Module 20 Case Studies in Longitudinal Data Analysis

Benjamin French, PhD Radiation Effects Research Foundation University of Pennsylvania

> SISCR 2016 July 29, 2016

Learning objectives

- This module will focus on the design of longitudinal studies, exploratory data analysis, and application of regression techniques based on estimating equations and mixed-effects models
- Case studies will be used to discuss analysis strategies, the application of appropriate analysis methods, and the interpretation of results, with examples in R and Stata
- Some theoretical background and details will be provided; our goal is to translate statistical theory into practical application
- At the conclusion of this module, you should be able to apply appropriate exploratory and regression techniques to summarize and generate inference from longitudinal data

Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children's Health Study

Case study: Carpal tunnel syndrome

Summary and resources

Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children's Health Study

Case study: Carpal tunnel syndrome

Summary and resources

Longitudinal studies

Repeatedly collect information on the same individuals over time

Benefits

- Record incident events
- Ascertain exposure prospectively
- Separate time effects: cohort, period, age
- Distinguish changes over time within individuals
- Offer attractive efficiency gains over cross-sectional studies
- Help establish causal effect of exposure on outcome

Longitudinal studies

Repeatedly collect information on the same individuals over time

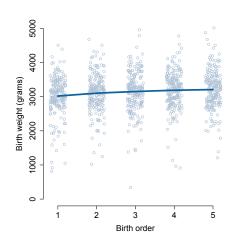
Challenges

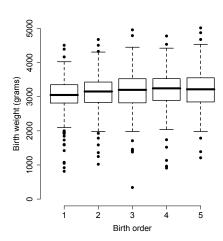
- Determine causality when covariates vary over time
- Choose exposure lag when covariates vary over time
- Account for incomplete participant follow-up
- Use specialized methods that account for longitudinal correlation

Georgian infant birth weight

- Birth weight measured for each of m = 5 children of n = 200 mothers
- ullet Birth weight for infants j comprise repeated measures on mothers i
- Interested in the association between birth order and birth weight
 - Estimate the average time course among all mothers
 - Estimate the time course for individual mothers
 - Quantify the degree of heterogeneity across mothers
- Consider adjustment for mother's initial age (at first birth)

	${\tt momid}$	${\tt birthord}$	bweight	lowbrth	initage
[1]	39	1	3720	0	15
[2]	39	2	3260	0	15
[3]	39	3	3910	0	15
[4]	39	4	3320	0	15
[5]	39	5	2480	1	15
[6]	62	1	2381	1	17
[7]	62	2	2835	1	17
[8]	62	3	2381	1	17
[9]	62	4	2268	1	17
10]	62	5	2211	1	17





Strategies for analysis of longitudinal data

• **Derived variable**: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. "change score") or regression coefficient, and use methods for independent data

 Repeated measures: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation

Options for analysis of change

Does mean change differ across groups?

- Consider simple situation with
 - ▶ Baseline measurement (t = 0)
 - ▶ Single follow-up measurement (t = 1)
- · Analysis options for simple pre-post design
 - Analysis of POST only
 - Analysis of CHANGE (post-pre)
 - Analysis of POST controlling for BASELINE
 - Analysis of CHANGE controlling for BASELINE

Change and randomized studies

- Key assumption: groups equivalent at baseline
- Methods that 'adjust' for baseline are generally preferable due to greater precision
 - ho > 1/2 POST \prec CHANGE \prec ANCOVA
 - ightharpoons ho < 1/2 CHANGE \prec POST \prec ANCOVA
 - ► CHANGE analysis adjusts for baseline by subtracting it from follow-up
 - ▶ ANCOVA analysis adjusts for baseline by controlling for it in a model
- Missing data will impact each approach

Change and non-randomized studies

- Baseline equivalence no longer guaranteed
- Methods no longer answer same scientific question
 - POST: How different are groups at follow-up?
 - ► CHANGE: How different is the change in outcome for the two groups?
 - ANCOVA: What is the expected difference in the mean outcome at follow-up across the two groups, controlling for the baseline value of the outcome?
- CHANGE typically most relevant; multivariable methods to come later characterize CHANGE across multiple timepoints

Strategies for analysis of longitudinal data

- Derived variable: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. "change score") or regression coefficient, and use methods for independent data
 - ▶ Example: birth weight of 2nd child birth weight of 1st child
 - Might be adequate for two time points and no missing data
- Repeated measures: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation
 - ► Generalized estimating equations (GEE)

► Generalized linear mixed-effects models (GLMM)

Notation

Define

$$m_i =$$
 number of observations for subject $i = 1, ..., n$
 $Y_{ij} =$ outcome for subject i at time $j = 1, ..., m_i$
 $X_i = (x_{i1}, x_{i2}, ..., x_{im_i})$
 $x_{ij} = (x_{ij1}, x_{ij2}, ..., x_{ijp})$
exposure, covariates

Stacks of data for each subject:

$$Y_{i} = \begin{bmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{im_{i}} \end{bmatrix} \qquad X_{i} = \begin{bmatrix} x_{i11} & x_{i12} & \dots & x_{i1p} \\ x_{i21} & x_{i22} & \dots & x_{i2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{im_{i}1} & x_{im_{i}2} & \dots & x_{im_{i}p} \end{bmatrix}$$

Dependence and correlation

Issue Response variables measured on the same subject are correlated

- Observations are dependent or correlated when one variable predicts the value of another variable
 - ► The birth weight for a first child is predictive of the birth weight for a second child born to the same mother
- Variance: measures average distance that an observation falls away from the mean
- Covariance: measures whether, on average, departures in one variable $Y_{ij}-\mu_j$ 'go together with' departures in another variable $Y_{ik}-\mu_k$
- ullet Correlation: measure of dependence that takes values from -1 to +1

