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SNPs. Our results demonstrate the utilty of Bayesian methods in
application in small, etiologically driven investigations.
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do not border the river. A secondary analysis of the 28
Appalachian counties from Ohio’s 88 counties included in
the 2008 Ohio Family Health Survey was conducted using
a Bayesian Hierarchical Modeling strategy. Descriptive
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Then, we adopted a Bayesian, hierarchical, random-effects
model to integrate site-specific and clinical trial data. We ap-
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Bayesian Logistic Injury Severity Score:
A Method for Predicting Mortality Using
International Classification of Disease-9 Codes

Randall S. Burd, MD, PhD, Ming Ouyang, PhD, David Madigan, PhD

Methods: The authors used Bayesian logistic regression to train and test models for predicting mortality
based on injury ICD-9 codes (2,210 codes) and injury codes with two-way interactions (243,037 codes
and interactions) using data from the National Trauma Data Bank (NTDB). They evaluated discrimination
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Bayesian Estimation of Disease Prevalence and the Parameters of
Diagnostic Tests in the Absence of a Gold Standard

Lawrence Joseph,' Theresa W. Gyorkos,'?* and Louis Coupal®?

It is common in population screening surveys or in the investigation of new diagnostic tests to have results
from one or more tests investigating the same condition or disease, none of which can be considered a gold
standard. For example, two methods often used in population-based surveys for estimating the prevalence of
a parasitic or other infection are stool examinations and serologic testing. However, it is known that results
from stool examinations generally underestimate the prevalence, while serology generally results in overesti-
mation. Using a Bayesian approach, simultaneous inferences about the population prevalence and the
sensitivity, speclficity, and positive and negative predictive values of each diagnostic test are possible. The
methods presented here can be applied to each test separately or to two or more tests combined. Marginal
posterior densities of all parameters are estimated using the Gibbs sampler. The techniques are applied to the
estimation of the prevalence of Strongyloides infection and to the investigation of the diagnostic test properties
of stool examinations and serologic testing, using data from a survey of all Cambodian refugees who arrived
in Montreal, Canada, during an 8-month period. Am J Epidemiol 1995;141:263-72.

Bayes theorem; diagnostic tests, routine; epidemiologic methods; models, statistical; Monte Carlo method;

prevalence; sensitivity and specificity
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Causal Agent

The de (roundworm) Str loides stercoralis. Other Strongyloides include S. fiilleborni, @ sTUDY

which infects chimpanzees and baboons and may produce limited infections in humans.
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TABLE 1. Results of serologic and stool testing for
Strongyfoides Infection on 162 Cambodian refugees arriving In
Montreal, Canada, between July 1882 and February 1883

Stool examination

+ -
+ 38 87 125
Serology
- 2 35 37

40 122 162

= Goals:

= Estimate disease prevalence

= Estimate sensitivity and
specificity of each individual
test

= Estimate sensitivity and
specificity of the combined
tests

= Challenge:

= No GOLD STANDARD
evaluated in the study!




Additional Information

lack of a gold standard for the detection of most
parasitic infections means that the properties of these
tests are not known with high accuracy. In consulta-
tion with a panel of experts from the McGill Centre for
Tropical Diseases, we determined equally tailed 95
percent probability intervals (i.e., 2.5 percent in each
tail) for the sensitivity and specificity of each test (see
table 5). These were derived from a review of the
relevant literature and clinical opinion (21-28).

CASE) stuoy

i Bayesian Methods

“the explicit quantitative use of external evidence
in the design, monitoring, analysis, interpretation
and reporting of a health-care evaluation”

(Spiegelhalter, Abrams, Myles, 2004)
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Statistical Science
1990, Vol. 5, No. 3, 269-298

Biostatistics and Bayes

Norman Breslow

Abstract. Attitudes of biostatisticians toward implementation of the Bayes-
ian paradigm have changed during the past decade due to the increased
availability of computational tools for realistic problems. Empirical Bayes’
methods, already widely used in the analysis of longitudinal data, promise
to improve cancer incidence maps by accounting for overdispersion and
spatial correlation. Hierarchical Bayes’ methods offer a natural framework
in which to demonstrate the bioequivalence of pharmacologic compounds.
Their use for quantitative risk assessment and carcinogenesis bioassay is
more controversial, however, due to uncertainty regarding specification of
informative priors. Bayesian methods simplify the analysis of data from
sequential clinical trials and avoid certain paradoxes of frequentist infer-
ence. They offer a natural setting for the synthesis of expert opinion in
deciding policy matters. Both frequentist and Bayes’ methods have a place
in biostatistical practice.

Message is out!

- Science

- The Economist Baye
- The New York Times
Adding Art to the
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(Arts & Ideas Section)

Application Areas include
» Medicine

» Genetics

» Pharmacology

+ Epidemiology
 Health services

» Environmental sciences

And increasing due to modeling flexibility, computational resources, etc...




Bayesian Software

(Disclaimer: Not intended to provide a complete list of available Bayesian software)

O GS/Winbugs/Openbugs/JAGS (complex models using MCMC methods)
= BOA/CODA (convergence diagnostics and output analysis)

= BRCAPRO (genetic counseling of women at risk for breast and ovarian cancer)

R-Packages:
= http://cran.r-project.org/web/views/Bayesian.html

5

= Download Rstudio: https://www.rstudio.com/products/Rstudio/ A

= Download and install R in your computer: http://cran.fhcrc.org/
Within R session:
= Install packages with
= install.packages(“mypackage”)
= Load library with
= library(mypackage)

Primary packages we will use

LearnBayes

= INLA

=« Download at: http://www.r-inla.org/download
install.packages("INLA", repos=https://www.math.ntnu.no/inla/R/stable)
library(INLA)

= arm
rjags (alternative choices R2jags, runjags)

10
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* Basic Concepts/Review

+ Probability & Interpretation

+ Random Variables

+ Likelihood Function

+ Traditional Approach to Inference

* Diagnostic Testing

= In the presence of a “gold standard”
= Consider a new diagnostic test

Disease No Disease
-y . a b
Positive (true positives) | (false positives)
Test
- C d
Negative | (false negatives) | (true negatives)
= Events:

= A: {test positive}
= B: {disease} —P(B): disease prevalence

12




Disease No Disease

. . . itive a b
iDlagnostlc Testing Test O
Negative c d

= Sensitivity: the ability of the test to identify correctly those
who have the disease among all individuals with the disease

Sensitivity : P(A1 B) = <

a+c

= Specificity: the ability of the test to identify correctly those
who do not have the disease among those free from the disease

o d
Specificity : P(A° | B) =
pecificity : P( ) o d

= These are test characteristics.

13

Disease  No Disease

H ; - sitive a b
i Diagnostic Testing Test
Negative c d

= Positive predictive value (PPV): The proportion of patients
have the disease among those who tested positive

PPV :P(BlA)= 2

a+b

= Negative predictive value (NPV): The proportion of patients
are actually free of the disease among those who tested
negative

d
c+d

NPV : P(B° | A) =

14




Interpretations of Probability

= Classical: If an event can occur in N mutually exclusive and equally likely ways,
and if m of these possess a characteristic of interest, A, the probability of the
occurrence of E is P(E) = m/N. P
Example: Flip a coin. @
What is the probability of getting a head? %E&

= Frequentist: If some experiment is repeated a large number of times n and if
some resulting event with the characteristic E occurs m times, the relative
frequency of occurrence of E is approximately equal to the probability of E, that
is, P(E) = m/n

Example: Around 1900, Karl - : —
Pearson tossed a coin 24,000
times and recorded 12,012
heads, giving a proportion

of 0.5005.

probability of heads
0

O s00 1000

Interpretations of Probability: Subjective

= Your degree of uncertainty.

Example: Will you pass a class?

You will take the class (hopefully!) only once;
even if you retake the class next year, you won't be
taking it under the same conditions! You'll have a different
instructor, a different set of courses, and possibly different
working conditions!

16




Diagnostic Testing

= A new HIV test is known to have 95% sensitivity and
98% specificity. In a population with HIV prevalence of
1/1000, what is the probability that someone testing
positive (event A) actually has HIV (event B)?
Prevalence = 1/1000
Sensitivity = P(A|B) = 0.95
Specificity = P(A¢|B¢) = 0.98 = 1-P(A|B) = 1-False Positive

17

* Diagnostic Testing

P(A|B)=0.95

0.00095

P(B)=0.001
P(Ac|B)=0.05

0.00005
0.01998
P(A|B%)=0.02
P(B)=0.999
P(Ac|B)=0.98 0.97902

Conditional on positive test result:

PPV= 0.00095/(0.0095+0.01998)=0.045 18




Diagnostic Testing

= A new HIV test is known to have 95% sensitivity and
98% specificity. In a population with HIV prevalence of
1/1000, what is the probability that someone testing
positive (event A) actually has HIV (event B)?
Prevalence = 1/1000
Sensitivity = P(A|B) = 0.95
Specificity = P(A¢|B¢) = 0.98 = 1-P(A|B) = 1-False Positive

P(AIB)P(B) Bayes
P(AIB)P(B)+ P(AIB)P(B*)  Rue
~ 0.95x%0.001 _ 0.00095
T 0.95%x0.001+0.02x0.999 0.02093

P(BIA)=

0.045

Positive Predictive Value 19

i Diagnostic Testing

= A new HIV test is known to have 95% sensitivity and
98% specificity. In a population with HIV prevalence of
1/100, what is the probability that someone testing
positive (event A) actually has HIV (event B)?
Prevalence = 1/100
Sensitivity = P(A|B) = 0.95
Specificity = P(A|B) = 0.98 = 1-P(A|B¢)

P(BI A)= PAIBPB) sy
P(A1B)P(B)+ P(A| B )P(B°)
0.95%0.01

T 0.95%001+0.02x099

0.324

Positive Predictive Value 20




Diagnostic Testing

= Question: How should the test result change our belief about
the probability of disease?

= Our intuition is poor when processing probabilistic evidence, i.e., when
updating our probability in the presence of new evidence. Bayes rule
shows exactly how to do this!

= The disease prevalence (0.001) can be thought of as our prior
probability that the individual has the disease.

= Observing a positive result (i.e. data) changes this probability to 0.045
for the tested individual. This is our updated or posterior probability
that the individual has the disease.

= The posterior probability depends on the test’s operating characteristics
(e.g. sensitivity/specificity, test results and prevalence).

21

Diagnostic Testing

= Questions:

= Having observed a positive test result for a subject, what is
the probability that the next subject also has a positive test
result?

= How would the new test result change the current belief
about the probability of disease?

Guiding principle: Today’s posterior is tomorrow’s prior!

B P(A|B)P(B)

" P(AIB)P(B)+ P(A| B )P(B°)

) 0.95%0.045 _0.04275 _ o,
0.95x0.045+0.02x(1-0.045) 0.06185

P(BIA)

22




What is a probability model?

= Random variable:

= “Rule” that assigns a “value” to each point of the sample
space

Example X 1, if subject has disease

0, otherwise

S

= Probability model (of a random variable):

= Defines what values the variable can take and how to assign
probabilities to those values.
Example: X ~ Bernoulli(p); p is the probability of disease

23
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What is a likelihood function?

= A likelihood function (or simply the likelihood) is a
function of the parameters of a probability model given
the outcomes.

= The likelihood of 8, given outcome vy, is equal to the
probability of that observed outcome given 6.

25

iWhat is a likelihood function?

= Bernoulli model:

= Random variable Y takes on two possible values: 0 or 1
« P(Y=1]6) = B,
= P(Y=0|0) = 1-6, where 6 is a number in [0,1]

» Likelihood function based on a Bernoulli observation:

= Given that y=1, the likelihood function of 6 is:
L(B]y=1) = P(Y=1]6)=6

= Given that y=0, the likelihood function of 6 is:

L(8]y=0) = P(Y=1|8)=1-8

D
9




iWhat is a likelihood function?

= Binomial Model

= Test results in a random sample of 10 disease subjects: (0,
1,0,0,0,1,0,0,0,1)

= Probability model for number of positive tests:
= Y ~ Binomial(10, ©)

6=0.1 °] 6=0.5

27

What is a likelihood function?

= Likelihood function: L(@|y)=( 10 )33(1_3)7
3

0.25
|

What is the value of
0 that maximizes the
likelihood?

