Models

Models

- Intentional simplification of complex relationships
- Eliminate extraneous detail, focus on key parameters
- Appropriate and useful first approximations
- Evaluate fit of data to model
- Poor fit may implicate violation of model assumptions
- Refining of models tells us which parameters most important
- Population genetics relies heavily on mathematical models
- Specify the mathematical relationships among parameters that characterize a population

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype Female Genotype Frequency Frequency $\quad \mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{F}}\right) \quad \mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{F}}\right) \quad \mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{F}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{M}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{M}}\right)$
$\mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{M}}\right)$

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype
Female Genotype Frequency
Frequency
$\mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{F}}\right) \quad \mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{F}}\right) \quad \mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{F}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{M}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{M}}\right)$
$\mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{M}}\right)$
$\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{F}}$
$\mathrm{P}_{\mathrm{M}} \mathrm{H}_{\mathrm{F}}$
$P_{M} Q_{F}$
$\mathrm{H}_{\mathrm{M}} \mathrm{P}_{\mathrm{F}}$
$\mathrm{H}_{\mathrm{M}} \mathrm{H}_{\mathrm{F}}$
$H_{M} Q_{F}$
$\mathrm{Q}_{\mathrm{M}} \mathrm{P}_{\mathrm{F}}$
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}_{\mathrm{F}}$
$Q_{M} Q_{F}$

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies
- Also called 'panmictic' model

Non-overlapping Generations

$\longrightarrow \longrightarrow$| Birth
 Reproduction
 Death |
| :--- |
| Dirth |
| Reproduction |
| Death |\rightarrow| Birth |
| :--- |
| Reproduction |
| Death |

Generation t-2 Generation t-1 Generation t

Hardy-Weinberg Model

- Both models convenient first approximations for complex populations
- What happens when we combine them?
- What are consequences of random mating in a non-overlapping generation model?

HW Model Assumptions

- Discrete generations
- Random mating
- Sexual reproduction
- Diploid
- Bi-allelic locus
- Allele frequencies equal in males, females
- Large population size
- No migration
- No mutation
- No selection

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
- Equilibrium state
- Autosomal locus will alleles A, a
- Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
- Equilibrium state
- Autosomal locus will alleles A, a
- Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
- HW frequencies: $p^{2}, 2 p q, q^{2}$

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

Mating
AA x AA
AA x Aa
AA x aa
Аа x Aa
Аа x aa
aa x aa

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

Mating	Frequency of Mating
AA \times AA	

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=p$
Frequency $(\mathrm{a})=\mathrm{q}$

Mating	Frequency of Mating
AA x AA	P^{2}
AA x Aa	
AA x aa	
Aa x Aa	
Aa х aa	
aа х аa	

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=p$
Frequency $(\mathrm{a})=\mathrm{q}$

Mating	Frequency of Mating
AA x AA	P^{2}
AA x Aa	$2 P H$
AA x aa	

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

Mating	Frequency of Mating
AA x AA	P^{2}
AA x Aa	$2 P H$
AA x aa	$2 P Q$
Aa x Aa	
Aa x aa	
aa x aa	

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

Mating	Frequency of Mating
AA x AA	P^{2}
AA x Aa	$2 P H$
AA xaa	$2 P Q$
Aa xa	H^{2}
Aa xaa	$2 H Q$
aa x aa	Q^{2}

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny	
Mating	Frequency of Mating	AA	Aa
$\mathrm{AA} \times \mathrm{AA}$	P^{2}		
AA x Aa	$2 P H$		
AA x aa	$2 P Q$		
Aa x Aa	H^{2}		
Aa x aa	$2 H Q$		
aa x aa	Q^{2}		

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$			
AA x aa	$2 P Q$			
Aa x Aa	H^{2}			
Aa x aa	$2 H Q$			
aa x aa	Q^{2}			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA x aa	$2 P Q$			
Aa x Aa	H^{2}			
Aa x aa	$2 H Q$			
aa x aa	Q^{2}			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA xAA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa xaa	H^{2}			
Aa xaa	$2 H Q$			
aa xaa	Q^{2}			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA xAA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa xaa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$			
aa xaa	Q^{2}			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA xAA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa aa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa xaa	Q^{2}			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA xAA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa xaa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa aa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa xaa	Q^{2}	0	0	1

Hardy-Weinberg Principle

Frequency $(A)=p$
Frequency $(a)=q$
Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency $(a a)=$ Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa xaa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa a aa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa xaa	Q^{2}	0	0	1

$$
P^{\prime}=
$$

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa xaa	Q^{2}	0	0	1
	$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}$			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA xAA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa xaa	Q^{2}	0	0	1
	$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}$			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aax Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa xaa	Q^{2}	0	0	1
	$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$			

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa x aa	Q^{2}	0	0	1
	$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$			
$H^{\prime}=$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA x aa	$2 P Q$	0	1	0
Aa \times Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa aa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa x aa	Q^{2}	0	0	1
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA x aa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	0	$1 / 2$	$1 / 2$
Aa aa	$2 H Q$	0	0	1
aa x aa	Q^{2}			
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA x aa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	0	$1 / 4$	$1 / 2$
Aa aa	$2 H Q$	$1 / 4$		
aa x aa	Q^{2}	0	0	$1 / 2$
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa x aa	Q^{2}	0	0	1
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q$				
$Q^{\prime}=$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa x aa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa x aa	Q^{2}	0	0	1
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q$				
$Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa x aa	Q^{2}	0	0	1
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q$				
$Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}$				