Covariance: Something new to model

$$\mathsf{Cov}(Y_{i}) = \begin{bmatrix} \mathsf{Var}(Y_{i1}) & \mathsf{Cov}(Y_{i1}, Y_{i2}) & \dots & \mathsf{Cov}(Y_{i1}, Y_{im_{i}}) \\ \mathsf{Cov}(Y_{i2}, Y_{i1}) & \mathsf{Var}(Y_{i2}) & \dots & \mathsf{Cov}(Y_{i2}, Y_{im_{i}}) \\ \vdots & \vdots & \vdots & \vdots \\ \mathsf{Cov}(Y_{im_{i}}, Y_{i1}) & \mathsf{Cov}(Y_{im_{i}}, Y_{i2}) & \dots & \mathsf{Var}(Y_{im_{i}}) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{1}^{2} & \sigma_{1}\sigma_{2}\rho_{12} & \dots & \sigma_{1}\sigma_{m_{i}}\rho_{1m_{i}} \\ \sigma_{2}\sigma_{1}\rho_{21} & \sigma_{2}^{2} & \dots & \sigma_{2}\sigma_{m_{i}}\rho_{2m_{i}} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{m_{i}}\sigma_{1}\rho_{m_{i}1} & \sigma_{m_{i}}\sigma_{2}\rho_{m_{i}2} & \dots & \sigma_{m_{i}}^{2} \end{bmatrix}$$

Note: $\rho = \text{correlation}$

GEE (Liang and Zeger, 1986)

9145 citations as of July 2016

- ★ Contrast average outcome values across populations of individuals defined by covariate values, while accounting for correlation
 - Focus on a generalized linear model with regression parameters β , which characterize the systemic variation in \boldsymbol{Y} across covariates \boldsymbol{X}

$$Y_{i} = (Y_{i1}, Y_{i2}, ..., Y_{im_{i}})^{T}$$

$$X_{i} = (x_{i1}, x_{i2}, ..., x_{im_{i}})^{T}$$

$$x_{ij} = (x_{ij1}, x_{ij2}, ..., x_{ijp})$$

$$\beta = (\beta_{1}, \beta_{2}, ..., \beta_{p})^{T}$$

for
$$i = 1, ..., n$$
; $j = 1, ..., m_i$; and $k = 1, ..., p$

· Longitudinal correlation structure is a nuisance feature of the data

Mean model

Assumptions

- Observations are independent across subjects
- Observations could be correlated within subjects

Mean model: Primary focus of the analysis

$$E[Y_{ij} \mid x_{ij}] = \mu_{ij}(\beta)$$
$$g(\mu_{ij}) = x_{ij}\beta$$

• Corresponds to any generalized linear model with link $g(\cdot)$

Continuous out	come	Count outcome			Binary outcome		
$E[Y_{ij} \mid x_{ij}] =$	μ_{ij}	$E[Y_{ij} \mid x_{ij}]$	=	μ_{ij}	$P[Y_{ij} = 1 \mid x_{ij}]$	=	μ_{ij}
$\mu_{ij} =$	$x_{ij}eta$	$log(\mu_{ij})$	=	$x_{ij}eta$	$logit(\mu_{ij})$	=	$x_{ij}eta$

• Characterizes a marginal mean regression model

Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

1. Assume a form for **variance** that could depend on μ_{ij}

Continuous outcome:
$$Var[Y_{ij} \mid x_{ij}] = \sigma^2$$

Count outcome: $Var[Y_{ij} \mid x_{ij}] = \mu_{ij}$
Binary outcome: $Var[Y_{ij} \mid x_{ij}] = \mu_{ij}(1 - \mu_{ij})$

which could also include a scale or dispersion parameter $\phi>0$

2. Select a model for longitudinal **correlation** with parameters α

Intuition

$$0 = \sum_{i=1}^{n} \underbrace{D_{i}^{\mathsf{T}}}_{3} \underbrace{V_{i}^{-1}}_{2} \underbrace{(Y_{i} - \hat{\mu}_{i})}_{1}$$

- 1 The model for the mean, $\mu_i(\beta)$, is compared to the observed data, Y_i ; setting the equations to equal 0 tries to minimize the difference between **observed** and **expected**
- 2 Estimation uses the inverse of the variance (covariance) to **weight** the data from subject *i*; more weight is given to differences between observed and expected for subjects who contribute more information
- 3 Simply a "change of scale" from the scale of the mean, μ_i , to the scale of the regression coefficients (covariates)

Comments

- GEE is specified by a mean model and a correlation model
 - 1. A regression model for the average outcome, e.g., linear, logistic
 - 2. A model for longitudinal correlation, e.g., independence, exchangeable
- $\hat{\beta}$ is a consistent estimator for β provided that the mean model is correctly specified, even if the model for longitudinal correlation is incorrectly specified, i.e., $\hat{\beta}$ is 'robust' to correlation model mis-specification
- However, the variance of $\hat{\beta}$ must capture the correlation in the data, either by choosing the correct correlation model, or via an alternative variance estimator
- GEE computes a sandwich variance estimator (aka empirical, robust, or Huber-White variance estimator)
- Empirical variance estimator provides valid standard errors for $\hat{\beta}$ even if the working correlation model is incorrect, but requires $n \geq 40$ (Mancl and DeRouen, 2001)