Likelihood
0.15 0.20
I I

0.10
|

0.05
|

0.00
|




iTraditional Approach to Inference

Under certain regularity conditions and for large samples:

éMLE ~ N(e,l_l(e)), where 1(0) = E,, [_

0> log L(61y)
06°

$/

29
* Traditional Approach to Inference
< w0
S S /\n=10,6=0.5
°
2 =
2
o o
s
°
24
S 2 |
S
Sampling Distribution s 4 8 |
e T T T
(Binomial and 0 2 4 6 8 10 0 2 4 6 8 10
Normal Approximation)
N n=100,6=0.1 § b n=100,6=0.5
S
2 g
S 5
8 ]
e =<
g | ch
s
<
= 8
s | S
S
8 4 8 J
° T S T T 30
] 20 40 60 80 100 0 20 40 60 80 100




Traditional Approach to Inference

> binom.test(3,10,p=0.5)

Exact binomial test
data: 3 and 10
number of successes = 3, number of trials = 10, p-value = 0.3438
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.06673951 0.65245285

. - sample estimates:
Ho: 8=05 probability of success
0.3
Hi: 8 0.5

> prop.test(3,10,p=0.5)
1-sample proportions test with continuity correction
data: 3 out of 10, null probability 0.5
X-squared = 0.9, df = 1, p-value = 0.3428
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.08094782 0.64632928
sample estimates:

p
0.3

31

Traditional Approach to Inference

= P-value interpretation?

= Under the null hypothesis, the probability of observing an
equal or more extreme number of test results is 34%.

= It is not the probability of the null hypothesis!

= Confidence interval interpretation?

= The confidence interval gives values of the population
parameter for which the observed sample proportion is not
statistically significant at the 5% level

» It does not give us the probability that the true parameter
lies between the boundaries of the interval!

32
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Bayesian Approach to Inference

Overview

Prior Elicitation

Prior Distributions

Introduction to Bayesian Computation

* & o o

*Overview of the Bayesian approach

= Began with the work by
Thomas Bayes who, in
1763, formalized what is
now called Bayes Theorem.

P(AIB)x P(B)
P(A)
where: P(A)=P(AIB)P(B)+P(AIB°)P(B°)

P(BIA)=

34




Example: Diagnostic testing

= Data = Result of test
= Parameter = True disease status

= Prevalence = PRIOR PROB. OF DISEASE

Sensitivity =» LIKELIHOOD of disease given positive test
= Specificity = LIKELIHOOD pf no disease given negative test

Model

P(A|B)x P(B)
P(A)

Bayes Theorem P(BlA)=
v

= Positive Predictive Value =» POSTERIOR PROB. OF DISEASE
GIVEN POSITIVE TEST

= Negative Predictive Value »POSTERIOR PROB. OF NO DISEASE
GIVEN NEGATIVE TEST

35

Overview of the Bayesian approach

Moving towards a generic formulation:
= Goal: learning about an unknown parameter 6 (possibly a vector)
= 0 = true disease status
= 0 = hazard ratio
= 0 = probability that experimental treatment is better
= 0 = vector of regression coefficients

= 0 = missing data
= etc...
= Data: y (e.g. test result)
= Input of analysis:
= Prior distribution: P(6)
= Probability Model: P(y|0) -
= Likelihood Function: L(6]y) = P(y|8) |
= Output of analysis: 02 04 08
= Posterior distribution: Parameter

Probabily density

PO1Y)=

36




Overview of the Bayesian approach

= Inferences based on summaries of the posterior
distribution

= Point estimates:
=« Mean/Median/Mode
= Interval estimates:
= One-sided credible intervals
=« Two-sided credible intervals
Equi-tail area
Narrowest interval
[HPD: highest posterior density intervals]

Choices of summary measures justified with loss functions
[decision theory].

37

Prior Distributions

= Quantifiable (prior) beliefs exist in medicine

= “... it is generally unrealistic to hope for large treatment
effects...”

« "... it might be reasonable to hope that a new treatment for
acute stroke or acute myocardial infarction could reduce
recurrent stroke or death rates in hospital from 10% to 9%
or 8%, but not to hope that it could halve in-hospital
mortality”

(Peto and Baigent, 1998, BMJ)

38




Prior Distributions

= Key role in Bayesian analysis

= Choice of priors is based on judgments and a degree of
subjectivity cannot be avoided
= Prior is not unique!

= Sensitivity analysis is crucial in assessing the impact of
particular distributions on the conclusions.

= Can we turn informal prior knowledge into a
mathematical prior distribution? How? 5

@smuv
f Childhood Polyarteritis nodosa

PLoS One. 2015 Mar 30;10(3):e0120981. doi: 10.1371/journal.pone.0120981. eCollection 2015.

Elicitation of expert prior opinion: application to the MYPAN trial in childhood polyarteritis
nodosa.

Hampson LV, Whitehead J', Eleftheriou D2, Tudur-Smith C3, Jones R*, Jayne D®, Hickey H, Beresford MW/, Bracaglia C8,

Caldas A9, Cimaz R’O, Dehoorne J“, Dolezalova P12, Friswell M13, Jelusic M“, Marks SD15, Martin N’a, McMahon AM", Peitz
J'8, van Royen-Kerkhof A9, Soylemezoglu 02°, Brogan PAZ.

+ Author information

Abstract

OBJECTIVES: Definitive sample sizes for clinical trials in rare diseases are usually infeasible. Bayesian methodology
can be used to maximise what is learnt from clinical trials in these circumstances. We elicited expert prior opinion for a
future Bayesian randomised controlled trial for a rare inflammatory paediatric disease, polyarteritis nodosa (MYPAN,
Mycophenolate mofetil for polyarteritis nodosa).

METHODS: A Bayesian prior elicitation meeting was convened. Opinion was sought on the probability that a patient in
the MYPAN trial treated with cyclophosphamide would achieve disease remission within 6-months, and on the relative
efficacies of mycophenolate mofetil and cyclophosphamide. Expert opinion was combined with previously unseen data
from a recently completed randomised controlled trial in ANCA associated vasculitis.

RESULTS: A pan-European group of fifteen experts participated in the elicitation meeting. Consensus expert prior
opinion was that the most likely rates of disease remission within 6 months on cyclophosphamide or mycophenolate
mofetil were 74% and 71%, respectively. This prior opinion will now be taken forward and will be modified to formulate a
Bayesian posterior opinion once the MYPAN trial data from 40 patients randomised 1:1 to either CYC or MMF become
available.

CONCLUSIONS: We suggest that the methodological template we propose could be applied to trial design for other rare
diseases.




ow diagram illustrating the sequence of activities undertaken during the MYPAN prior elicitation
@‘ STUDY meeting and the time allocated to each activity.

, Presentation of Bayesian statistics covering: interpretation of prior
densities, using Bayes theorem to update priors with data, interpretation Day 1: 1 hour

of posterior densities. Presentation followed by practice elicitation
exercise,

|Plesenl.'nmnreviewmgeviﬂ:m:eVnrcungnluealmenlmﬂmnsAnPAN.Sel | Oay 1: 1 hour

I

out the objectives of the elicitation meeting.

"

Formal elicitation exercise: Individual completion of a questionnaire on Day 1: 1 hour
MVYPAN parameters followed by one-to-one meetings with statistical
facilitators.

“

Presentation of individuals’ priors followed by structured group Day 1: 1.5 hours
discussion.
Continued in

Day 2: 0.5 hours
for parameters, Presentation of consensus priors.
Presentation of the design and conduct of the MYCYC trial (but not the Day 2: 0.5 hours
results)
Individual of the rel the
MYCYC data. Discussion to answers to Day 2: 0.5 hours
Presentation of results of the MYCYC trial.

Day 2: 0.5 hours

"

Assess face validity of Day 1 consensus prior distributions updated to
include consideration of the MYCYC data. Consider potential changes to Day 2: 1 hour
opinions due to trials of different sizes.

Hampson LV, Whitehead J, Eleftheriou D, Tudur-Smith C, Jones R, et al. (2015) Elicitation of Expert Prior Opinion: Applicati $he MYPAN Tgal
in Childhood Polyarteritis Nodosa. PLoS ONE 10(3): e0120981. doi:10.1371/journal.pone.0120981 - . s | ONE
Pt

http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0120981 .

@\ STUDY

/

S1 File: Structured questionnaire designed to systematically ascertain prior opinion regarding
outcomes for treatment with CYC and MMF

NAME:

Before any data are observed, please answer the following questions to specify your
prior distributions.

Mark on the scales below your answers to the following questions (to the nearest 0.05).




@STUDV
Questionnaire

= Q1: What do you think the 6-month remission rate for children with PAN treated
with cyclophosphamide (CYC) in combination with corticosteroids (steroids) is?

= Q2: Provide a proportion such that you are 75% sure that the true 6-month
remission rate on CYC/steroids exceeds this value.

Because of the unpleasant side-effects of CYC, mycophenolate mofetil (MMF) might be

considered the preferable treatment even if it is associated with a somewhat lower 6-

month remission rate:

= Q3: What is the chance that the 6-month remission rate on MMF/steroids is higher
than that on CYC/steroids?

= Q4: What is the chance that the 6-month remission rate on CYC/steroids exceeds
that on MMF/steroids by more than 10%?

Please answer the following questions which will allow us to check the adequacy of your

fitted prior distributions.

=  Q5: What do you think the 6-month remission rate on MMF/steroids is?

= Q6: Provide a proportion such that you are 75% sure that the true 6-month
remission rate on MMF/steroids exceeds this value.

43
m S1 Table: Individual experts’ final answers to Q1-Q4 and consensus answers agreed by the
CASE stuov  group before results from the MYCYC trial were revealed
Expert Q1 Q2 Q3 Q4
* 1 0.65 0.45 0.63 0.05
2 0.85 0.60 0.35 0.20
3 0.80 0.55 0.10 0.50
4 0.85 0.65 0.20 0.40
5 0.70 0.60 0.20 0.20
6 0.80 0.80 0.15 0.10
7 0.75 0.50 0.10 0.15
8 0.75 0.55 0.30 0.20
9 0.70 0.60 0.20 0.10
10 0.70 0.60 0.25 0.25
11 0.75 0.55 0.30 0.20
12 0.70 0.50 0.10 0.30
13 0.75 0.40 0.20 0.15
14 0.80 0.55 0.20 0.35
15 0.80 0.60 0.20 0.30
Mean 0.76 0.57 0.23 0.23
Median 0.75 0.55 0.20 0.20
Consensus values”  0.70 0.50 0.30 0.30
Q1: What do you think the 6-month remission rate for children with PAN treated with
cyclophosphamide (CYC) in combination with corticosteroids (steroids) is?
Q2: Provide a proportion such that you are 75% sure that the true 6-month remission rate on
CYC/steroids exceeds this value.
Q3: What is the chance that the 6-month remission rate on MMF/steroids is higher than that
on CYC/steroids?
Q4: What is the chance that the 6-month remission rate on CYC/steroids exceeds that on 4

MDMF/steroids by more than 10%?




= Consensus to (Q3, Q4) determined similarly

= Experts votes between the following pairs of answers: (0.3, 0.3) and (0.3,
0.35) received 12 (80%) and 3 (20%) votes, respectively.

C =

= Consensus to questions determined by vote.
= Experts voted for the pair of answers to (Q1, Q2) which they thought best

= Votes cast between pairs of answers (0.7, 0.5) and (0.75, 0.55), received 10
(67%) and 4 (27%) votes, respectively; one expert abstained.

= Consensus answers were those voted for by the majority as reflecting their

@ STUDY

Consensus Prior

reflected their prior opinion for pe.

opinion.

