Models

Models

- Intentional simplification of complex relationships
 - Eliminate extraneous detail, focus on key parameters
 - Appropriate and useful first approximations
- Evaluate fit of data to model
 - Poor fit may implicate violation of model assumptions
 - Refining of models tells us which parameters most important
- Population genetics relies heavily on mathematical models
 - Specify the mathematical relationships among parameters that characterize a population

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype Frequency A₁A₁ (P_M) A₁A₂ (H_M) A₂A₂ (Q_M)

Female Genotype Frequency A_1A_1 (P_F) A_1A_2 (H_F) A_2A_2 (Q_F)

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype	Female Genotype Frequency				
Frequency	$A_1A_1(P_F)$	A_1A_2 (H _F)	A_2A_2 (Q_F)		
A_1A_1 (P_M)	$P_M P_F$	$P_M H_F$	$P_M Q_F$		
A_1A_2 (H_M)	$H_M P_F$	$H_M H_F$	$H_M Q_F$		
A_2A_2 (Q_M)	$Q_M P_F$	$Q_M H_F$	$\mathbf{Q}_{\mathbf{M}}\mathbf{Q}_{\mathbf{F}}$		

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies
- Also called 'panmictic' model

Non-overlapping Generations

Generation t -2 Generation t -1 Generation t

Hardy-Weinberg Model

- Both models convenient first approximations for complex populations
- What happens when we combine them?
- What are consequences of random mating in a non-overlapping generation model?

Godfrey Harold Hardy

Wilhelm Weinberg

HW Model Assumptions

- Discrete generations
- Random mating
- Sexual reproduction
- Diploid
- Bi-allelic locus
- Allele frequencies equal in males, females
- Large population size
- No migration
- No mutation
- No selection

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a
 Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a

 Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

– HW frequencies: p^2 , 2pq, q^2

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Mating

AA x AA aa x aa

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	2PQ
Aa x Aa	
Aa x aa	
aa x aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	2PQ
Aa x Aa	H^2
Aa x aa	2HQ
aa x aa	Q^2

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2			
AA x Aa	2PH			
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		<u>rrequency or progeny</u>		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH			
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Trequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Treque	ney or pro	<u> </u>
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		110940	ney or pro	<u> </u>
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Frequency of progeny

Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	_ 0	0	1	

P'=

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	_ 0	0	1	
P	$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2$				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		110940	ney or pro	<u>Seny</u>
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	. 2	0	1
<i>P</i> '	$V = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2}$	$\left(\frac{1}{2}\right)^{2}$		
	— — – – – – – – – – – – – – – – – – – –	/		

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		110940	mey of pro	<u>seny</u>
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	. 2 0	0	1
P':	$= P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{1}{4}\right)^{2}$	$\left(\frac{1}{2}\right)^2 = p^2$		
	$\angle 4 \setminus 2$			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Trequer	icy of pro	geny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
<i>P</i> '	$= P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = (P + \frac{1}{4})^{2}$	$\left(\frac{H}{2}\right)^2 = p^2$		
-	ζ _ 4 _ \	۷	••	
H'= ·				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

	Trequer	icy of pro	<u>seny</u>	
Frequency of Mating	AA	Aa	aa	
P^2	1	0	0	
2PH	1/2	1/2	0	
2PQ	0	1	0	
H^2	1/4	1/2	1/4	
2HQ	0	1/2	1/2	
Q^2	0	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$				
$\mu_{1}, 2\mu_{0}, 1\mu_{2}, 12\mu_{0}$	ζ/			
$2^{-n+2PQ+-n+-2nQ}$				
	Frequency of Mating P^{2} $2PH$ $2PQ$ H^{2} $2HQ$ Q^{2} $= P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{1}{2}P^{2} + \frac{1}{2}PQ + \frac{1}{2}P^{2} + \frac{1}{2}PQ\right)$	Frequency of Mating AA P^{2} 1 2PH 1/2 2PQ 0 H^{2} 1/4 2HQ 0 Q^{2} 0 $P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ$	Frequency of Mating AA Aa $\begin{array}{cccc} P^{2} & 1 & 0 \\ 2PH & 1/2 & 1/2 \\ 2PQ & 0 & 1 \\ H^{2} & 1/4 & 1/2 \\ 2HQ & 0 & 1/2 \\ Q^{2} & 0 & 0 \\ = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2} \\ PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ \end{array}$	