Variance estimators

- **Independence estimating equation**: An estimation equation with a working independence correlation structure
 - Model-based standard errors are generally not valid
 - ▶ Empirical standard errors are valid given large n and $n \gg m$
- Weighted estimation equation: An estimation equation with a non-independence working correlation structure
 - Model-based standard errors are valid if correlation model is correct
 - ▶ Empirical standard errors are valid given large n and $n \gg m$

	Variance estimator			
Estimating equation	Model-based	Empirical		
Independence	_	+/-		
Weighted	-/+	+		

GEE commands

- Stata: xtset, then use xtgee
- R: geeglm in geepack library, using geese fitter function
- SAS: PROC GENMOD
- NB: Order might be important for analysis in software
 - ▶ Requires sorting the data by unique subject identifier and time
 - ▶ Important for exchangeable and auto-regressive correlation structures

Interested in the association between birth order and birth weight

$$\mathsf{E}[Y_{ij} \mid x_{ij}] = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2}$$

for $i = 1, \dots, 200$ and $j = 1, \dots, 5$ with

- Yij: Infant birth weight (continuous)
- x_{ij1} : Infant birth order
- x_{ij2} : Mother's initial age

Motivating example: Stata commands

- * Declare the dataset to be "panel" data, grouped by momid
- * with time variable birthord xtset momid birthord
- * Fit a linear model with independence correlation xtgee bweight birthord initage, corr(ind) robust
- * Fit a linear model with exchangeable correlation xtgee bweight birthord initage, corr(exc) robust

Motivating example: Stata output

GEE population-a	averaged mo	del		Number of	obs =	1000
Group variable:	momid		Number of	Number of groups		
Link:	identity		Obs per g	group: min =	5	
Family:	Gaussian			avg =	5.0	
Correlation:	independent			max =	5	
			Wald chi2	2(2) =	27.95	
Scale parameter:	324458.3		Prob > ch	ii2 =	0.0000	
		(Std.	Err. ad	ljusted for	clustering	on momid)
1		Semi-robust				
bweight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
birthord	46.608	10.02134	4.65	0.000	26.96653	66.24947
initage	26.73226	10.1111	2.64	0.008	6.914877	46.54965
cons	2526.622	177.2781	14.25	0.000	2179.164	2874.081

Motivating example: Stata output

```
Number of obs = 1000
GEE population-averaged model
Group variable:
                            momid
                                      Number of groups =
                                                          200
Link:
                           identity
                                      Obs per group: min =
Family:
                           Gaussian
                                                  avg = 5.0
Correlation:
                        exchangeable
                                                  max =
                                      Wald chi2(2) =
                                                          27.95
                           324458.3
                                      Prob > chi2 =
                                                         0.0000
Scale parameter:
                           (Std. Err. adjusted for clustering on momid)
               Semi-robust
   bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   birthord | 46.608 10.02134 4.65 0.000 26.96653 66.24947
   initage | 26.73226 10.1111 2.64 0.008 6.914877 46.54965
   cons | 2526.622 177.2781 14.25 0.000 2179.164 2874.081
```

Motivating example: Comments

- Difference in mean birth weight between two populations of infants whose birth order differs by one is 46.6 grams, 95% CI: (27.0, 66.2)
- Model-based standard errors are smaller for exchangeable structure, indicating efficiency gain from assuming a correct correlation structure
- In practice, i.e. with real-world data, it's often difficult to tell what the correct correlation structure is from exploratory analyses
- A priori scientific knowledge should ultimately guide the decision
- I tend to use working independence with empirical standard errors unless I have a good reason to do otherwise, e.g. large efficiency gain
- ullet Try not to select the structure that gives you the smallest p-value
- Stata labels the standard errors "semi-robust" because the empirical variance estimator protects against mis-specification of the correlation model, but requires correct specification of the mean model
- ★ See help xtgee for detailed syntax, other options, and saved results

GEE summary

- In the GEE approach the primary focus of the analysis is a marginal mean regression model that corresponds to any GLM
- Longitudinal correlation is secondary to the mean model of interest and is treated as a nuisance feature of the data
- Requires selection of a 'working' correlation model
- · Semi-parametric: Only the mean and correlation models are specified
- The correlation model does not need to be correctly specified to obtain a consistent estimator for β or valid standard errors for $\hat{\beta}$
- Efficiency gains are possible if the correlation model is correct

Issues

- Accommodates only one source of correlation: Longitudinal or cluster
- GEE requires that any missing data are missing completely at random
- Issues arise with time-dependent exposures and covariance weighting

Strategies for analysis of longitudinal data

- Derived variable: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. "change score") or regression coefficient, and use methods for independent data
 - ▶ Example: birth weight of 2nd child birth weight of 1st child
 - ▶ Might be adequate for two time points and no missing data
- Repeated measures: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation
 - ► **Generalized estimating equations** (GEE): A marginal model for the mean response and a model for longitudinal or cluster correlation

$$g(\mathsf{E}[Y_{ij} \mid x_{ij}]) = x_{ij}\beta$$
 and $\mathsf{Corr}[Y_{ij}, Y_{ij'}] = \rho(\alpha)$

► Generalized linear mixed-effects models (GLMM)

Mixed-effects models (Laird and Ware, 1982)

4515 citations as of July 2016

- * Contrast outcomes both within and between individuals
 - Assume that each subject has a regression model characterized by subject-specific parameters: a combination of fixed-effects parameters common to all individuals in the population and random-effects parameters unique to each individual subject
 - Although covariates allow for differences across subjects, typically cannot measure all factors that give rise to subject-specific variation
 - Subject-specific random effects induce a correlation structure