45

(A‘SB STUDY
;'_Fig 1. Range of prior opinions
elicited before introduction of the MYCYC data.
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Prior elicitation

= Elicitation of prior distributions can be made from a
number of people (for example, clinicians and patients)
= Combined group (hierarchical) prior distribution
= Consensus
= Multiple prior distributions
= Clinical prior: averages prior distributions elicited from experts
= Vague prior: leads to a posterior distribution proportional to the likelihood
= Skeptical prior: represents no treatment effect
= Enthusiastic prior: represents large treatment effect
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Prior elicitation

= General recommendations:

» Interactive feedback: helps formulate probabilistic ideas and
to reconcile inconsistencies

= Scripted interview: uniformity in the elicitation process across
experts

= Review: the expert should have access to literature review

= Percentile: Useful to consider 2.5t and 97.5t% percentiles
(95% probability intervals)
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Prior elicitation

L |

= Problem: how to turn informal opinions into a mathen ™
prior distribution? |

= Summarizing historical evidence o

= Previous similar studies/trials can be used as the basis of a prior
distribution

= Several modeling approaches
Degrees of “similarity” between studies/trials
Possibility of bias

Note: These approaches are also used when considering historical
controls in randomized trials, modeling for potential biases in
observational studies and in pooling data for evidence synthesis (meta-
analysis)

49

Historica Current Study

° Irrelevance

Exchangeable

Potential bias

Equal with discounting

Functional dependence

More about this later in the course! Spiegelhalter et al, 200450




Prior elicitation

= Problem: how to turn informal opinions into a
mathematical prior distribution?
= Elicitation of subjective opinion

= 'Histogram’ approach

(0]

Assessment of
\ probabilities in
Continuous case “intervals” &

Discrete cas
] smoothed

| — |

| ‘ ' . : ; :

= Assume a parametric model (e.g. conjugate priors) and
elicit quantities of interest

51

Prior Distributions

Conjugate priors
Non-informative
Hierarchical priors
Mixture priors

52




Prior Distributions

= Conjugate priors:
= Let F denote a class of sampling distributions p(y|6) and P a class of prior
distributions for 6. Then P is conjugate for F
p(6ly) € P forall p(.|6) €F and p(.) €P
[prior and the posterior distribution are of the same family].
= Interpreted as “prior data”
= Computational convenience

Likelihood Prior Posterior
X0 ~N(8,52) 0~ ,‘\“’(;I.T%) 01X ~ N(5=X + 2= 0‘31";2)
X160 ~ B(n,0) 0 ~ Be(a, 3) O|X ~ Be(aw + x,n—a+ f3)
Xi,oon, X0 ~P(0) 0 ~ Ga(a, 3) 01Xy, .., Xy~ Ga(3, Xs +a.n+ ).
D ST, Xp0 ~ NB(m,8) | 6~ Be(a,3) 0|1 Xq,...,: Xn ~ Be(a+mn, 3+ >0 x;)

X ~G(n/2,20) 0 ~7IG(a,p3) 01X ~IG(n/2 +a,(z/24+ 357

Xy, ..., Xnl0 ~ U(0,0) 0 ~ Pa(by, ) | 0] X1,..., Xy ~ Pa(max{fy,z1,...,: rp b+ n)
X0 ~ N (11, 0) 0 ~IG(a,p3) 01X ~IG(a+1/2,84 (n—X)?/2)
X6 ~ Ga(v,0) 0 ~ Ga(a, 3) 01X ~ Galoa + v, 3+ x) .

Prior Distributions

= Non-informative:

(reference prior, vague prior or flat prior)

= Intended to provide “objective” analysis
= Connections to Frequentist Inference!

= Prior is “flat” relative to the likelihood function
= Minimal impact on the posterior distribution of 6.

= May be improper (does not “sum up” to 1)
= DANGER: may lead to improper posteriors!!
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Prior Distributions

= Discrete parameter:

= Discrete uniform prior
« Example:

Parameter = true hypothesis (null or alternative)
Prior: P(Hy)=P(H;)=0.5

= Continuous parameter:
= Jeffreys’ prior i
P©)=|1(0)* . where 1(0) = E| - 10€P'10)

060,00,

« Idea: Fisher information measures the curvature of the log-likelihood. High curvature occurs
whenever small changes in the parameter values are associated with large changes in the
likelihood. Jeffreys’ prior gives more weight to those parameter values, ensuring that the
influence of the data and the prior essentially coincide

(Fisher information)

= Invariant to transformations of 6
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Prior Distributions

= Hierarchical priors:

= Prior specification in phases
= Structural division into stages
= Quantitative (subjective) specification at each stage
= Borrowing strength:
= improves precision for each parameter

= Nothing prevent us from going further into the hierarchy
and adding stages.

= Harder to interpret parameters in higher levels of the
hierarchy

=« Common practice: non-informative priors at the higher levels
(of course, “caveats” to such choices)
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iPrior Distributions

P(A)

Hierarchical Prior:

P(6,,...0,) = [ P(6,...,0, | )P(R)d A
- f [TLP(6, | \)IP(A)d A

POIA) Lo

P(Yi | 9i) """""

OO

Application: Meta-Analysis (more later!)

- &)

Prior Distributions

= Mixture Prior:
« Example:
Test results among 10 disease subjects:

«(0,1,0,0,0,1,0,0,0, 1) : ‘successes'=3, ‘failures'=7

Ho: © = 0.5 versus H;: 6 # 0.5

Prior density

Priors for hypotheses:

* P(Hy)=P(H;)=0.5

» Under alternative:
0 ~ Beta(1,1)

= Prior can be re-written as a mixture:

P(0)=05x1,,5+05xU0,1)
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Bayesian Estimation of Disease Prevalence and the Parameters of

Diagnostic Tests in the Absence of a Gold Standard

lack of a gold standard for the detection of most
parasitic infections means that the properties of these
tests are not known with high accuracy. In consulta-
tion with a panel of experts from the McGill Centre for
Tropical Diseases, we determined equally tailed 95
percent probability intervals (i.e., 2.5 percent in each
tail) for the sensitivity and specificity of each test (see
table 5). These were derived from a review of the
relevant literature and clinical opinion (21-28)

6\}' STUDY

TABLE 5. Equally talled 85% probability ranges and
coefficlents of the beta prior densities for the test parameters
In the diagnosis of Strongyloldes Infection®

Stool examination Serology
Beta Beta
Range cosfficlents Range coefficients
(%) (%)
a B @ B
| Sensitivity 5-45  4.44 13.31 | 65-95 21.96 5.49
Specificlty 90-100 71.25 3.75 35-100 4.1 1.76

* A uniform density over the range [0,1] (a=1, B=1) was used for
the prior distribution for the prevalence of Strongyloides In the
refuges population.

Beta(1,1) Beta(1,3) Beta(3,1)
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- o o |
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o 7 n /
o | ° ~—_ o |_—
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T | | =
e 4 / \ L had ’)
- \ i ‘ © |
/ ~ | (
0 / \ | = \
° \ / O I
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Translating the information into a prior

distribution
-
The particular beta prior density for each test pa-
rameter was selected by matching the center of the Beta
range with the mean of the beta distribution, given by Range cosfficients
a/(a+B), and matching the standard deviation of the (%) ——
beta distribution, given by @ B
5 Sensitivity 5-45 4.44 13.31
a
\/(a + B a+B+1) Beta distribution obtained by
solving these equations:
>.

with one quarter of the total range. These two condi-
tions uniquely define a and B. An alternative approach a  (45+.05)

is to match the end points of the given ranges to beta m =25

distributions with similar 95 percent probability inter-

vals. The coefficients obtained from these two ap- af 1 (45-05)= 10
proaches usually give very similar prior distributions. m =7 (B-09=

One way to consider a beta(a,) distribution is to
equate it with the information contained in a prior
sample of (a + f3) subjects, a of whom were positive.
The sum (a + P) is often referred to as the “sample ®srunv
size equivalent” of the prior information (18).

_

Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)

= Bayesian inference can be achieved by approximating the
continuous 8 with a (dense) grid of discrete values.

= A disadvantage of this approach is that the approximation is
only as good as the grid is.

= An advantage of this approach is that it provides flexibility in the
choice of prior distributions.

= We will illustrate this approach using
= “brute-force” method (simple application of Bayes rule) or,
= R package (LearnBayes)
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Introduction to Bayesian Computation

= Test results of 10 disease subjects:

= (OI 1/ 0/ OI 0! 1/ OI Ol OI 1)

(‘successes’'=3, ‘failures’=7)

= Parameter of interest:
= Probability of disease

63
Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)
.
8 4
g
# Method 1: Brute-force
#-- Prior 1:
prior <- rep(1/99, 99) g
#-- likelihood times prior °
product <- dbinom(x=data[l], size=sum(data), prob=theta)*prior o
#-- posterior is the normalized likelihood times prior § 7
posterior <- product/sum(product)
#-- plot posterior distribution é ©
plot (theta, posterior, type='h', xlab=expression(~theta)) % 27
#-- post <
mean. po: m(theta*posterior) =3
4-- cumulative posterior distribution °
cumulative.post <- cumsum(posterior)
o
#-- median (approximate) § 7
median.post <- theta[max (which(cumulative.post <=0.50))] ‘ ‘H
§ 4 ‘\\M HHHHHH “““
° = T T T T T
0.0 0.2 0.4 0.6 08 1.0
]
7777777777777777777777777 > mean.post
P(g,)P(Y lH,) [1] 0.3333333

> median.post
[1]0.31
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Introduction to Bayesian Computation:
(discrete prior for a continuous valued

# Method 1: Brute-force
#-- Prior 2:

£ <- theta*(theta<=0.2)
prior <- f£/sum(f)

+(1-theta) * (theta>=0.8) + 0.2 (theta>0.2 &

#-- likelihood times prior
product <- dbinom(x-data[l], size=sum(data), prob-theta)*prior
#-- posterior is the normalized likelihood times prior

posterior <- product/sum(product)

#-- plot of prior distribution
plot (theta, prior, type='h', xlab=expression(~theta))

#-- posterior is the normalized likelihood times prior
posterior <- product/sum(product)

#-- plot posterior distribution
plot (theta, posterior, type='h', xlab=expression (~theta)
#-- posterior mean

mean.post <- sum(theta*posterior

#-- cumulative posterior distribution
cumulative.post <- cumsum(posterior)

#-- median (approximate
median.post <- theta(max (which(cumulative.post <=0.50))

theta < 0.8)

> mean.post
[1]0.342133

> median.post

[1]0.32

Grid approach
parameter)

0008 0010 0012
L L

prior

0004 0006
L

0.002
L

0.030
L

T
o

posterior
0000 0005 0010 0015 0020 0025
L L L L L

o

Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)

Suppose a prior which places probability
zero for 6 < 0.5 and uniform otherwise

T T T T T
02 04 06 08 10

0

prior
0.010 0.015 0020
L L

0.005

0.000

posterior

002 004 006 008 0.10

0.00

T
00

T T
8 1.0

4
T T
02 T 04 0s 0

3
Sample proportion was around here,
but posterior places prob. zero for
values < .5!
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Prior distributions

= Be careful!

= Cromwell’ s rule:

« “If a coherent Bayesian attaches a prior probability of zero to the
hypothesis that the Moon is made of green cheese, then even whole
armies of astronauts coming back bearing green cheese cannot
convince him otherwise” (Lindley, 1985)

= In other words, by placing a prior probability of zero,
then there is no learning with data!

Overview of the Bayesian approach

= Likelihood function:  L@Iv)=| " |@*a-6y~
where y: number of successes y
n: sample size

= Prior?
» Let’s consider a prior with a functional form that resembles
that of the likelihood function

= Prior should be of the form 82(1 — 8)®
=« It turns out that such a prior for 6 is a Beta

Cool fact: multiply likelihood and the prior and you’ll again get
a function of the same form as the prior...
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Overview of the Bayesian approach

= Likelihood function: Lo =l " lora-em
y

= Prior g Bera(a.b) and P(6)= L9+
= a: “prior” successes I'(a)'(b)
= b: “prior” failures

Ha—l (1 _ g)b—l

= Posterior (via Bayes Theorem):

POI1Y)xB1-0)"60"(1-6)""
o 8a+y—1 (1 _ 8)b+n—y—1

(01Y) ~ Beta(a+y,b+n—y) $
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Introduction to Bayesian Computation: conjugate models

Bayesian Inference for a Proportion Using R: L] POint eStimation:
library(LearnBayes) " Meap =0.333
triplot(prior=c(1,1),data=c(3,7)) = Median = 0.324

= Mode =0.300

Bayes Triplot, beta( 1, 1) prior,s=3,f=7

3.0

= Interval estimation:

= Equal tail 95% credible interval:
[0.109, 0.610]

25

20

= 95% HPD: [0.101,0.581]

15

Interpretation: there is a 95%
probability that the test sensitivity
lies between [0.101, 0.581]

[Note: we obtain probability
statements about 6]

1.0
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Introduction to Bayesian Computation: conjugate models

Bayes Triplot, beta( 1, 1) prior,s=3,f=7

Bayes Triplot, beta( 2, 2) prior,s=3,f=7

= Prior 2 4 - “ ==« Prior
e Likelihood ° \ «— Likelihood
— — Posterior © — —  Posterior
@4
o
2 A
R R TR \
--------------------------------- e
w
=
o
2 4
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 06 0.8 1.0
Bayes Triplot, beta( 0.5, 0.5 ) prior,s=3,f=7 Bayes Triplot, beta( 1, 2) prior,s=3,f=7
= Prior o | Vi -~ “ ===« Prior
e« Likelihood « «— Likelihood
«= = Posterior «= = Posterior
w
o
<
N
w
e
0
@
o
2 4

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 06 0.8 1.0 71
Overview of the Bayesian approach
= Hypothesis testing:
= Hypotheses: Hy vs. H; [simple vs. simple]
= Prior probabilities: Pr(Hy) & P(H,)
= Likelihood: P(Data|H,) & P(Data|H,)
= Posterior probabilities:
P(H,|Data) = P(H,) P(Data|H,) / P(Data)
where P(Data) = P(Data|H;) P(H,) + P(Data|H,) P(H,)
= Odds:
P(H, | Data) P(Data|H,) N P(H,)
P(H, |Data) P(Data|H,) P(H,)
Posterior Odds = Likelihood Ratio x Prior Odds .