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Trequer	icy of pr	ogeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
$\mu_{1} = \frac{1}{2} \frac{2}{2} \frac{1}{4} \frac{4}{4} \frac{1}{2} \frac{1}{4} \frac{2}{4} \frac{2}{2} \frac{2}{4} \frac{2}{4} \frac{1}{2} \frac{1}{4} \frac{1}$					
$\pi = \frac{2}{2} + $					

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Trequer	icy of pr	ogeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
$H_{12} = \frac{2}{200} + \frac{4}{10^2} + \frac{2}{100} + \frac{2}{200} + \frac{2}{100} + \frac{1}{100} + \frac{1}{1$					
$\pi = -21$	$2^{-n} + 2^{-n} + 2^{-n} + 2^{-n} = 2^{-n}$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	$\frac{1}{2} = 2\mu$)Y	

Frequency(A) = pFrequency(a) = q

		Freque	ncy of pro	ogeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
$H' = \frac{1}{2}PH + 2PO + \frac{1}{2}H^{2} + \frac{1}{2}PHO = 2(P + H)(O + H) = 2pO$					
2	2 2 2	2/10	2' 2'	9	
Q'	=				

Frequency(A) = pFrequency(a) = q

		Frequency of progeny			
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$					
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$					
Q	$Y = \frac{1}{4}H^2 + \frac{1}{2}2HQ + Q^2$		L		

Frequency(A) = pFrequency(a) = q

		Freque	ncy of pro	ogeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	2 0	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$					
$Q' = \frac{1}{4}H^{2} + \frac{1}{2}\frac{2}{2}HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2}$					

Frequency(A) = pFrequency(a) = q

		Freque	Frequency of progeny			
Mating	Frequency of Mating	AA	Aa	aa		
AA x AA	P^2	1	0	0		
AA x Aa	2PH	1/2	1/2	0		
AA x aa	2PQ	0	1	0		
Aa x Aa	H^2	1/4	1/2	1/4		
Aa x aa	2HQ	0	1/2	1/2		
aa x aa	Q^2	0	0	1		
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$						
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$						
$Q' = \frac{1}{4}H^2 + \frac{1}{2}\frac{2}{2}HQ + Q^2 = \left(Q + \frac{H}{2}\right)^2 = q^2$						

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = \frac{1}{2}P' = \frac{1}{2}P' + \frac{1}{2}P'$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H'$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq = p(p + q)$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq = p(p+q) = p$$

$$q' = Q' + \frac{1}{2}H' = q^{2} + \frac{1}{2}2pq = q(q+p) = q$$

- Allele frequency unchanged across generations

 Mendelian inheritance itself preserves variation
- HWE achieved in ONE generation
 - Equal allele frequencies in males & females, discrete generations

HWE Genotype Frequencies

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a

 Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

– HW frequencies: p^2 , 2pq, q^2

Once at HWE, allele & genotype freq constant

Example test of HWE

- $CCR5\Delta$
- 338 individuals sampled
 - Denmark, Germany

	Observed	Expected
CCR5/CCR5	265	
CCR5/CCR5 Δ	66	
$CCR5\Delta/CCR5\Delta$	7	

Example test of HWE

- $CCR5\Delta$
- 338 individuals sampled
 - Denmark, Germany

	Observed	Expected
CCR5/CCR5	265	
CCR5/CCR5 Δ	66	
$CCR5\Delta/CCR5\Delta$	7	

$$\hat{p} = \frac{265 + \frac{1}{2}(66)}{338} = 0.882$$

$$\hat{q} = \frac{7 + \frac{1}{2}(66)}{338} = 0.118$$

$$P = \hat{p}^2 = (0.882)^2 = 0.78$$
$$H = 2\hat{p}\hat{q} = 2(0.882)(0.118) = 0.21$$

 $Q = \hat{q}^2 = (0.118)^2 = 0.01$

Lucotte and Mercier 1998

Example test of HWE

- $CCR5\Delta$
- 338 individuals sampled
 - Denmark, Germany

	Observed	Expected
CCR5/CCR5	265	262.9
CCR5/CCR5 Δ	66	70.4
$CCR5\Delta/CCR5\Delta$	7	4.7

$$\chi^{2} = \sum \frac{\left(\text{observed} - \text{expected}\right)^{2}}{\text{expected}}$$
$$\chi^{2} = \frac{\left(265 - 262.9\right)^{2}}{269.2} + \frac{\left(66 - 70.4\right)^{2}}{70.4} + \frac{\left(7 - 4.7\right)^{2}}{4.7}$$

 $\chi^2 = 1.42$ df = Number of data classes - number parameters estimated from data - 1 df = 3 - 1 - 1 = 1 P = 0.25