Set-up

For subject *i* the mixed-effects model is characterized by

$$Y_i = (Y_{i1}, Y_{i2}, \dots, Y_{im_i})^{\mathsf{T}}$$
 $\beta^* = (\beta_1^*, \beta_2^*, \dots, \beta_p^*)^{\mathsf{T}}$ Fixed effects
 $x_{ij} = (x_{ij1}, x_{ij2}, \dots, x_{ijp})$
 $X_i = (x_{i1}, x_{i2}, \dots, x_{im_i})^{\mathsf{T}}$ Design matrix for fixed effects
 $\gamma_i = (\gamma_{1i}, \gamma_{2i}, \dots, \gamma_{qi})^{\mathsf{T}}$ Random effects
 $z_{ij} = (z_{ij1}, z_{ij2}, \dots, z_{ijq})$
 $Z_i = (z_{i1}, z_{i2}, \dots, z_{im_i})^{\mathsf{T}}$ Design matrix for random effects

for
$$i=1,\ldots,n$$
; $j=1,\ldots,m_i$; and $k=1,\ldots,p$ with $q\leq p$

Linear mixed-effects model

Consider a linear mixed-effects model for a continuous outcome Y_{ij}

Stage 1: Model for response given random effects

$$Y_{ij} = x_{ij}\beta + z_{ij}\gamma_i + \epsilon_{ij}$$

with

- x_{ii} is a vector a covariates
- ▶ z_{ij} is a subset of x_{ij}
- \triangleright β is a vector of fixed-effects parameters
- $ightharpoonup \gamma_i$ is a vector of random-effects parameters
- $ightharpoonup \epsilon_{ii}$ is observation-specific measurement error
- Stage 2: Model for random effects

$$\gamma_i \sim N(0, G)$$
 $\epsilon_{ij} \sim N(0, \sigma^2)$

with γ_i and ϵ_{ij} are assumed to be independent

Choices for random effects

Consider the linear mixed-effects models that include

Random intercepts

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \epsilon_{ij}$$

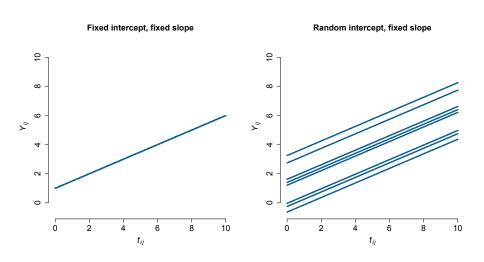
= $(\beta_0 + \gamma_{0i}) + \beta_1 t_{ij} + \epsilon_{ij}$

Random intercepts and slopes

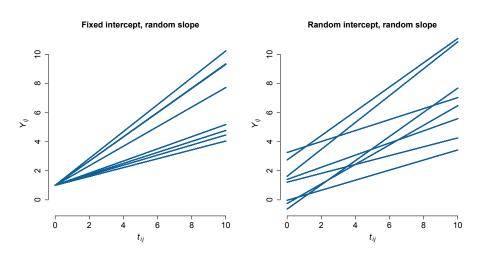
$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \gamma_{1i} t_{ij} + \epsilon_{ij}$$

= $(\beta_0 + \gamma_{0i}) + (\beta_1 + \gamma_{1i}) t_{ij} + \epsilon_{ij}$

Choices for random effects



Choices for random effects



Choices for random effects: G

G quantifies random variation in trajectories across subjects

$$G = \left[\begin{array}{cc} G_{11} & G_{12} \\ G_{21} & G_{22} \end{array} \right]$$

- $\sqrt{G_{11}}$ is the typical deviation in the **level** of the response
- $\sqrt{G_{22}}$ is the typical deviation in the **change** in the response
- G₁₂ is the covariance between subject-specific intercepts and slopes
 - G₁₂ = 0 indicates subject-specific intercepts and slopes are uncorrelated
 - $G_{12} > 0$ indicates subjects with **high level** have **high rate** of change
 - $G_{12} < 0$ indicates subjects with **high level** have **low rate** of change

$$(G_{12} = G_{21})$$

Generalized linear mixed-effects models

A GLMM is defined by random and systematic components

• Random: Conditional on γ_i the outcomes $Y_i = (Y_{i1}, \dots, Y_{im_i})^T$ are mutually independent and have an exponential family density

$$f(Y_{ij} \mid \beta^{\star}, \gamma_i, \phi) = \exp\{[Y_{ij}\theta_{ij} - \psi(\theta_{ij})]/\phi + c(Y_{ij}, \phi)\}$$

for $i=1,\ldots,n$ and $j=1,\ldots,m_i$ with a scale parameter $\phi>0$ and $\theta_{ij}\equiv\theta_{ij}(\beta^\star,\,\gamma_i)$