(a.k.a. Bayes Factor)




iOverview of the Bayesian approach

= Strength of evidence provided by Bayes Factor

BF will partially Bayes Factor Evidence in favor of
eliminate the H, versus H,
influence of the
prior and 1to 3.2 Not worth more than
emphasizes the a bare mention
role of data

3.2t0 10 Substantial

10 to 32 Strong

32 to 100 Very strong

>100 Decisive
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* Overview of the Bayesian approach

Back to example:

= Test results among 10 disease subjects:
= (01 1/ Ol OI 0/ 1/ Ol OI 0/ 1)

(‘successes’=3, ‘failures'=7)
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Introduction to Bayesian Computation: conjugate models

Back to example:

= Test results among 10 disease subjects:
= (OI 1/ 0/ OI OI 1/ OI Ol OI 1)

(‘successes’=3, ‘failures'=7)

Ho: 8 = 0.5 versus H,: 6 # 0.5 || > pbetat(p0=0.5, prob=0.5, ab=c(1,1), data=c(3,7))
$bf
Priors for hypotheses: [1] 1.289063
 P(H,)=P(H,)=0.5
» Under alternative: $post
0 ~ Beta(1,1) [1] 0.5631399

= The posterior probability of the null hypothesis is 0.56
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Overview of the Bayesian approach

= Prediction:
= Prior predictive distribution:

P(Y)= f P(Y 10)P(0)dO

= Posterior Predictive Distribution of Yygy

P(Y\w | Data) = fP(YNEW | Data,0)P(6 | Data)d6
- Uses: = [ P(Yy, 10)P(6| Data)d®
Design and (predictive) power calculations
Sequential monitoring
Model checking
Decision making
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Introduction to Bayesian Computation: conjugate models

Prior Predictive Distribution
> pbetap(ab=c(1,1), n=10, s=0:10)

[1]0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909
[710.09090909 0.09090909 0.09090909 0.09090909 0.09090909

> predplot(prior=c(1,1), n=10, yobs=3) Predictive Dist., beta( 1, 1) prior, n= 10, yobs= 3

Posterior Predictive Distribution

0.08
I

> pbetap(ab=c(4,8), n=1, s=0:1)
[1] 0.6666667 0.3333333

0.06
I

yops

0.00
L
[ 4
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CLINICAL gy Clinical Trials 2014; 11: 485-493
TRIALS

The utility of Bayesian predictive probabilities for
interim monitoring of clinical trials

Benjamin R Saville®, Jason T Connor™<, Gregory D Ayers® and JoAnn Alvarez®

Background Bayesian predictive probabilities can be used for interim monitoring of
clinical trials to estimate the probability of observing a statistically significant treat-
ment effect if the trial were to continue to its predefined maximum sample size.
Purpose We explore settings in which Bayesian predictive probabilities are advanta-
geous for interim monitoring compared to Bayesian posterior probabilities, p-values,
conditional power, or group sequential methods.

Results For interim analyses that address prediction hypotheses, such as futility
monitoring and efficacy monitoring with lagged outcomes, only predictive probabil-
ities properly account for the amount of data remaining to be observed in a clinical
trial and have the flexibility to incorporate additional information via auxiliary
variables.

Limitations Computational burdens limit the feasibility of predictive probabilities
in many clinical trial settings. The specification of prior distributions brings addi-
tional challenges for regulatory approval.

Condusions The use of Bayesian predictive probabilities enables the choice of logi-
cal interim stopping rules that closely align with the clinical decision-making pro-
cess. Clinical Trials 2014; 11: 485-493. http://ctj.sagepub.com

STUDY
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Background

= Interim analyses for stopping/continuing trials are one
form of adaptive trials

= Various metrics for decisions of stopping

= Frequentist: Multi-stage, group sequential designs,
conditional power

= Bayesian: Posterior distributions, predictive power, Bayes
factors

= Question: Why and when should we use Bayesian
predictive probabilities for interim monitoring?

79

Why interim analyses?

= Questions they can address:

» Is there convincing evidence in favor of the null or alternative
hypotheses?
= Evidence presently shown by data

= Is the trial likely to show convincing evidence in favor of the
alternative hypothesis if additional data are collected?
= Prediction of what evidence will be available later

= Important factors to consider:

= ethical imperative to avoid treating patients with ineffective or
inferior therapies

= inefficient allocation of resources
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Predictive Probability of Success

= Definition:

= The probability of achieving a successful (signicant) result at
a future analysis, given the current interim data

= Computation:

= Obtained by integrating the data likelihood over the posterior
distribution (i.e. we integrate over future possible responses)
and predicting the future outcome of the trial
= Decision making:

= Efficacy rules based either on Bayesian posterior distributions
(fully Bayesian) or frequentist p-values (mixed Bayesian-
frequentist)
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Computation via Simulation

1) At an interim analysis, sample the parameter of interest from the
current posterior given current data.

2) Complete the dataset by sampling future samples, observations not
yet observed at the interim analysis, from the predictive
distribution.

3) Use the complete dataset to calculate success criteria (p-value,
posterior probability). If success criteria is met (e.g. p-value <
0.05), the trial is a success.

4) Repeat steps 1-3 a total of B times; the predictive probability
(PPoS) is the proportion of simulated trials that achieve success.
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iExample

= Trial:

= Single arm Phase II study of 100 patients measuring binary
outcome (favorable response to treatment)

= Goal: compare proportion to a gold standard 50% response
rate

= Model: X ~ Bin(p;N = 100) where
= p = probability of response in the study population
= N = total number of patients

= Prior: p ~ Uniform(0,1) = Beta(1,1)
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@ STUDY
i Example

= Trial Design:

= Trial is a success if the posterior probability that the
proportion exceeds the gold standard is greater than n=0.95,
that is,

Pr(p > 0.5|x) > n

= Success if 59 or more of 100 patients respond
= Pr(p > 0.50|x = 58; n = 100) = 0.944
= Pr(p > 0.50|x = 59; n = 100) = 0.963

= 3 interim analyses monitoring at 20, 50, and 75 patients
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STUDY

Table 2. Definitions of key measures and methods for illustrative example ,

Measure/method Description Formula

p-value Probability of observing a proportion equal to or n [N\ nmi
greater than x/n given Hy : p=po Z:"2"(i)p°(1 ~Po)

Posterior probability Bayesian posterior probability that proportion Pr (p>po|x) = J:o f(x|p)m(p) /f(x)dp
exceeds the null value po

Predictive probability Bayesian predictive probability of statistical Z;":O[I{Pr(p>po |x, y, N)=n}f(y|x)]
significance at N given x/n and m(p)

Conditional power Frequentist probability of statistical significance at Siso [I{Zf‘:“y (7)!’6(1 — po)N-i <a}f(y|p')]
N given x/n and assumed pj

Repeated testing of Hy Method of monitoring for futility based on p-value p-value= 3% o ( 7 )pﬁ (a—pn)mi
for test of alternative hypothesis

Group sequential Frequentist design for interim monitoring that Varies by method
allocates Type I/Il errors across interim analyses

Stochastic curtailment Method that estimates the probability of statistical Varies by method

significance at some future sample size

nand N: number of patients at interim and final sample sizes, respectively; m = N — n: number of remaining patients yet to be observed in the study; x:
number of successes observed at the interim analysis; y: number of successes yet to be observed in the remaining patients; p, and p,: proportion of successes
under the null hypothesis and altemative hypotheses; p: estimated or assumed value of p required for conditional power computation; « and 7: criteria
required to demonstrate ‘statistical significance’ for p-value or posterior probability, respectively, / (): indicator function taking the value 1 if expression is true

and 0 if otherwise; m(p): beta (1, 1) = 1: prior distribution of p, uniform over (0,1); f(x)= _[J f(x|p)m(p)dp: marginal likelihood or normalizing constant;
folo= _[(: fyIp)f (plodp= J;: P f(x|p)7(p)/f (x)dp =beta-binomial(m, 1 +x, 1+n — x) : Bayesian posterior predictive distribution of y given x;
fix|p)= (:)p‘(l — p)"™*: data likelihood of x given p for n patients observed by interim;

fylp)= (';’)pV(l — p)™7: data likelihood of y given p for remaining m patients.
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Figure 4. Predictive probability of success versus posterior esti-
mate Pr(p>0.50|x) by interim sample size n, with maximum

sample size N =100 and posterior threshold n=0.95. 86




Table 1. lllustrative example

65}’ sTUDY

n; X; m; Y p-value Pr(p>0.5) CPy, CPuie PP

20 12 80 47 0.25 0.81 0.90 0.64 0.54
50 28 50 31 0.24 0.80 0.73 0.24 0.30
75 41 25 18 0.24 0.79 0.31 0.060 0.086
90 49 10 10 0.23 0.80 0.013 0.002 0.003

n; and x;: the number of patients and successes at interim analysis j;

MLE: maximum likelihood estimate; m; : number of remaining

patients at interim analysis j; yi': minimum number of successes required to achieve success; CPy, and CPpe: conditional power based on original H, or
MLE; PP: Bayesian predictive probability of success.

Number of responses (x) =12, n=20

@ Pred Prob | (x,n,N) = 0.54
] Prip>0.501x,n) = 0.81
g« P-value = 0.25
3 _
__-/
o 7 T —= . r
00 0.2 04 06 08 1.0
Probability of response (p)
Number of responses (x) =49, n=90
© - Pred Prob | (x,n,N) = 0.003
'3 Pr(p=0.501x.n) = 0.8
é = P-value = 0.23
o
° i T — —— 7 :
00 0.2 04 06 08 1.0
Prodability of response (p)
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R function to compute PP

PP <- funttion(n.total= 100, nullp = 0.5, eta=0.95, data=c(12,8), prior.par=c(1,1), B=1000){

# posterior
post.par <- data + prior.par

# samples from posterior distribution
post.sample <- rbeta(B, post.par[l], post.par[2])

# samples new values of x (extending to the maximum sample size)
x.new <- rbinom(B, size=n.total-sum(data), post.sample)

# organize data with first column number of 'responses' and second 'non responses'
data.new <- cbind(x.new, n.total-sum(data)-x.new)

# posterior parameters given predicted data
post.pred.par <- cbind(data.new([,1] + post.par[l], data.new([,2]+ post.par(2])

# posterior probability that P(p > nullp |data)
post.pred <- pbeta(nullp, post.pred.par[,1], post.pred.par[,2], lower.tail=FALSE)

# posterior predictive probability of success
PP <- mean (post.pred > eta)
return (PP)

> PP(n.total=100, nullp=0.5, eta=0.95, data=c(12,20-12), prior.par=c(1,1), B=1000)
[>1]Pgi?1.5total=100, nullp=0.5, eta=0.95, data=c(28,50-28), prior.par=c(1,1), B=1000)
[>1]Pgii%tal=100, nullp=0.5, eta=0.95, data=c(41,75-41), prior.par=c(1,1), B=1000)
E}’Eigztg)tahloo, nullp=0.5, eta=0.95, data=c(49,90-49), prior.par=c(1,1), B=1000)
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Comparison of approaches to inference

MLE
Intervals based on values of 6 with large likelihood
Evidence against null hypothesis via p-values

Estimation/Testing satisfying long-run properties (repeated sampling)

Traditional Approach + Unbiased estimation
« Confidence intervals «  Minimax
Type I/II error rates »  Admissibility...

TABLE 4 A taxonomy of six possible ‘philosophical’ approaches to health fechnology assessment, depending fon their objective and their
lquantitative use of pridr information

Objective

Inferende (estimation) Hypothesis testing Decision (loss function)
No prior Fisherian Neyman—Pearson Classical decision theory |
Prior Proper Bayesian ‘Bayes’s factors’ Full decision-theoretic Bayesian
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Comparison of approaches to inference

= Sequential Analysis
» Data periodically analyzed and study stops if there are
sufficiently convincing results

» Traditional Approach:

« Identifies “stopping boundaries” with fixed overall Type I error and
chooses designs with minimum type II error for particular alternative
hypotheses

= At the end of the study, p-values and confidence intervals are adjusted
for the sequential nature of the design

= Bayesian Approach:
= Posterior distribution following each observation becomes the prior for
the next

= Posterior distribution does not depend on the stated stopping
procedure (data influence the posterior only through the likelihood)
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Comparison of approaches to inference

= Sequential use of Bayes Theorem:

L.p(@1y) = p(@)p(y, 16)

2.p01 Yi.¥,) x p(@)p(y,,y, 16)
< p()p(y, 10)p(y, 16)
< p(B1y)p(y,16)

= Posterior distribution using initial prior p(8) given all the data is the same
to that obtained sequentially where posterior for the current observation
becomes the prior for the next observation.

