in males and females
n = nAA + nAa + naa total sample size
nA = 2nAA + nAa, na = 2naa + nAa total numbers of A, a alleles
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Aside: Separate M&F Counts: EAF Exact Test

To test for EAF:

Pr(nA|n,mA) =
nA!na!nm!nf !

mA!ma!fA!fa!

mA,ma numbers of A, a alleles in males
fA, fa numbers of A, a alleles in females
nm = mA +ma total number of male alleles
nf = fA + fa total number of female alleles
nA = mA + fA, na = ma + fa total numbers of A, a alleles
n = nm + nf = nA + na total number of alleles in males and females
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Separate M&F Counts: 1000 Genomes Result

Venn diagrams of HWP, EAF, and joint exact test results for all nonmonomorphic complete

SNPs on chromosome 1 of the JPT sample Notes: Circles enclose the number of significant

SNPs (at α = 0.001) for the different tests.

Graffeleman J, Weir BS. 2018. Genetic Epidemiology 42:24-48.
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MHC Region HWE Tests

Green: heterozygote deficiency. Red: heterozygote excess.

Graffelman J, Jain D, Weir B. 2017. Human Genetics 136:727-741.
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Linkage Disequilibrium
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Linkage Disequilibrium

This term reserved for association between pairs of alleles – one

at each of two loci.

When gametic data are available, could refer to gametic disequi-

librium.

When genotypic data are available, but gametes can be inferred,

can make inferences about gametic and non-gametic pairs of

alleles.

When genotypic data are available, but gametes cannot be in-

ferred, can work with composite measures of disequilibrium.
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Linkage Disequilibrium

For alleles A and B at two loci, the usual measure of linkage

disequilibrium is

DAB = PAB − pApB

Whether or not this is zero does not provide a direct state-

ment about linkage between the two loci. For example, consider

marker YFM and disease DTD:

A N Total

+ 1 24 25
YFM

− 0 75 75

Total 1 99 100

DA+ =
1

100
− 1

100

25

100
= 0.0075, (maximum possible value)
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Aside: Gametic Linkage Disequilibrium

For loci A, B define indicator variables x, y that take the value

1 for allele A,B and 0 for any other alleles. If gametes within

individuals are indexed by j, j = 1,2 then for expectations over

samples from the same population

E(xj) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x2j ) = pA, j = 1,2 , E(y2j ) = pB j = 1,2

E(x1x2) = PAA , E(y1y2) = PBB

E(x1y1) = PAB , E(x2y2) = PAB

The variances of xj, yj are pA(1− pA), pB(1− pB) for j = 1,2 and

the covariance and correlation coefficients for x and y are

Cov(x1, y1) = Cov(x2, y2) = PAB − pApB = DAB

Corr(x1, y1) = Corr(x2, y2) = DAB/
√

[pA(1 − pA)pB(1 − pB)] = ρAB
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Estimation of LD

With random sampling of gametes, gamete counts have a multi-

nomial distribution:

Pr(nAB, nAb, naB, nab) =
n!(PAB)nAB(PAb)

nAb(PaB)naB(Pab)
nab

nAB!nAb!naB!nab!

The data are the counts of four gamete types, so there are three

degrees of freedom. There are three parameters: pA, pB, DAB so

Bailey’s method leads directly to MLE’s:

D̂AB = P̃AB − p̃Ap̃B

ρ̂AB = rAB =
D̂AB

√

p̃Ap̃ap̃Bp̃b
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Testing LD

The MLE of DAB is

D̂AB = P̃AB − p̃Ap̃B =
1

n2
(nABnab − nAbnaB)

where n is the number of gametes in the sample. For large n,

this estimate is normally distributed about the parametric value

DAB, so if DAB = 0

X2
AB =

D̂2
AB

Var(D̂AB)
∼ χ2

(1)

When DAB = 0, Var(D̂AB) = pA(1 − pA)pB(1 − pB)/n and the

test statistic is calculated as

X2
AB =

nD̂2
AB

p̃A(1 − p̃A)p̃B(1 − p̃B)

This can be written as X2
AB = nr2AB, by analogy to the test

statistic X2 = nf̂2 for Hardy-Weinberg equilibrium.
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Aside: Testing LD

Writing the MLE of DAB as

D̂AB =
1

n2
(nABnab − nAbnaB)

where n is the number of gametes in the sample, allows the use

of the “Delta method” to find

Var(D̂AB) ≈ 1

n
[pA(1 − pA)pB(1 − pB)

+ (1 − 2pA)(1 − 2pB)DAB −D2
AB]

When DAB = 0, Var(D̂AB) = pA(1 − pA)pB(1 − pB)/n.