Generalized linear mixed-effects models

A GLMM is defined by random and systematic components

• Systematic: μ_{ij}^{\star} is modeled via a linear predictor containing fixed regression parameters β^{\star} common to all individuals in the population and subject-specific random effects γ_i with a known link function $g(\cdot)$

$$g(\mu_{ij}^{\star}) = x_{ij}\beta^{\star} + z_{ij}\gamma_{i} \Leftrightarrow \mu_{ij}^{\star} = g^{-1}(x_{ij}\beta^{\star} + z_{ij}\gamma_{i})$$

where the random effects γ_i are mutually independent with a common underlying multivariate distribution, typically assumed to be

$$\gamma_i \sim N_q(0, G)$$

so that G quantifies random variation across subjects

Likelihood-based estimation of β

Requires specification of a complete probability distribution for the data

 Likelihood-based methods are designed for fixed effects, so integrate over the assumed distribution for the random effects

$$\mathcal{L}_{Y}(\beta, \sigma, G) = \prod_{i=1}^{n} \int f_{Y|\gamma}(Y_{i} \mid \gamma_{i}, \beta, \sigma) \times f_{\gamma}(\gamma_{i} \mid G) d\gamma_{i}$$

where f_{γ} is typically the density function of a Normal random variable

- For linear models the required integration is straightforward because Y_i and γ_i are both normally distributed (easy to program)
- For non-linear models the integration is difficult and requires either approximation or numerical techniques (hard to program)

Likelihood-based estimation of β

Two likelihood-based approaches to estimation using a GLMM

- 1. **Conditional likelihood**: Treat the random effects as if they were fixed parameters and **eliminate** them by conditioning on their sufficient statistics; does not require a specified distribution for γ_i
 - xtreg and xtlogit with fe option in Stata
- 2. **Maximum likelihood**: Treat the random effects as unobserved nuisance variables and **integrate** over their assumed distribution to obtain the marginal likelihood for β ; typically assume $\gamma_i \sim N(0, G)$
 - xtreg and xtlogit with re option in Stata
 - mixed and melogit in Stata
 - ▶ lmer and glmer in R package lme4

'Fixed effects' versus 'random effects'

'Fixed-effects' approach provided by conditional likelihood estimation

- Comparisons are made within individuals who act as their own control and differences are averaged across all individuals in the sample
- Could eliminate potentially large sources of bias by controlling for all stable characteristics of the individuals under study (+)
- Variation across subjects is ignored, which could provide standard error estimates that are too big; conservative inference (-)
- Although controlled for by conditioning, cannot estimate coefficients for covariates that have no within-subject variation (-/+)

'Fixed effects' versus 'random effects'

'Random-effects' approach provided by maximum likelihood estimation

- Comparisons are based on within- and between-subject contrasts
- Requires a specified distribution for subject-specific effects; correct specification is required for valid likelihood-based inference (-/+)
- Do not control for unmeasured characteristics because random effects are almost always assumed to be uncorrelated with covariates (-)
- Can estimate effects of within- and between-subject covariates (+)

Assumptions

Valid inference from a linear mixed-effects model relies on

- **Mean model**: As with any regression model for an average outcome, need to correctly specify the functional form of $x_{ij}\beta$ (here also $z_{ij}\gamma_i$)
 - Included important covariates in the model
 - Correctly specified any transformations or interactions
- Covariance model: Correct covariance model (random-effects specification) is required for correct standard error estimates for $\hat{\beta}$
- **Normality**: Normality of ϵ_{ij} and γ_i is required for normal likelihood function to be the correct likelihood function for Y_{ij}
- n sufficiently large for asymptotic inference to be valid
- ★ These assumptions must be verified to evaluate any fitted model

Motivating example

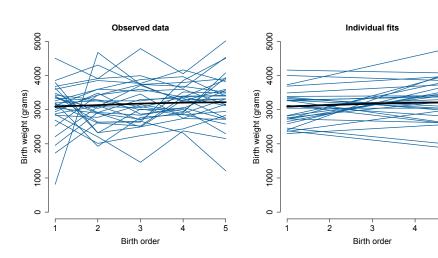
Interested in the association between birth order and birth weight

$$\begin{aligned} \mathsf{E}[Y_{ij} \mid x_{ij}, \, \gamma_i] &= \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \gamma_{0i} \\ \text{or} & \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \gamma_{0i} + \gamma_{1i} x_{ij1} \end{aligned}$$

for $i = 1, \dots, 200$ and $j = 1, \dots, 5$ with

- Yii: Infant birth weight (continuous)
- x_{ij1} : Infant birth order
- x_{ij2}: Mother's initial age

Motivating example



Motivating example: Stata commands

- * Declare the dataset to be "panel" data, grouped by momid
- * with time variable birthord xtset momid birthord
- * Fit a linear model with random intercepts xtmixed bweight birthord initage || momid:
- * Fit a linear model with random intercepts and slopes xtmixed bweight birthord initage || momid: birthord

Motivating example: Stata output

Mixed-effects REML regression Group variable: momid	Number of obs = 1000 Number of groups = 200
	Obs per group: min = 5 avg = 5.0 max = 5
Log restricted-likelihood = -7649.3763	Wald chi2(2) = 30.75 Prob > chi2 = 0.0000
bweight Coef. Std. Err. z	
birthord 46.608 9.951014 4.68 initage 26.73226 9.002678 2.97 _cons 2526.622 163.3387 15.47	0.000 27.10437 66.11163 0.003 9.08734 44.37719
Random-effects Parameters Estimate Std	. Err. [95% Conf. Interval]
	71804 314.5797 407.8139
sd(Residual) 445.0229 11.	13253 423.7298 467.386
LR test vs. linear regression: chibar2(01) =	

Motivating example: Stata output

Mixed-effects R Group variable:			f obs =			
				Obs per		= 5 = 5.0 = 5
Log restricted-	likelihood =	-7647.45			2(2) =	
bweight	Coef.					
birthord initage	46.608 27.06415 2520.799	10.41108 8.899505 161.1498	4.48 3.04 15.64	0.000 0.002 0.000	26.20265 9.621441 2204.952	67.01335 44.50686 2836.647
Random-effect		Est	imate S	td. Err.	[95% Conf	. Interval]
momid: Independ	ent sd(birthord) sd(_cons)	 49. 325	35226 1 .7759	3.57685 29.6488	28.78331 272.5532	84.62007 389.3916
	sd(Residual)) 438	.6626 1			
LR test vs. lin				= 213.05	Prob > chi	i2 = 0.0000