92




iComparison of approaches to inference

= P-values and Bayes factors (BF)
« Example:

= Model

= Parameter

Y ~ Binomial(n, 9) 3 P(Y =y | 6) =[ ;l ]0)’(1 _0)()1—}1)

B8=True unknown population proportion of preference for A

= Hypotheses
Hy: 8 = 0.5 versus Hy: 8 # 0.5
Under alternative 8 ~ U(0,1)=Beta(1,1)

Recall:

P(H, | Data) |P(Data|H,) } P(H,)
P(H, | Data) |P(Data|H,)| P(H,)

Bayes Factor
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Comparison of approaches to inference

= B&Yes Factor (BF): ( . )(%)(%){ z )z_n

P(Datal|H,)=P(Y =y18=05)=

P(Data|H1)=P(Y=y|0;=0.5)=fP(Y=y|0)p(8)d9=...=%

n+

_P(DatalH,)) | n |n+l
P(DatalH)) y | 2"

= Alternative: Likelihood-based Bayes Factor (Minimum BF)

y n n

P(Data|H)=P(Y =y10=0,,,) =( n )(Z)y (1_2)”

1
_P(DatalH,)  o»

™ P(Data| H,)) (y)y (1 Y )”




¢ Comparison of approaches to inference

Sample | Preference | Estimate P-value Min. BF BF
Size for A (One-sided)

20 15 0.750 0.02 0.07 0.31

200 115 0.575 0.02 0.10 1.20

2000 1046 0.523 0.02 0.12 4.30

2000000 1001445 0.500 0.02 0.12 139.8

= Interpretation of p-values is dependent on sample size!

= Minimum BFs obey the Likelihood Principle, but have similar qualitative behavior
to P-values

= Proper BFs can, for large samples relative to the prior precision, support the null
hypothesis when a classical analysis would lead to its rejection.

= This is known as the Lindley’s paradox

= Explanation: For large sample sizes, a p-value can be small even if the data support
parameter values very close to the null hypothesis. Such data may be unlikely under the null,
but even more unlikely under the alternative that spreads the prior over a wide range of
values. Thus, the BF can support the null when the significance test would reject it.
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Large Sample Properties

y=(sns¥,) Where y, ~ p(y;10) and p(y10)=] | p(:10)

i=1

d*log P(Y 10)
360,00,

Let: I1(O)=E|- (Fisher information)
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Large Sample Properties

= Likelihood-based Inference (MLE)
6 ~ N(e,rl(e))
= Bayesian Inference
0 ~ N(e,rl(e))
= Thus, the posterior distribution will give essentially the same
asymptotic estimates and intervals as the maximum
likelihood estimator. However, note that the posterior

distribution is a distribution of 8 given 6 whereas the
previous result gives the sampling distribution of § given 6.
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i Large Sample Properties

To convince you of the previous result, suppose the parameter is uni-dimensional.
Note that we get the same density functions:

6 ~ N(G,I'l(é))

N 1 1 n
p(@ | 8) = —Aexp[—ﬁ(g - 6)2]
2717\ (6) 21°(0)

0 ~ N(é,l‘l(é))

%exp[—%(@ - é)zl
V27l7'(6) 2I°(0) $
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e gy 77O
Ry >
27

/“6.

Generalized Linear Regression Models

E[Y,1X,.X,,,....X, ]=u,=g"'(n,) where g is a link function

= Mean:
= Regression Model: gu)=m;=Py+ X, + 6, X, +...+ ﬁpXip
= Linear regression model

gu) =, =B+ B X+ B, X, +...+ ﬁpXip
= Logistic regression model

g(u;)=log M By + B X, +B,X,, +"'+ﬂpXip
l-u

1

= Probit regression model
g(u,) = (D_](M,') =B+ B X, + B X+ + ﬂpXip

= Poisson regression model
g(u;) = log(:ui) = ﬁo + ﬁlXil + /32Xi2 Tt ﬁpXip
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Bayesian GLM

Mean: EY1X,,....X, 1=y, = g~'(n,) where g is a link function

Regression Model: &(i;) =1, =By + B X, + B, X, +...+ B, X,

Priors:
= Regression parameters: (/3)0 ,/3)1,/3)2,-../3)1,)

Wnp e ” L . 2
= “Nuisance” parameters (e.g. in linear regression 0 ")

= Note:

= Regression coefficients have the same interpretation (e.g. difference in
means; log-odds ratio; etc)

= Interpretation of inferential results are different (e.g. posterior mean;
probability that the regression parameter lies in some interval; etc)
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Bayesian GLM in R

We will use the following packages
= INLA

= arm

Different approaches to estimation of GLMs

= Approximate posterior inference (Bayesian CLT)
Advantages:

= Syntax very similar to those we reviewed for traditional GLMs
= No need for heavy programming (e.g. MCMC methods)
Disadvantages:

= Approximate method under small samples

= Constrained by model formulations handled by the packages
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iBayesian GLM in R: INLA package

= Integrated Nested Laplace Approximations (INLA)
= Alternative to MCMC in (latent) Gaussian models

= Regression Model: ) ]
gu)=m,=pB,+ Eﬂley + Ef}((ilk) +é;
k=1

=

£ () :unknown functions of covariates X
B, - linear effects of covariates X

&, . unstructured terms

i

= Assumption in latent Gaussian models:

Gaussian Prior for: f,,{8,}.,{f;()}.{&,}
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i Bayesian GLM in R: INLA package

Latent model:
Let z represent the collection of all Gaussian variables:
Bos {63 {f,O} e}
with distribution 7(z16,) with mean O precision matrix Q(6,).

Model: 7(ylz,6,)
Prior:  Let 0 =(6,,6,) with prior 7(6).
Via Gaussian & Laplace approximations:

m(z,0,y)
76(210,9)| _+ 4

z (6): mode of m(z16,y) *

7 : Gaussian approximation of 7(zl6,y)

#O1y)
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Model Name Description
Independent random variables iid indep.pdf
Linear linear linear.pdf
Constrained linear clinear clinear.pdf
Random walk of order 1 rwl rw1.pdf
Random walk of order 2 rw2 rw2.pdf
Continuous random walk of order 2 crw2 crw2.pdf
Model for seasonal variation seasonal seasonal.pdf
Model for spatial effect besag besag.pdf
Model for spatial effect besagproper besagproper.pdf
Model for weighted spatial effects besag?2 besag2.pdf
Latent Model for spatial effect + random bym bym.pdf
Models in INLA effect
Autoregressive model of order 1 arl ar1.pdf
Autoregressive model of order p ar ar.pdf
The Ornstein-Uhlenbeck process ou ou.pdf
User defined structure matrix, type 0 genericO generic0.pdf
User defined structure matrix, type1 genericl generic1.pdf
User defined structure matrix, type2 generic2 generic2.pdf
Model for correlated effects with iidld, iid2d, iid3d, iid4d, iid123d.pdf
Wishart prior (dimension 1, 2, 3, 4 iidsd
and 5).
Classical random effect model z z.pdf
Random walk of 2nd order on a rw2d rw2d.pdf
lattice
Gaussian field with Matern matern2d matern2d.pdf
covariance function
Classical measurement error model mec mec.pdf
Berkson measurement error model meb meb.pdf
Spatial lag model slm slm.pdf
Sigmodial and reverse sigmodial sigm, revsigm sigm.pdf
Negative Binomial nbinomial nbinomial.pdf
Poisson poisson poisson.pdf
Binomial binomial binomial.pdf
CBinomial cbi: Chinomialpof
Gaussian gaussian gaussian.pdf
Skew Normal sn sn.pdf
Student-t T Student-t.pdf
Gaussian model for stochastic stochvol stochvolgaussian.pdf
volatility
Student-t model for stochastic stochvol.t stochvolt.pdf
volatility
NIG model for stochastic stochveol.nig stochvolnig. pdf
volatility
Zero inflated Poisson zeroinflated.poisson.0 zeroinfiated pdf
zeroinflated.poisson.l
zeroinflated.poisson.2
Zero inflated Binomial zeroinflated.binomial.0 zeroinfiated pdf
leellhoods zeroinflated.binomial.l
Zero inflated negative zeroinflated.nbinomial.Cl zeroinfiated pdf

Binomial

zeroinflated

Zero infiated beta binomial (type
o)

zeroinflated.pdf

Zero inflated beta binomial

zeroinfiatedbetabin.pdf

(type 2)
Generalised extreme value gev jev.pdf
distribution (GEV)
Beta _beta.paf
Gamma 5 )amma.pdf
Beta-Binomial betabino: betatnomial pdf
Logistic distribution Togi logistic.odf
Exponential (Survival models) exponential exponential.pdf
Weibull (Survival model) weibull weibull.pdf
LogLogistic (Survival model) loglogistic.odf
LogNormal {Survival model) lognormal.odf
Cox model (Survival model) coxph.pdf
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Model Name Description
Normal distribution normal gaussian.pdf
Priors on gaussian
hyperparameters Log-gamma loggamma prior-loggamma.pdf
distribution
Improper flat prior flat prior-flat.pdf
Truncated Normal logtnormal log-tnormal.pdf

distribution logtgaussian
Improper flat prior on logflat various-flat.pdf
the log scale
Improper flat prior on the logiflat various-flat.pdf
1/ log scale
Wishart prior wishart 11d123d.pdf

Beta for correlations

betacorrelation

betacorrelation.pdf

Logit of a Beta logitbeta logitbeta.pdf
Define your own prior expression: expression.pdf
Define your own prior table: table.pdf
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Bayesian GLM in R: arm package

= Builds on a modification of glm()
= Uses priors on an augmented regression

= Uses an approximate EM algorithm to update regression

coefficients

= Gelman, Jakulin, Grazia, Pittau, Su, 2008. A Weekly Informative Default Prior Distribution
for Logistic and Other Regression Models. The Annals of Applied Statistics, 2,1360-1383.
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Bayesian GLM in R: arm package

= Augmentation Idea (context linear models):

Matrix Formulation:

1 [
v, | |1
Y, 1

Inshort: Y =Xp+¢

Prior: /J’j ~N(mj,vjz.),j=0,...

Ip

2p

np

Augmented Data: ¥~ =

By
B,

B,

P

, X
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Bayesian GLM in R: arm package

bayesglm {arm} R Documentation
Bayesian generalized linear models.

Description

Bayesian functions for generalized linear modeling with independent normal. t, or Cauchy prior distribution for the coefficients.

Usage

bayesglm (formula, family = gaussian, data,
weights, subset, na.action,
start = NULL, etastart, mustart,
offset, control = gim.control(...),
model = TRUE, method = "gImfit",
x = FALSE, y = TRUE, contrasts = NULL,
drop.unused.levels = TRUE,
prior.mean = 0,
prior.scale = NULL,
prior.df = 1,
prior.mean.for.intercept = 0,
prior.scale.for.intercept = NULL,
prior.df.for.intercept = 1,
min.prior.scale=1e-12,
scaled = TRUE, keep.order=TRUE,
drop.baseline=TRUE, n.iter = 100,
print.unnormalized.log.posterior=FALSE,
Warning=TRUE,...)

0.4

0.0

Normal(0,1)
Cauchy(0,1)
Student-T5
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Multiple Linear Regression in R

= FEV dataset: (located on the class web pages) contains data on 654 children.