If D̂AB is assumed to be normally distributed then

X2
AB =

D̂2
AB

Var(D̂AB)
= nρ̂2AB = nr2AB

is appropriate for testing H0 : DAB = 0. When H0 is true,

X2
AB ∼ χ2

(1)
. Note the analogy to the test statistic for Hardy-

Weinberg equilibrium: X2 = nf̂2.
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Goodness-of-fit Test

The test statistic for the 2 × 2 table

nAB nAb nA
naB nab na
nB nb n

has the value

X2 =
n(nABnab − nAbnaB)2

nAnanBnb

=
nD̂2

AB

p̃Ap̃ap̃Bp̃b

For DTD/YFM example, X2 = 3.03. This is not statistically

significant, even though disequilibrium was maximal.
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Composite Disequilibrium

When genotypes are scored, it is often not possible to distinguish

between the two double heterozygotes AB/ab and Ab/aB, so that

gametic frequencies cannot be inferred.

Under the assumption of random mating, in which genotypic fre-

quencies are assumed to be the products of gametic frequencies,

it is possible to estimate gametic frequencies with the EM algo-

rithm. To avoid making the random-mating assumption, how-

ever, it is possible to work with a set of composite disequilibrium

coefficients.
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Composite Disequilibrium

Although the separate digenic frequencies pAB (one gamete) and

pA,B (two gametes) cannot be observed, their sum can be since

pAB = PABAB +
1

2
PABAb +

1

2
PABaB +

1

2
PABab

pA,B = PABAB +
1

2
PABAb +

1

2
PABaB +

1

2
PAbaB

pAB + pA,B = 2PABAB + PABAb + PABaB +
PABab + PAbaB

2

Allele-pair disequilibrium can be measured with a composite mea-

sure ∆AB defined as

∆AB = pAB + pA,B − 2pApB

= DAB +DA,B

which is the sum of the gametic (DAB = pAB−pApB) and nonga-

metic (DA,B = pA,B − pApB) coefficients.
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Composite Disequilibrium

If the counts of the nine genotypic classes are

BB Bb bb
AA n1 n2 n3
Aa n4 n5 n6
aa n7 n8 n9

the count for pairs of alleles in an individual being A and B,

whether received from the same or different parents, is

nAB = 2n1 + n2 + n4 +
1

2
n5

and the MLE for ∆ is

∆̂AB =
1

n
nAB − 2p̃Ap̃B
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Composite LD and Allele Dosage

The allele dosage for a SNP is the number of copies of the (say)

the reference allele carried by an individual. If A is the reference

allele for SNP A, then genotypes AA,Aa, aa have dosages XA of

2,1,0.

The covariance of allele dosages XA, XB for loci A, B is

Cov(XA, XB) = 2∆AB

By analogy to the tests for within-population inbreeding and for

gametic linkage disequilibrium, a test statistic for composite LD

is

X2
ABc = nr2ABc

where rABc is the sample correlation coefficient for allele dosages

at the two loci over the n individuals in a sample.
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Example

A sample of size 15 has these two-locus genotypes and allele

dosages:

XA X2
A XB X2

B XAXB

1 AAbb 2 4 0 0 0
2 AAbb 2 4 0 0 0
3 AaBB 1 1 2 4 2
4 AaBb 1 1 1 1 1
5 AaBb 1 1 1 1 1
6 AaBb 1 1 1 1 1
7 Aabb 1 1 0 0 0
8 Aabb 1 1 0 0 0
9 Aabb 1 1 0 0 0
10 Aabb 1 1 0 0 0
11 aaBb 0 0 1 1 0
12 aabb 0 0 0 0 0
13 aabb 0 0 0 0 0
14 aabb 0 0 0 0 0
15 aabb 0 0 0 0 0

Sum SA = 12 SAA = 16 SB = 6 SBB = 8 SAB = 5
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Example (contd.)

The sample means, variances, covariance and correlation of

dosages XA, XB are:

means: X̄A = SA/n = 12/15; X̄B = SB/n = 6/15

variances: s2A = (SAA − S2
A/n)/(n− 1) = (16 − 144/15)/14;

s2B = (SBB − S2
B/n)/(n− 1) = (8 − 36/15)/14

covariance: sAB = (SAB − SASB/n)/(n − 1) = (5 − 72/15)/14

correlation: r2ABc = s2AB/s
2
As

2
B = 1/(32 ∗ 28)

test statistic: X2
ABc

= nr2ABc = 0.0168

The hypothesis of no composite LD is not rejected. If there is

HWE this is the same as testing for LD.
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Aside: Composite Linkage Disequilibrium

For loci A, B define indicator variables x, y that take the value

1 for allele A,B and 0 for any other alleles. If gametes within

individuals are indexed by j, j = 1,2 then for expectations over

samples from the same population

E(xj) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x2j ) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x1x2) = PAA , E(y1y2) = PBB

E(x1y1) = PAB , E(x2y2) = PAB

E(x1y2) = PA,B , E(x2y1) = PA,B

Write

DA = PAA − p2A , DB = PBB − p2B

DAB = PAB − pApB , DA,B = PA,B − pApB

∆AB = DAB +DA,B
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Aside: Composite LD and Allele Dosage

Now set X = x1 + x2, Y = y1 + y2, the allelic dosages at each

locus, to get

E(X) = 2pA , E(Y ) = 2pB

E(X2) = 2(pA + PAA) , E(Y 2) = 2(pB + PBB)

Var(X) = 2pA(1 − pA)(1 + fA) , Var(Y ) = 2pB(1 − pB)(1 + fB)

and

E(XY ) = 2(PAB + PA,B)

Cov(X,Y ) = 2(PAB − pApB) + 2(PA,B − pApB)

= 2(DAB +DA,B) = 2∆AB

Corr(X,Y ) =
∆AB

√

pA(1 − pA)(1 + fA)pB(1 − pB)(1 + fB)
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Aside: Composite Linkage Disequilibrium Test

∆̂AB = nAB/n− 2p̃Ap̃B

where

nAB = 2nAABB + nAABb + nAaBB +
1

2
nAaBb

This does not require phased data.