Motivating example: Comments

- Difference in mean birth weight between two populations of infants whose birth order differs by one is 46.6 grams, 95% CI: (27.0, 66.2)
- Agrees well with GEE point estimate and confidence interval
- $\sqrt{\hat{G}_{00}}=323$ indicates substantial variability across mothers in the initial level of infant birth weight; $\sqrt{\hat{G}_{11}}=49$ indicates substantial variability across mothers in the trend of birth weight over time
- **Note**: Typically can specify correlated intercepts and slopes, i.e. $G_{01} \neq 0$, but in this case the model would not converge
- There are options for formal statistical evaluation of two randomeffects specifications, but I generally do not recommend an inferential procedure in which a *p*-value tells you to use a simpler model
- Specification for the random effects should be guided by *a priori* scientific knowledge and exploratory data analysis

GLMM summary

- A GLMM is defined by a random component describing outcomes given subject-specific effects and a systematic component describing the conditional mean given subject-specific effects
- Conditional likelihood for 'fixed effects' eliminates subject-specific effects by conditioning on their sufficient statistics
- Maximum likelihood for 'random effects' integrates over the assumed distribution of the subject-specific effects
- Interpretation of parameter estimates depends on the assumed distribution for the outcome given the subject-specific effects and the specified structure for subject-specific effects

Issues

- GLMM requires that any missing data are missing at random
- Issues arise with time-dependent exposures and covariance weighting

Strategies for analysis of longitudinal data

- **Derived variable**: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. "change score") or regression coefficient, and use methods for independent data
 - ▶ Example: birth weight of 2nd child birth weight of 1st child
 - Might be adequate for two time points and no missing data
- Repeated measures: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation
 - ► **Generalized estimating equations** (GEE): A marginal model for the mean response and a model for longitudinal or cluster correlation

$$g(\mathsf{E}[Y_{ij} \mid x_{ij}]) = x_{ij}\beta$$
 and $\mathsf{Corr}[Y_{ij}, Y_{ij'}] = \rho(\alpha)$

► Generalized linear mixed-effects models (GLMM): A conditional model for the mean response given subject-specific random effects, which induce a (possibly hierarchical) correlation structure

$$g(E[Y_{ij} \mid x_{ij}, \gamma_i]) = x_{ij}\beta^* + z_{ij}\gamma_i$$

Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children's Health Study

Case study: Carpal tunnel syndrome

Summary and resources

Motivation and design

- Gregoire et al. (1996) published the results of an efficacy study on estrogen patches in treating postnatal depression
- 61 women with major depression, which began within 3 months of childbirth and persisted for up to 18 months postnatally, participated in a double-blind, placebo-controlled study
- Women were randomly assigned to active treatment (n = 34) or placebo (n = 27)
- Participants attended clinics monthly and at each visit self-ratings of depressive symptoms on the Edinburgh postnatal depression scale (EPDS) were measured
- EPDS is a standardized, validated, self-rating scale consisting of 10 items, each rated on a 4-point scale of 0-3
- **Goal**: Investigate the antidepressant efficacy of treatment with estrogen over time

Data

- Depression scores are assessed across m=7 months for the n=61 subjects in the study
- Depression scores for visit j are the longitudinal components measured on subject i

	+								
	subj	group	dep0	dep1	dep2	dep3	dep4	dep5	dep6
1.	1	placebo	18	17	18	15	17	14	15
2.	2	placebo	27	26	23	18	17	12	10
3.	3	placebo	16	17	14				
4.	4	placebo	17	14	23	17	13	12	12
5.	J 5	placebo	15	12	10	8	4	5	5
6.	6	placebo	20	19	11.54	9	8	6.82	5.05
7.	7	placebo	16	13	13	9	7	8	7
8.	8	placebo	28	26	27				
9.	9	placebo	28	26	24	19	13.94	11	9
10.	10	placebo	25	9	12	15	12	13	20

- "Wide" form: A row for each subject
- Note that there are some missing data due to drop-out

Exploratory analyses

- 1. Summarize the depression scores by visit and treatment group
- 2. Examine within-person correlations among depression scores, graphically and numerically
- 3. Graph depression scores over time, by treatment group; include a lowess line (smoother) for each group to summarize trends
- 4. Plot individual trajectories by treatment group

Regression analyses

- 5. Consider collapsing the longitudinal series for each subject into a summary statistic between the baseline and sixth depression scores. Use methods for independent data to evaluate the association between change in depression scores and estrogen treatment
- Reshape the data into long form and evaluate longitudinal associations between depression scores and treatment using GEE
 - Use visit as a linear variable
 - Use visit as a categorical variable
 - Evaluate whether the treatment effect varies over time

Reshape the data

Recall what the data look like in wide form

	s	ubj 	group	dep0	dep1	dep2	dep3	dep4	dep5	dep6
1.	i	1	placebo	18	17	18	15	17	14	15
2.	1	2	placebo	27	26	23	18	17	12	10
3.	1	3	placebo	16	17	14				. 1
4.	1	4	placebo	17	14	23	17	13	12	12
5.	1	5	placebo	15	12	10	8	4	5	5 I