= seqgnbr case number (the numbers 1 to 654)

= subjid subject identification number (unique for each different child)
= age subject age at time of measurement (years)

= fev measured FEV (liters per second)

= height subject height at time of measurement (inches)

= Sex subject sex (1 = male, 2 = female)

= smoke smoking habits (1 = yes, 2 = no)

= Our goal is to assess the association between

FEV and smoking status adjusting for age. Smokers

5 10 15
age
## real data set
data = read.table("data/fev.txt", col.names=c("seqnbr", "subjid", "age", "fev", "height", "sex", "smoke"))
## examine a few entries of the data set
head (data)
seqnbr subjid age fev height sex smoke
1 1 301 9 1.708 57.0 2 2
2 2 451 8 1.724 67.5 2 2
3 3 501 7 1.720 54.5 2 2
4 4 642 9 1.558 53.0 1 2
5 5 901 9 1.895 57.0 1 2
6 6 1701 8 2.336 61.0 2 2
## summarize the variables
summary (data)
seqnbr subjid age fev height sex smoke
Min. : 1.0 Min. : 201 Min. : 3.000 Min. :0.791 Min. :46.00 Min. :1.000 Min.  :1.000
1st Qu.:164.2  1st Qu.:15811  1st Qu.: 8.000 1st Qu.:1.981  1st Qu.:57.00 1st Qu.:1.000  1st Qu.:2.000
Median :327.5 Median :36071 Median :10.000 Median :2.547 Median :61.50 Median :1.000 Median :2.000
Mean  :327.5 Mean :37170 Mean : 9.931 Mean :2.637 Mean :61.14 Mean :1.486 Mean  :1.901
3rd Qu.:490.8  3rd Qu.:53638  3rd Qu.:12.000  3rd Qu.:3.119  3rd Qu.:65.50  3rd Qu.:2.000  3rd Qu.:2.000
Max.  :654.0 Max. :90001 Max. :19.000 Max. :5.793 Max. :74.00 Max. :2.000 Max. :2.000

## scatter plot of log(fev) by age
plot(log(fev) ~ age, data=data)

## scatter plot of log(fev) by age, but stratified by smoking status

plot (log(fev) ~ age, type="n", data=data)

points(log(fev) ~ age, col='red', pch=15, data=data[data$smoke==1,])
points(log(fev) ~ age, col='blue', pch=16, data=data[data$smoke==2,])

legend ("topleft", c("Smokers", "No Smokers"), col=c("red", "blue"), pch=c(15,16))
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Bayesian GLM in R: arm package

> ## -- Normal priors for regression coefficients (with mean=0 and scale=10)

> fit <- bayesglm(log(fev) ~ smoke + age, data=data, family=gaussian, prior.mean=0,
prior.scale=10, prior.df=Inf)

> summary (£it3)

Call:
bayesglm(formula = log(fev) ~ smoke + age, family = gaussian,

data = data, prior.mean = 0, prior.scale = 10, prior.df = Inf)

Deviance Residuals:

Min 10 Median 30 Max H H
-0.71124 -0.13458 0.00104 0.14910 0.60260 Thls ca_n be Interpret_ed as
posterior mean/median &

Coefficie . . . .
Torimare sia ook vared B posterior standard deviations

(Intercept) -0.156900 0.075106 | -2.08 0.03709 f Of the I’egl’eSSIon coefﬁClents

smoke 0.089923 0.030049 2.993) 0.00287 f*

age 0.090767 0.003046 § 29.801) < 2e-16 f**

Signif. codes: 0 Y***/ 0,001 “**’ 0.01 “*’ 0.05 ‘. AR

(Dispersion parameter for gaussian family taken to be 0.04421

Null deviance: 72.526 on 653 degrees of freedom
Residual deviance: 28.920 on 654 degrees of freedom
AIC: -175.58

This can be interpreted as

two-sided posterior tail

probabilities of “no effect”...
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Number of Fisher Scoring iterations: 5

Bayesian GLM in R: arm package

= More formally, the posterior probabilities are:

2xmin(P(f; < 0ldata), P(f; = 0ldata))

0.089923, sd =0.030049)
0

6

dnorm(beta, mean

-0.1 0.0 0.1 0.2 03
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Bayesian GLM in R: arm package

call:
Im(formula - log(fev) ~ smoke + age, data - data
Residuals:

Min 10  Median 30 Max
-0.71124 -0.13458 0.00104 0.14909 0.60261
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -0.156915 0.075279 =-2.084 0.03751 *
smoke 0.089927  0.030118  2.986 0.00293 **
age 0.090768  0.003053 29.733 < 2e-16 ***
Signif. codes: 0 “¥**7 0.001 ‘**/ 0.01 ‘*/ 0.05 ‘.’ 0.1 * 1
Residual standard error: 0.2108 on 651 degrees of freedom
Multiple R-squared: 0.6012, Adjusted R-squared: 0.6
F-statistic: 490.8 on 2 and 651 DF, p-value: < 2.2e-16

Traditional inference

Bayesian inference

Exercise:
Draw similarities & differences
(what explains similarities?)

Call:
bayesglm(formula = log(fev) ~ smoke + age, family = gaussian,
data = data, prior.mean = 0, prior.scale = 10, prior.df = Inf)

Deviance Residuals:

in 1 Median 3 Max
-0.71124 -0.13458  0.00104  0.14910  0.60260
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.156900  0.075106 -2.089 0.03709 *
smoke 0.089923  0.030049  2.993 0.00287 *
age 0.090767  0.003046 29.801 < 2e-16 **
Signif. codes: 0 “***’ 0,001 ‘**’ 0,01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1

(Dispersion parameter for gaussian family taken to be 0.04421991)

72.526
28.920

on 653
on 654

Null deviance:
Residual deviance:
AIC: -175.58

degrees of freedom
degrees of freedom

115

Bayesian GLM in R: INLA package

Bayesian linear regression: FEV data

> library (INLA)

> fit = inla(log(fev)~ smoke + age, data=data)
> fit$summary.fix

mean sd 0.025quant
(Intercept) -0.15691453 0.075213737 -0.30461595
smoke 0.08992702 0.030091877 0.03083392
age 0.09076807 0.003050123 0.08477837
> fit$summary.hy

mean

Precision for the Gaussian observations 22.58597 1.250476

0.5quant 0.975quant mode kld
-0.15691665 -0.009339742 -0.15691453 4.170371e-14
0.08992617 0.148969457 0.08992702 4.070901e-14
0.09076798 0.096752630 0.09076807 4.661605e-14

sd 0.025quant 0.5quant 0.975quant mode
20.20882 22.55905 25.12505 22.51306
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Bayesian GLM in R: INLA package

Bayesian linear regression: FEV data

fit.priorl = inla(log(fev)~ smoke + age, data=data,
control.family = list(
hyper = list(
prec = list( . . . . .
prior = "normal”, Making prior assumptions explicit
param = c (0, 10)
)
)
)
)
fit.priorl$summary.fix
fit.priorl$summary.hy

> fit.priorl$summary.fix
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -0.15691451 0.079087993 -0.31222632 -0.15691674 -0.001736104 -0.15691451 4.714742e-14
smoke 0.08992701 0.031641908 0.02778911 0.08992612 0.152011540 0.08992701 4.721406e-14
age 0.09076807 0.003207235 0.08446975 0.09076798 0.097060977 0.09076807 4.216079%e-14
> fit.priorl$summary.hy
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for the Gaussian observations 20.42931 1.169583 18.20924 20.403 22.80734 20.35767
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Survival Models: Notation

= Let T be a continuous non-negative random variable
representing survival times of individuals in some
population
= Density function (pdf): f(t)
= Distribution function (cdf): F(t)
= Fraction of people dying by time t
Survival function: S(t)
« Fraction of people surviving at time t
= Hazard function: h(t)
= Instantaneous risk of death
Cumulative Hazard: H(t)
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iSurvival Models: Relationships

= Likelihood contribution for a subject
h(t) = & who dies
S(1) f(@)=h@)S(t)

H (t) _ f h (u) du . Iv_\:llflgllir;ocognggpetgbutlon for a subject

0

t S(1)
F(t)= f f(u)du o

0 = Thus, if d is the indicator of death,
S([) =]- F(f) = exp(—H(t)) we can write:

QIO

f(@)=h(®)S(t) = h(t)exp(-H (1))

—
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* Survival Models: Proportional Hazards

= Proportional Hazards (PH) Model:
h(t) = hy()exp(B, + BX, +...+B,X,)

= Parametric vs Semi-parametric PH model?
= What is the form of the baseline hazard (hy(.)) function?
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PH regression models in R

= Data from the German Breast Cancer Study Group 2 contains
the observations of 686 women:

= horTh hormonal therapy, a factor at two levels no and yes.

= age age of the patients in years.

= menostat menopausal status, a factor at two levels
pre(premenopausal) and post (postmenopausal)

= tsize tumor size (in mm)

= tgrade tumor grade, a ordered factor at levels I < II < III.

= pnodes number of positive nodes

= progrec progesterone receptor (in fmol)

= estrec estrogen receptor (in fmol)

= time recurrence free survival time (in days)

= Cens censoring indicator (0- censored, 1- event).

> ## -- data publicly available in an R-package
> data ("GBSG2", package="TH.data")
> summary (GBSG2)
horTh age menostat tsize tgrade pnodes progrec estrec time
no :440 Min.  :21.00 Pre :290 Min. : 3.00 I : 81 Min. 1.00 Min. : 0.0 Min. : 0.00 Min. : 8.0
yes:246  1st Qu.:d6. Post:396  1st Qu.: 20.00 II :444 1st Qu.: 1.00 1st Qu.: 7.0 1Ist Qu.: 8.00 1st Qu.: 567.8
Median Median : 25.00 III:161 Median : 3.00 Median : 32.5 Median : 36.00 Median :1084.0
Mean Mean :29.33 Mean : 5.01 Mean : 110.0 Mean 1 96.25 Mean :1124.5
3rd Qu.:61.00 3rd Qu.: 35.00 3rd Qu.: 7.00 3rd Qu.: 131.8  3rd Qu.: 114.00  3rd Qu.:1684.8
Max.  :80.00 Max.  :120.00 Max. :51.00 Max. :2380.0 Max. :1144.00 Max.  :2659.0
0000
0000
0000
4359
0000 o ‘monal Ther:
1.0000 2 Hormonal Therapy
yes
— no
@ |
3
@
S
2z
3
8 -
2
e
e
<
3 LAA,
o
8
o
S
T T T
0 500 1000 1500 2000 2500
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> ## (Semi-Parametric) Cox PH model

> fitl <- coxph(Surv(time, cens) ~ horTh, data=GBSG2)
> summary (fitl)

Call:

coxph (formula = Surv(time, cens) ~ horTh, data = GBSG2)

PH regression models

coef exp(coef) se(coef) z Pr(>lzl) In R
horThyes -0.3640 0.6949 0.1250 -2.911 0.0036 **

Signif. codes: 0 ‘***’/ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' 1

n= 686, number of events= 299

exp (coef) exp(-coef) lower .95 upper .95
horThyes 0.6949 1.439 0.5438 0.8879

Concordance= 0.543 (se = 0.015 )

Rsquare= 0.013  (max possible= 0.995 )

Likelihood ratio test= 8.82 on 1 df, p=0.002977
Wald test = 8.47 on 1 df, p=0.003602
Score (logrank) test = 8.57 on 1 df, p=0.003425

> ## Parametric survival (Weibull regression)
> library(eha)
> fit3 <- weibreg(Surv(time, cens) ~ horTh, data=GBSG2)
> summary (£it3)
call:
weibreg(formula = Surv(time, cens) ~ horTh, data = GBSG2)
Covariate Mean Coef Exp(Coef) se(Coef) wWald p
horTh
no  0.604 0 1 (reference)
yes  0.396  -0.393 0.675 0.125 0.002
log(scale) 7.608 2015.149 0.058 0.000
1log (shape) 0.251 1.285 0.050 0.000
Events 299
Total time at risk 771400
Max. log. likelihood -2632.1
LR test statistic 10.4
Degrees of freedom 1
overall p-value 0.00128307
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Bayesian PH regression models in R:

Non-parametric

> library (INLA)

> ## Bayesian non-parametric PH model

> fit <- inla(inla.surv(time, cens) ~ horTh, family="coxph",data=GBSG2)
> summary (fit)

call:
Time used:
Pre-processing  Running inla Post-processing Total

0.0948 0.5117 0.0574 0.6639

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant  mode kld
(Intercept) -7.7078 0.1403 -7.9948 -7.7039  -7.4426 -7.6965 0
horThyes ~ -0.3660 0.1249  -0.6145 =-0.3650 -0.1237 -0.3628 0

Random effects:
Name Model
baseline.hazard RW1 model

Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant mode
Precision for baseline.hazard 1451.61 943.88 363.52 1221.72  3902.23 849.37

Expected number of effective parameters(std dev): 9.484(1.091)
Number of equivalent replicates : 497.48

Marginal Likelihood: -1379.80
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Bayesian PH regression models in R:

Parametric

> ## Bayesian parametric PH model
> fit <- inla(inla.surv(time, cens) ~ horTh, family="weibull",data=GBSG2)
> summary (£it)

call:
c("inla(formula = inla.surv(time, cens) ~ horTh, family = \"weibull\", ", " data = GBSG2)")
Time used:

Pre-processing Running inla Post-processing Total

0.0698 1.2193 0.0485 1.3376

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant  mode  kld
(Intercept) -9.5518 0.4442  -10.2282 -9.3908 -8.9047 -9.3598 le-04
horThyes ~ -0.3891 0.1248 -0.6373 -0.3880 -0.1470 -0.3859 0e+00

The model has no random effects

Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant mode
alpha parameter for weibull 1.2651 0.0749 1.1438 1.2557  1.4339 1.2290

Expected number of effective parameters(std dev): 2.005(0.00)
Number of equivalent replicates : 342.15

Marginal Likelihood: -2641.95
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LONGITUDINAL ANALYSIS OF SERIAL MEASUREMENTS OF
FREE AND TOTAL PSA AMONG MEN WITH AND
WITHOUT PROSTATIC CANCER

JAY D. PEARSON, ALBERT A. LUDERER, E. JEFFREY METTER, ALAN W. PARTIN,
DANIEL W. CHAN, JAMES L. FOZARD, anp H. BALLENTINE CARTER

Example: Longitudinal data

Urology 48(6A):4-9,1996
ABSTRACT

Objectives. Evaluation of free and total serum prostate specific antigen (PSA) levels before diagnosis of
prostate cancer.