By analogy to the gametic linkage disequilibrium result, a test

statistic for ∆AB = 0 is

X2
AB =

n∆̂2
AB

p̃A(1 − p̃A)(1 + f̂A)p̃B(1 − p̃B)(1 + f̂B)

This is assumed to be approximately χ2
(1)

under the null hypoth-

esis. The approximation rests on ignoring disequilibria between

three and four alleles of the two A and two B alleles.
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Aside: Example

For the data shown on earlier:

BB Bb bb Total

AA nAABB = 0 nAABb = 0 nAAbb = 2 nAA = 2
Aa nAaBB = 1 nAaBb = 3 nAabb = 4 nAa = 8
aa naaBB = 0 naaBb = 1 naabb = 4 naa = 5

Total nBB = 1 nBb = 4 nbb = 10 n = 15

nAB = 2 × 0 + 0 + 1 +
1

2
(3) = 2.5

nA = 12, p̃A = 0.4

nB = 6, p̃B = 0.2

f̂A = 1 − 8/15

0.48
= −0.11

f̂B = 1 − 4/15

0.32
= 0.17
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Aside: Example

The estimated composite disequilibrium coefficient is

∆̂AB =
2.5

15
− 2(0.4)(0.2) = 0.0067

The test statistic is

X2 =
15 × (0.0067)2

0.24× 0.89 × 0.16 × 1.17
= 0.02

Previous work on EM algorithm, assuming HWE, estimated pAB
as 0.0893 so

D̂AB = 0.0893− 0.4 × 0.2 = 0.0093

X2 =
30 × (0.0093)2

0.4 × 0.6 × 0.2 × 0.8
= 0.07
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1000 Genomes Example

Allele dosage squared correlations for pairs of SNPs on chromo-

somes 21 and 22 of the 1000 Genomes ACB and populations.

Heavy lines: means. Light lines: 5th and 95th percentiles.
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Aside: Single-locus Entropy

It is difficult to describe associations among alleles at several

loci. One approach is based on information theory.

For a locus with sample frequencies p̃u for alleles Au the entropy

is

HA = −
∑

u
p̃u ln(p̃u)

If there is only allele in the sample, one p̃ is 1 with

n(p̃) = 0, and the rest are zero. The entropy is zero.

If there are m equally-frequent alleles, p̃ = 1/m for all alleles and

the entropy is maximized at ln(m).
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Aside: Multi-locus Entropy

For two loci with alleles Au, Bv, the entropy is

HAB = −
∑

u

∑

v
P̃uv ln(P̃uv)

In the absence of linkage disequilibrium P̃uv = p̃up̃v so

HAB = −
∑

u

∑

v
p̃up̃v[ln(p̃u) + ln(p̃v)]

= HA +HB

so if HAB 6= HA + HB there is evidence of dependence. This

extends to multiple loci.
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Aside: Conditional Entropy

If the entropy for a multi-locus profile A is HA then the condi-

tional probability of another locus B, given A, is HB|A = HAB −
HA.

In performing meaningful calculations for Y-STR profiles, this

suggests choosing a set of loci by an iterative procedure. First

choose locus L1 with the highest entropy. Then choose locus L2

with the largest conditional entropy H(L2|L1). Then choose L3

with the highest conditional entropy with the haplotype L1L2,

and so on.
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Aside: Conditional Entropy for Y-STR Data

Added Entropy
Marker Single Multi Cond.
DYS385ab 4.750 4.750 4.750
DYS481 2.962 6.972 2.222
DYS570 2.554 8.447 1.474
DYS576 2.493 9.318 0.871
DYS458 2.220 9.741 0.423
DYS389II 2.329 9.906 0.165
DYS549 1.719 9.999 0.093
DYS635 2.136 10.05 0.053
DYS19 2.112 10.08 0.028
DYS439 1.637 10.10 0.024
DYS533 1.433 10.11 0.010
DYS456 1.691 10.12 0.006
GATAH4 1.512 10.12 0.005
DYS393 1.654 10.13 0.003
DYS448 1.858 10.13 0.002
DYS643 2.456 10.13 0.002
DYS390 1.844 10.13 0.002
DYS391 1.058 10.13 0.002

Most-discriminating loci may not contribute to the most-discriminating

haplotypes. No additional discriminating power beyond 10 loci.
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