For some analyses, reshape the data from wide form to long form

```
. reshape long dep, i(subj) j(visit) (note: j = 0 1 2 3 4 5 6)
```

Data	wide	->	long
Number of obs. Number of variables j variable (7 values) xij variables:	61 9	-> -> ->	427 4 visit
dep0 dep1	dep6	->	dep

Reshape the data

"Long" form: A row for each observation

	+				+
	s	ubj	visit	group	dep
1.	1	1	0	placebo	18
2.	1	1	1	placebo	17
3.	1	1	2	placebo	18
4.	1	1	3	placebo	15
5.	1	1	4	placebo	17
6.	1	1	5	placebo	14
7.	1	1	6	placebo	15
8.	1	2	0	placebo	27
9.	1	2	1	placebo	26
10.	1	2	2	placebo	23

Answers

Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children's Health Study

Case study: Carpal tunnel syndrome

Summary and resources

Indonesian Children's Health Study (ICHS)

- Determine the effects of vitamin A deficiency in preschool children
- n = 275 children examined for respiratory infection at up to 6 visits
- Xerophthalmia is an ocular manifestation of vitamin A deficiency
- Goal: Evaluate association between vitamin A deficiency and risk of respiratory infection

				A	Age (y	ears)			
Xerophthalmia	Infection	0	1	2	3	4	5	6	7
No	No	77	229	154	196	176	143	65	5
No	Yes	8	30	30	15	9	7	1	0
Yes	No	0	1	9	10	15	8	4	1
Yes	Yes	0	0	4	3	0	0	0	0

Data

. list id age time infection xerop gender hfora cost sint

	+-									
	1	id	age	time	infect~n	xerop	gender	hfora	cost	sint
1.	1-	121013	31	1	0		0	 -3	-1	0
2.	1	121013	34	2	0	0	0	-3	=	-1
3.	-	121013	37	3	0	0	0	-2	1	-1
4.	-	121013	40	4	0	0	0	-2	0	1
5.	-	121013	43	5	0	0	0	-2 -2	-1	0
5.	-		43	5	1	U	U	-2	-1	U
6.	- 1-	121013	46	6	0		0	-3	0	-1
7.		121113	-9	1	0	0	1	2	-1	0
8.		121113	-6	2	0	0	1	0	0	-1
9.		121113	-3	3	0	0	1	-1	1	0
10.		121113	0	4	0	0	1	-2	0	1
	i-									
11.	i.	121113	3	5	1	0	1	-3	-1	0
12.	Ĺ	121113	6	6	0	0	1	-3	0	-1
13.	Ĺ	121114	-26	1	0	0	0	8	-1	0
14.	Ĺ	121114	-23	2	0	0	0	5	0	-1
15.	Ĺ	121114	-20	3	0	0	0	3	1	0
	i-									
16.	Ĺ	121114	-17	4	1	0	0	0	0	1
17.	Ĺ	121114	-14	5	1	0	0	0	-1	0
18.	Ĺ	121114	-11	6	0	0	0	0	0	-1

Multiple records per person, with age in months, centered at 36 months, and time indicating visit number

Exploratory analyses

- 1. Plot vitamin A deficiency and infection status, by age, for a sample of individuals
- 2. Plot percent with respiratory infection versus age, by presence or absence of vitamin A deficiency
- 3. Explore correlation structure by visit number, and calculate percent with respiratory infection at each visit

Regression analyses

- 4. Evaluate the association between respiratory infection and vitamin A deficiency using an ordinary logistic regression model
- 5. Use GEE to estimate the population-averaged odds ratio for respiratory infection, comparing those with vitamin A deficiency to those without, given equivalent values of other covariates. Explore multiple specifications of working correlation
- 6. Use GLMM to estimate the conditional odds ratio for respiratory infection, comparing a typical individual with vitamin A deficiency to a typical individual without, given equivalent values of other covariates. Estimate the variability in the probability of respiratory infection across individuals

Answers

Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children's Health Study

Case study: Carpal tunnel syndrome

Summary and resources

Carpal tunnel syndrome trial

- Jarvik et al. (2009) compared surgical versus non-surgical treatment for carpal tunnel syndrome (CTS)
- 116 participants were randomized
- Outcomes were assessed using the CTS assessment questionnaire (CTSAQ), every 3 months for 12 months
 - ▶ Primary: functional status (low values are favorable)
 - Secondary: symptom severity
- Crossover to surgery was allowed after 3 months
- Goal: Determine whether surgery improves functional status

Data (wide format)

. list ID idgroup treatassign surgical ctsaqf0 ctsaqf1 ctsaqf2 ctsaqf3 ctsaqf4

						~		TD	- 1
ctsaqf	ctsaq13	ctsaq12	ctsaqf1	ctsaq10	surgical	treata~n	idgroup	ID	
2.88888	1.333333	1.888889	1.666667	1.888889	3	0	2	11050	. i
	3.777778	4.222222	4.111111	4	0	0	2	11068	.
	1	1.222222	1.571429	2	1	1	2	11071	.
2.33333	2.5	2.125	1.5	1.375	0	0	2	11078	.
	1.777778	1	2.111111	3.222222	1	1	2	11086	.
									-!
1.22222	1.222222	1.555556	1.333333	2.555556	1	1	2	11087	
	1.333333	1.444444	1.555556	2	4	0	2	11098	
		2.888889		2.875	1	1	2	11117	
2.7	2.75	3.25	2.75	3.125	1	1	4	12001	.
1.88888	3.333333	4.555555	4.333333	3.777778	3	0	4	12004	٠ إ
1.66666	1	1	1	2	1	1	4	12049	. 1
2.44444	2.333333	2.333333	3.333333	2.444444	0	1	4	12068	
4.22222	3.777778		4.222222	2.888889	0	0	4	12093	
	1	1	1.444444	2.888889	1	1	4	12143	
2.22222			3.25	3	1	0	4	12153	
									i
		-	3.777778	4.555555	1	1	4	12177	.
	1.333333	1.111111	1.222222	2	0	1	3	13001	.
	1	1.444444	1.333333	2.333333	1	1	3	13002	.
1.55555	1.444444	1.777778	1.666667	1.888889	1	0	3	13005	.
	2	1.777778	2.333333	3.111111	1	1	3	13006	. 1