[Methods. Free and total PSA levels were measured on frozen sera samples of 26 men with no history of
prostate disease (controls), 29 men with a histologic diagnosis of benign prostatic hyperplasia (BPH) made
at simple prostatectomy (BPH cases), and 23 men with a histologic diagnosis of prostatic cancer (cancer
cases). Longitudinal regression analysis was used to evaluate PSA levels as a function of years before diag-
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Covariation in the socioeconomic determinants of self rated
health and happiness: a multivariate multilevel analysis of
individuals and communities in the USA

S V Subramanian,
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Objective: To investigate individual level determinants of self rated health and happiness, as well as the
extent of community level covariation in health and happiness.

Design: Multivariate multilevel regression analysis of self rated poor health and unhappiness at level 1,
nested within 24 118 people at level 2, nested within 36 communities at level 3. Data were obtained from
the 2000 social capital benchmark survey.

Setting: USA communities.

Participants: 24 118 adults.

Main outcome measures: Self reported fair/poor hedlth; and a single item measure of subjective
wellbeing.

Results: Controlling for demographic markers, a strong income and education gradient was seen for self
rated poor health and unhappiness, with the gradient being stronger for poor health. Community level
correlations between self rated poor health and happiness were stronger (0.65) than the individual level

[Accepted for publication correlations (0.16) between the two outcomes.

22 October 2004 Conclusion: Poor health and unhappiness are highly positively correlated within individuals, and
....................... communities that are healthier tend to be happier and vice versa.
Level 3: Communities T 36 Figure 1 Multivariate multilevel
structure of responses (PH, poor health;
UH, unhappy) at level 1 nested within
individuals at level 2 nested within
communities at level 3
Level 2: Individuals T 100 T 75
level 1: Outcomes ~ PH UH PH UH PH UH PH UH
Amorican Journal of Epidemiology Vol 145, No. 6
Copyright © 1997 by The Johns Hopkins University School of Hygiene and Public Health Printed in US.A.
I rights reserved
Spatial Analysis of the Distribution of Lyme Disease in Wisconsin
Uriel Kitron' and James J. Kazmierczak?
Surveillance measures for human cases of Lyme disease in were and with
tick distribution and vegetation coverage. During 1991-1994, 1,759 confirmed human cases of Lyme disease
reported to the Wisconsin Division of Heaith were assigned a county of residence, but only 329 (19%) could
be assigned with certainty a county of exposure. Distributions of cases by county of exposure and residence
were often consistent from year to year. Tick distribution in 46 of 72 Wisconsin counties was mapped based
on i by surveys of infested deer, and submissions from the public. Satellite
data were used to calculate a normalized difference vegetation index (NDVI) for each county. A geographic
information system (GIS) was used to map distributions of human Lyme disease cases, ticks, and degree of
vegetation cover. Human case distribution by county of exposure was significantly correlated with tick
distribution; both were positively correlated with high NDVI values in spring and fall, when wooded vegetation
could be distinguished from agricuttural crops in the satellite image. Statistical analysis of spatial pattems
using a measure of spatial autocorrelation indicated that counties with most human cases and ticks were t.) fﬂg‘*‘ k.ANo?\ o cases
clustered in parts of western Wisconsin. A map delineating the counties with highest risk for Lyme disease @ 11 ek AND 1 casel OR 1-10 cases
transmission was generated based on numbers of exposed human cases and tick concentrations. Am J ° @ >10ticks OR >10cases
Epidemiol 1997;145:558-66. Ld A
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FIGURE 4. Lyme disease endemicity in Wisconsin counties,
1970-1995, as determined by county of exposure for human cases
and known distribution of Ixodes scapularis.
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Time Series Analysis of Incidence Data of Influenza in Japan
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ABSTRACT

Background: Much effort has been expended on interpreting the mechanism of influenza epidemics, so as to better

predict them. In addition to the obvious annual cycle of influenza epidemics, longer-term incidence patterns are

present. These so-called interepidemic periods have long been a focus of epidemiology. However, there has been less

investigation of the interepidemic period of influenza epidemics. In the present study, we used spectral analysis of

influenza morbidity records to indentify the interepidemic period of influenza epidemics in Japan. « T H
Methods: We used time series data of the monthly incidence of influenza in Japan from January 1948 through Example' Time series data
December 1998. To evaluate the incidence data, we conducted maximum entropy method (MEM) spectral analysis,

which is useful in investigating the periodicities of shorter time series, such as that of the incidence data used in the

present study. We also conducted a segment time series analysis and obtained a 3-dimensional spectral array.

Results: Based on the results of power spectral density (PSD) obtained from MEM spectral analysis, we identified 3

periodic modes as the interepidemic periods of the incidence data. Segment time series analysis revealed that the

amount of amplitude of the interepidemic periods increased during the occurrence of influenza pandemics and

decreased when vaccine programs were introduced.

Conclusions: The findings suggest that the temporal behavior of the interepidemic periods of influenza epidemics

is correlated with the magnitude of cross-reactive immune responses.
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Modeling of Correlated Data:

Motivation

= Degree of “similarity” may help with prediction!
= Lyme disease incidence rates more similar in closer neighborhoods
= Incidence rates of flu more similar within “short” time periods
= Incidence rates of flu with similar seasonal patterns (e.g. Winter) across

years

= Happiness rates more similar from individuals within the same
communities

| | e
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Hierarchical Model
Example:

= Goal:
= Study the effectiveness of cardiac treatments

@ @ @ Survival probability
@ @ 0 Responses in hospitals

Independent Data
(Separate analysis using data from each study)
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Hierarchical Model
Example:

= Goal:
» Study the effectiveness of cardiac treatments

@ @ @ Survival probability
G @ 0 Responses in hospitals

It may be reasonable to expect that estimates of 6;" s, which represent a
sample of hospitals, should be related to each other: 6;~ n(¢), j=1,...,J.
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Hierarchical Model
Example:

= Goal:
= Study the effectiveness of cardiac treatments

@ @ @ Survival probability
@ @ 0 Responses in hospitals

This implies, marginally, correlation between observations!
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Hierarchical Model
Example:

= Goal:

» Study the effectiveness of cardiac treatments
= 6;: survival probability for patients in hospital j
= ¢ : overall survival probability

= Inference:
= Estimate 6;" s borrowing strength of information from all other hospitals
= Estimate ¢ taking into account the variability among hospitals
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Hierarchical Model:
Exchangeability

= Definition: Y, ..., Y, are judged exchangeable if the
probability P(Y;, ..., Y,) is unaffected by permutations of
the labels attached to the variables.

« Example:

If P(Y1,Y,,Y3)=P(Y,,Y1,Y3)=P(Y,,Y3,Y)=
=P(Y,Y3,Y,)=P(Y5,Y,Y,5)=
= P(Y31Y21Y1)

we would judge Y,,Y,,Y;
exchangeable!
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Hierarchical Model:
Exchangeability

= Note:

= An infinite sequence of random variables Y;, Y,, ... is
exchangeable if any finite subsequence is exchangeable.

» Independence implies exchangeability, but not conversely!
That is, independence is a stronger assumption than
exchangeability.
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Hierarchical Model:
Exchangeability

P(Y,=0;Y,=1)= P(Y, = 1,Y, = 0) = 0.09
0 1 Total
0 0.01 |0.09 |0.10
1 0.09 |0.81 |0.90
Total [{0.10 |0.90 |1.00

P(Y1 = 0;Y2= 1): P(Y1 = 1;Y2= 0)= 0.05

If two random variables Y; and Y, 0 1 Total
are independent then they are 0 0.05 0.05 0.10

exchangeable, but exchangeability

does not imply independence... 1 0_05 0.85 0_90
Total [0.10 [0.90 |1.00 *

Hierarchical Model:
Exchangeability

= Checking exchangeability could be difficult if we had to
assess the probabilities of all permutations

= We can bypass this with a nice result...
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Hierarchical Model:

Exchangeability: De Finetti’s theorem

= For all infinite sequences of exchangeable random binary variables {Y;, Y,
...}, there corresponds a distribution function F on (0,1) such that for all n and

k <n,

Pl(k,n k)] = f 6" (1-6)"* dF ()

= What is “cool” about this?

= Justifies the Bayesian approach:
= If one is willing to assume that a collection of 0-1 variables is exchangeable, then one is
prepared to re-phrase the model into a sampling Bernoulli model with success probability 6
that is itself random with probability distribution F (the prior).
= The theorem does not tell us anything about what the distribution F should be!

$,
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Hierarchical Model:

Exchangeability: De Finetti’s theorem

Representation:

| (Yy,...,Y,) exchangeable |
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Hierarchical Model:

Exercise (back to example)

= Where would we assume exchangeability?

@ @ @ Survival probability
@ @ G Responses in hospitals
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Hierarchical Models

. inition:
= A Bayesian Hierarchical model is a statistical model (f(x|6),
71(0)) where the prior distribution n(6) is decomposed in
conditional distributions
m1(010,), m5(6410), ..., m,(0,.116,)
and a marginal distribution =, (8,) such that
J'l?(@)=f3171(6|61), n2(61|62)l ey nn(en-llen) J'l7n+1(en) del"' den

Parameters 6; are called hyperparameters of level I

= Higher level of hierarchy assumes known hyperparameters.

= Difficult to check propriety of posteriors with improper priors

= Proper distributions which are almost vague can also approach impropriety with undesirable
modeling results

= Sensitivity analysis is very important in hierarchical modeling
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Hierarchical Models

distributions

= Approach to building complex models by specifying a series of conditional

= Parameters in the model can be regarded as related or connected in some
way by the structure of the problem

= Typically data have multi-level/hierarchical structure (observational units
grouped into larger units)
= Example: students are grouped into classes, which are grouped into schools, which
are grouped by districts...
= Levels of inference dependent on scientific questions of interest
= Example: Multi-center clinical trial
= Magnitude of an “average” treatment effect?
= Magnitude of treatment effect in each center?
= Amount of variation of the effect across centers?

143

|mcacy of BCG Vaccine

in the Prevention of Tuberculosis

Meta-analysis of the Published Literature

isabeth Burdick, MSc; Harvey V. Fineberg, MD, PhD; Frederick Mosteller, PO

raham A, Colditz, MD. DrPH; Timothy . Brewer, MD, MPH; Catherine S. Berkey, DSc. MA; Mary E. Wison, MD,

@ STUDY

Objective.—To quantify the efficacy of BCG vaccine against tuberculosis (TB).

Data Sources.—MEDLINE with index terms BCG vaccine, tuberculosis, and
human. Experts from the Centers for Disease Control and Prevention and the World
Health Organization, among others, provided lists of all known studies.

Study Selection.—A total of 1264 articles or abstracts were reviewed for details
on BCG vaccination, concurrent vaccinated and unvaccinated groups, and TB out-
come; 70 articles were reviewed in depth for method of vaccine allocation used to
create comparable groups, equal surveillance and follow-up for recipient and con-
current control groups, and outcome measures of TB cases and/or deaths. Four-
teen prospective trials and 12 case-control studies were included in the analysis.

Data Extraction.—We recorded study design, age range of study population,
number of patients enrolled, efficacy of vaccine, and items to assess the potential
for bias in study design and diagnosis. At least two readers independently extracted
data and evaluated validity.

Data Synthesis.—The relative risk (RR) or odds ratio (OR) of TB provided the
measure of vaccine efficacy that we analyzed. The protective effect was then com-
puted by 1—-RR or 1—OR. A random-effects model estimated a weighted average
RR or OR from those provided by the trials or case-control studies. In the trials, the
RR of TB was 0.49 (95% confidence interval [Cl], 0.34 to 0.70) for vaccine recipi-
ents compared with nonrecipients (protective effect of 51%). In the case-control
studies, the OR for TB was 0.50 (95% Cl, 0.39 to 0.64), or a 50% protective effect.
Seven trials reporting tuberculous deaths showed a protective effect from BCG
vaccine of 71% (RR, 0.29; 95% Cl, 0.16 to 0.53), and five studies reporting on
meningitis showed a protective effect from BCG vaccine of 64% (OR, 0.36;
95% Cl, 0.18 to 0.70). Geographic latitude of the study site and study validity score
explained 66% of the heterogeneity among trials in a random-effects regression
model.