Hardy-Weinberg Principle

Frequency $(\mathrm{A})=\mathrm{p}$
Frequency $(\mathrm{a})=\mathrm{q}$

Frequency $(A A)=P$
Frequency $(\mathrm{Aa})=\mathrm{H}$
Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^{2}	1	0	0
AA x Aa	$2 P H$	$1 / 2$	$1 / 2$	0
AA xaa	$2 P Q$	0	1	0
Aa x Aa	H^{2}	$1 / 4$	$1 / 2$	$1 / 4$
Aa xaa	$2 H Q$	0	$1 / 2$	$1 / 2$
aa x aa	Q^{2}	0	0	1
$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$				
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q$				
$Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2}$				

Hardy-Weinberg Principle

$$
\begin{aligned}
& P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2} \\
& H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q \\
& Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2}
\end{aligned}
$$

Hardy-Weinberg Principle

$$
\begin{aligned}
& P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2} \\
& H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q \\
& Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2} \\
& p^{\prime}=
\end{aligned}
$$

Hardy-Weinberg Principle

$$
\begin{aligned}
& P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2} \\
& H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q \\
& Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2} \\
& p^{\prime}=P^{\prime}+\frac{1}{2} H^{\prime}
\end{aligned}
$$

Hardy-Weinberg Principle

$$
\begin{aligned}
& P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2} \\
& H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q \\
& Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2} \\
& p^{\prime}=P^{\prime}+\frac{1}{2} H^{\prime}=p^{2}+\frac{1}{2} 2 p q
\end{aligned}
$$

Hardy-Weinberg Principle

$$
\begin{aligned}
& P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2} \\
& H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q \\
& Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2} \\
& p^{\prime}=P^{\prime}+\frac{1}{2} H^{\prime}=p^{2}+\frac{1}{2} 2 p q=p(p+q)
\end{aligned}
$$

Hardy-Weinberg Principle

$P^{\prime}=P^{2}+\frac{1}{2} 2 P H+\frac{1}{4} H^{2}=\left(P+\frac{H}{2}\right)^{2}=p^{2}$
$H^{\prime}=\frac{1}{2} 2 P H+2 P Q+\frac{1}{2} H^{2}+\frac{1}{2} 2 H Q=2\left(P+\frac{H}{2}\right)\left(Q+\frac{H}{2}\right)=2 p q$
$Q^{\prime}=\frac{1}{4} H^{2}+\frac{1}{2} 2 H Q+Q^{2}=\left(Q+\frac{H}{2}\right)^{2}=q^{2}$
$p^{\prime}=P^{\prime}+\frac{1}{2} H^{\prime}=p^{2}+\frac{1}{2} 2 p q=p(p+q)=p$
$q^{\prime}=Q^{\prime}+\frac{1}{2} H^{\prime}=q^{2}+\frac{1}{2} 2 p q=q(q+p)=q$

- Allele frequency unchanged across generations
- Mendelian inheritance itself preserves variation
- HWE achieved in ONE generation
- Equal allele frequencies in males \& females, discrete generations

HWE Genotype Frequencies

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
- Equilibrium state
- Autosomal locus will alleles A, a
- Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
- HW frequencies: $p^{2}, 2 p q, q^{2}$
- Once at HWE, allele \& genotype freq constant

Example test of HWE

- CCR5
- 338 individuals sampled
- Denmark, Germany

	Observed	Expected
CCR5/CCR5	265	
CCR5/CCR5 Δ	66	
CCR5 Δ /CCR5 Δ	7	

Example test of HWE

- CCR5
- 338 individuals sampled - Denmark, Germany

	Observed	Expected
CCR5/CCR5	265	
CCR5/CCR5 Δ	66	
CCR5 Δ /CCR5 Δ	7	

$$
\begin{array}{ll}
\hat{p}=\frac{265+\frac{1}{2}(66)}{338}=0.882 & P=\hat{p}^{2}=(0.882)^{2}=0.78 \\
\hat{q}=\frac{7+\frac{1}{2}(66)}{338}=0.118 & Q=2 \hat{p} \hat{q}=2(0.882)(0.118)=0.21 \\
& Q=\hat{q}^{2}=(0.118)^{2}=0.01
\end{array}
$$

Example test of HWE

- CCR5 5
- 338 individuals sampled - Denmark, Germany

	Observed	Expected
CCR5/CCR5	265	262.9
CCR5/CCR5 Δ	66	70.4
CCR5 Δ /CCR5 Δ	7	4.7

$\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$
$\chi^{2}=\frac{(265-262.9)^{2}}{269.2}+\frac{(66-70.4)^{2}}{70.4}+\frac{(7-4.7)^{2}}{4.7}$
$\chi^{2}=1.42 \quad \mathrm{df}=$ Number of data classes - number parameters estimated from data -1

$$
\mathrm{df}=3-1-1=1 \quad P=0.25
$$