--more--

Variables

- ID: unique participant ID
- idgroup: study site
 (1 = private, 2 = UW, 3 = VA, 4 = HMC)
- age: age in years
- gender (0 = male, 1 = female)
- treatassign: randomized intervention (0 = non-surgery, 1 = surgery)
- surgreported#: surgery reported at visit #
 (0 = no, 1 = yes)
- ctsaqf#: CTSAQ functional status at visit #
- ullet ctsaqs#: CTSAQ symptom severity at visit #
- surgical: treated surgically during study (0 = never, 1 = 0-3 mos, 2 = 3-6 mos, 3 = 6-9 mos, 4 = 9-12 mos)

Exploratory analyses

- 1. Plot individual trajectories in CTSAQF over time by treatment
- 2. Plot average CTSAQF over time by treatment
- 3. Summarize means, variances, and correlations over time by treatment

Regression analyses (intention-to-treat)

- 4. Evaluate POST, CHANGE, and ANCOVA models for each timepoint with CTSAQF as outcome
 - ▶ POST: follow-up measurement only
 - ► CHANGE: difference between follow-up and baseline measurement
 - ▶ ANCOVA: follow-up measurement controlling for baseline
- 5. Evaluate difference in mean CTSAQF between treatments at 12 months, adjusted for baseline CTSAQF and study site
- Using repeated measures regression models, evaluate difference in mean CTSAQF between treatments using all timepoints, adjusted for baseline CTSAQF and study site

Bonus analyses (as treated)

- 7. Summarize actual treatment patterns by assigned treatment group
- 8. Plot average CTSAQF by visit...
 - ▶ For those who received surgery by 3 months versus those who did not
 - ▶ For those who received surgery by 9 months versus those who did not
- Use linear mixed-effects models to estimate differences in mean CTSAQF when exposure is surgery by 3 months and surgery by 9 months instead of assigned treatment group

Answers

Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children's Health Study

Case study: Carpal tunnel syndrome

Summary and resources

Big picture: GEE

- Marginal mean regression model
- Model for longitudinal correlation
- Semi-parametric model: mean + correlation
- Form an unbiased estimating function
- Estimates obtained as solution to estimating equation
- Model-based or empirical variance estimator
- Robust to correlation model mis-specification
- Large sample: $n \ge 40$
- Testing with Wald tests
- Marginal or population-averaged inference
- Efficiency of non-independence correlation structures
- Missing completely at random (MCAR)
- Time-dependent covariates and endogeneity
- Only one source of positive or negative correlation
- R package geepack; Stata command xtgee

Big picture: GLMM

- Conditional mean regression model
- Model for population heterogeneity
- Subject-specific random effects induce a correlation structure
- Fully parametric model based on exponential family density
- Estimates obtained from likelihood function
- Conditional (fixed effects) and maximum (random effects) likelihood
- \bullet Approximation or numerical integration to integrate out γ
- Requires correct parametric model specification
- Testing with likelihood ratio and Wald tests
- Conditional or subject-specific inference
- Induced marginal mean structure and 'attenuation'
- Missing at random (MAR)
- Time-dependent covariates and endogeneity
- Multiple sources of positive correlation
- R package lme4; Stata commands mixed, melogit

Final summary

Generalized estimating equations

- Provide valid estimates and standard errors for regression parameters of interest even if the correlation model is incorrectly specified (+)
- ullet Empirical variance estimator requires sufficiently large sample size (-)
- Always provide population-averaged inference regardless of the outcome distribution; ignores subject-level heterogeneity (+/-)
- Accommodate only one source of correlation (-/+)
- ullet Require that any missing data are missing completely at random (-)

Final summary

Generalized linear mixed-effects models

- Provide valid estimates and standard errors for regression parameters only under stringent model assumptions that must be verified (-)
- Provide population-averaged or subject-specific inference depending on the outcome distribution and specified random effects (+/-)
- Accommodate multiple sources of correlation (+/-)
- Require that any missing data are missing at random (-/+)

Advice

- Analysis of longitudinal data is often complex and difficult
- You now have versatile methods of analysis at your disposal
- Each of the methods you have learned has strengths and weaknesses
- Do not be afraid to apply different methods as appropriate
- Statistical modeling should be informed by exploratory analyses
- Always be mindful of the scientific question(s) of interest

Resources

Introductory

- Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
 Wiley, 2004.
- Gelman A, Hill J. Data Analysis Using Regression and Multilevel/ Hierarchical Models. Cambridge University Press, 2007.
- Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

- Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal Data, 2nd Edition. Oxford University Press, 2002.
- Molenbergs G, Verbeke G. *Models for Discrete Longitudinal Data*. Springer Series in Statistics, 2006.
- Verbeke G, Molenbergs G. *Linear Mixed Models for Longitudinal Data*. Springer Series in Statistics, 2000.

Thank you!