Conclusion.—On average, BCG vaccine significantly reduces the risk of TB by
50%. Protection is observed across many populations, study designs, and forms
of TB. Age at vaccination did not enhance predictiveness of BCG efficacy. Protec-
tion against tuberculous death, meningitis, and disseminated disease is higher than
for total TB cases, although this result may reflect reduced error in disease clas-
sification rather than greater BCG efficacy.

(JAMA. 1994;271:698-702)




Table 1.—Reports From Clinical Trials Providing Estimates of Efficacy of BCG Vaccine Against Cases of Tuberculosis (TB) and TB Death That Were Used in the
Meta-analysis*

Population Cases of TB TB Death
Source, y [BCG No BCGI IBCG No BCG RR1 ]BCG No BCG RRI

Aronson,® 19481 123 139 4 11 0.41 0 4 0.14
Ferguson and Simes,* 1949 306 303 6 29 0.20 2 9 0.22
Rosenthal et al,** 19603 231 220 3 11 0.26 0 4 0.12
Hart and Sutherland,* 1977 13 598 12 867 62 248 0.24
Frimodt-Moller et al,* 1973 5069 5808 33 47 0.80
Stein and Aronson,* 1953 1541 1451 180 372 0.46
Vandiviere et al,* 1973 2545 629 8 10 0.20
Madras,'® 1980§ 88 391 88 391 505 499 1.01
Coetzee and Berjak,® 1968|| 7499 7277 29 45 0.63 .. .. ..
Rosenthal et al,** 19619 1716 1665 17 85 0.25 1 6 0.16
Comstock et al,*” 1974 50 634 27 338 186 141 0.71 8 12 0.36
Comstock and Webster,* 1969# 2498 2341 5 3 1.56
Comstock et al,* 1976# 16913 17 854 27 29 0.98 cos “os ves
Aronson et al,*' 1958** 1541 1451 vee .. L. 13 68 0.18
Levine and Sackett,* 19481t 566 528 cee .. e 8 8 0.93
Overall RR (95% confidence interval) 0.49 (0.34-0.70) 0.29 (0.16-0.53)

*RR indicates relative risk. Ellipses indicate data not reported.

tlnfants study.

478 households.

§Data based on 7.5-year follow-up of entire lion numbers because they were not reported.

iIMiners vandomlzad dunng year 3 of the trial had a !runoutod lolluw-up penod we used person-years of follow-up to estimate total sample size.
INon-T1

#Follow-up umple slzos were not reported. We follow-up was in BCG and no BCG groups.

**This report on deaths is based on the same trial as Stein and Aronson, 19534

ttData after 1932 recruitment.

65} STUDY
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Systematic Reviews and Meta-Analysis

= Motivation:

= Many individual clinical trials are not large enough to answer
the questions of interest reliably

= Solutions
= Advocacy for large trials
= Not always feasible

» Informal evidence synthesis from different studies
= Possibility of biased selection of evidence

= Formal systematic review
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Systematic Reviews and Meta-Analysis

= Goals of Systematic Reviews:

= To review systematically the available evidence from a
particular research area

= To provide quantitative summaries of the results from each
study

= To combine the results across studies if appropriate; such
combination of results leads to greater statistical power in
estimating treatment effects

= To asses the amount of variability between studies

= To estimate the degree of benefit associated with a particular
study treatment

= To identify study characteristics associated with particularly
effective treatments.
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Systematic Reviews and Meta-Analysis

= Components of Systematic Reviews:
= Qualitative:

= Description of available trials in terms of relevance and methodological
strengths and weaknesses

= Quantitative
= Means of combining results from different studies
= This is known as Meta-Analysis

= Critical Step:
= Study selection
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Systematic Reviews and Meta-Analysis

= Statistical Methodology

= Fixed effects models

= Each individual study used to estimate a common, unknown, overall
pooled effect

= Random effects models

« Each individual study has its own underlying effect, which in turn are
used to estimated a common population effect.

= Accounts for two sources of heterogeneity:
Within-study heterogeneity
Between-study heterogeneity
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Systematic Reviews and Meta-Analysis

= Fixed-Effects (Mantel-Haenszel):

k
JWY, 1

Pooled Effect : ¥ ==L with Var(Y) =
W,
=1

i

k : number of studies

i

k
W
=1

Y, : effect size in the i-th study

W, : weight (inverse of within-study variance for i-th study)
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Systematic Reviews and Meta-Analysis

= Random-Effects (DerSimonian-Laird):

Y=u +0¢ fori=1,.k
w,~N(u,t*); & ~N(0,1)

k

WY,
Pooled Effect: Y = =L ; Weights: W, = Vs
2V i
i=1
0,if Q<k-1

A2
T =

V) U=(k=-1)(W=s/kW)

l

©O-k+1)/U,if O>k-1
k
Q

|
Wi

1
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* Systematic Reviews and Meta-Analysis

= Heterogeneity is very likely in meta-analysis
= Many possible sources of heterogeneity

» Estimating how these various factors affect the effect size is

often of considerable interest and importance
= Meta-regression!
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Efficacy of BCG Vaccine
in the Prevention of Tuberculosis

BCG Exam ple Meta-analysis of the Published Literature

Graham A. Colditz, MD, DrPH; Timothy F. Brewer, MD, MPH; Catherine S. Berkey, DSc, MA: Mary E. Wilson, MD:
Elisabeth Burdick, MSc; Harvey V. Fineberg, MD, PhD; Frederick Mosteller, PhD

= Bacille Calmette Guerin (BCG)
= Most widely used vaccine against tuberculosis (TBC)

= Expanded Data: publicly available in R

= 13 clinical trials of BCG investigating efficacy in the treatment
of tuberculosis
=« Number of subjects with TB with our without BCG vaccination

= Heterogeneity among trials may be explained by geographic
location and year

= Efficacy measure: Odds Ratio (OR)

@ STUDY
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BCG Example

= Data:
trial author year tpos tneg cpos cneg ablat alloc
Aronson 1948 4 119 11 128 44 random
2 Ferguson & Simes 1949 6 300 29 274 55 random
3 Rosenthal et al 1960 3 228 11 209 42 random
4 Hart & Sutherland 1977 62 13536 248 12619 52 random
5 Frimodt-Moller et al 1973 33 5036 47 5761 13 alternate
6 Stein & Aronson 1953 180 1361 372 1079 44 alternate
7 Vandiviere et al 1973 8 2537 10 619 19 random
8 TPT Madras 1980 505 87886 499 87892 13 random
9 Coetzee & Berjak 1968 29 7470 45 7232 27 random
10 Rosenthal et al 1961 17 1699 65 1600 42 systematic
11 Comstock et al 1974 186 50448 141 27197 18 systematic
12 Comstock & Webster 1969 5 2493 3 2338 33 systematic
13 Comstock et al 1976 27 16886 29 17825 33 systematic

= The 13 studies provide data in terms of 2x2 tables in the form:
TB positive TB negative
vaccinated group tpos tneg

control-group————————€pes————eneg—————————
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BCG Example

## Meta-Analysis
library (metafor)

## load data
data (dat.bcg)

## Part A: frequentist analysis

##-- meta-analysis of the log odds ratio using the Mantel-Haenszel method
res.fe <- rma.mh(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
slab=paste (author, year, sep=", "))

### forest plot of the observed odds ratio with summary estimate

forest (res.fe, atransf=exp, xlim=c(-7,5), ylim=c(-2.5,16))

##-- meta-analysis of the log odds ratio using a random-effects model

res.re <- rma(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
slab=paste (author, year, sep=", "))

### add summary estimate from the random-effects model to forest plot
addpoly (res.re, atransf=exp)

### forest plot of the observed odds ratio with summary estimate

forest (res.re, atransf=exp, xlim=c(-7,5), ylim=c(-2.5,16)
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BCG Example (A): Standard Meta-Analysis

Mantel-Haenszel

> res.fe
Fixed-Effects Model (k = 13)

Test for Heterogeneity:
Q(df = 12) = 163.9426, p-val < .0001

Model Results (log scale):

estimate se zval pval ci.lb ci.ub
-0.4734 0.0410 -11.5444 <.0001 -0.5538 -0.3930

Model Results (OR scale):

estimate ci.lb ci.ub
0.6229 0.5748 0.6750

Cochran-Mantel-Haenszel Test: CMH = 135.6889, df = 1, p-val < .0001
Tarone's Test for Heterogeneity: X*2 = 171.7567, df 12, p-val < .0001
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BCG Example (A): Standard Meta-Analysis

Mantel-Haenszel

Aronson, 1948
Ferguson & Simes, 1949
Rosenthal et al, 1960
Hart & Sutherland, 1977
Frimodt-Moller et al, 1973
Stein & Aronson, 1953
Vandiviere et al, 1973
TPT Madras, 1980
Coetzee & Berjak, 1968
Rosenthal et al, 1961
Comstock et al, 1974

Comstock & Webster, 1969

Comstock et al, 1976

———y

s
—_—

-
e

HilH

| E—
-
poom

[ |

= =

12,1.26]
.08,0.46 ]
.07,0.91]
18,0.31]
51,1.26]
.32,047]
.08, 0.50]
.89,1.15]
.39,1.00]
14,042]
0.57,0.89]

OO0 0000000

Y 56[037 6.55]

0.98[0.58,1.66]

FE Model

0.62[0.57,0.68]

T [ 1

1

0.05 0.14 0.37 1.00 2.72 7.39
Odds Ratio (log scale)
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BCG Example (A): Standard Meta-Analysis

DerSimonian-Laird

> res.re

Random-Effects Model (k = 13; tau”2 estimator: REML)

tau”2 (estimated amount of total heterogeneity): 0.3378 (SE = 0.1784)
tau (square root of estimated tau”2 value): 0.5812
I”2 (total heterogeneity / total variability): 92.07%
H*2 (total variability / sampling variability): 12.61
Test for Heterogeneity:
Q(df = 12) = 163.1649, p-val < .0001
Model Results:
estimate se zval pval ci.lb ci.ub
-0.7452 0.1860 =-4.0057 <.0001 -1.1098 -0.3806 i
Signif. codes: 0 “***/ 0.001 ‘**’/ 0.01 *’ 0.05 '.” 0.1 "’ 1

The heterogeneity test shows strong evidence of heterogeneity in the 13 trials!,




BCG Example (A): Standard Meta-Analysis

DerSimonian-Laird

Aronson, 1948 - 0.39[0.12,1.26]
Ferguson & Simes, 1949 ——a—— 0.19[0.08,0.46]
Rosenthal et al, 1960 0.25[0.07,0.91]
Hart & Sutherland, 1977 - 0.23[0.18,0.31]
Frimodt-Moller et al, 1973 e 0.80[0.51,1.26]
Stein & Aronson, 1953 il 0.38[0.32,047]
Vandiviere et al, 1973 ——-— 0.20[0.08,0.50]
TPT Madras, 1980 ] 1.01[0.89, 1.15]
Coetzee & Berjak, 1968 o 0.62[0.39,1.00]
Rosenthal et al, 1961 . 0.25[0.14,042]
Comstock et al, 1974 " 0.71[0.57,0.89]
Comstock & Webster, 1969

Comstock et al, 1976 . 0.98 [ 0.58 , 1,66]
RE Model - 0.47[0.33,0.68]

| T [ 1 | 1
0.05 0.14 0.37 1.00 2.72 7.39

Odds Ratio (log scale)

159

BCG Example

### meta-regression

##-- calculate log odds ratios and corresponding sampling variances

dat <- escalc (measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
head(dat)

### random-effects model (output is the same as seen for res.re)
res <- rma(yi, vi, data=dat)
res

### average relative risk with 95% CI (this will give you the OR from combined studies)
predict (res, transf=exp)

### meta-regression model with absolute latitude and year as moderator
res.mr <- rma(yi, vi, mods = ~ ablat + year, data=dat)
res.mr
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BCG Example: Meta-Regression Analysis

> res.mr

Mixed-Effects Model (k = 13; tau”2 estimator: REML)

tau”2 (estimated amount of residual heterogeneity): 0.0913 (SE = 0.0745)
tau (square root of estimated tau”2 value): 0.3022

I"2 (residual heterogeneity / unaccounted variability): 67.29%

H”2 (unaccounted variability / sampling variability): 3.06

R”*2 (amount of heterogeneity accounted for): 72.96%

Test for Residual Heterogeneity:
QE (df = 10) = 25.0121, p-val = 0.0053

fest of Moderators (coefficient(s) 2,3):  Some evidence that latitude is associated with
aan T e m s, pral = 0 observed effect size.

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -10.5347 27.3739 -0.3848 0.7004 -64.1865 43.1172
ablat -0.0288 0.0095 -3.0311 0.0024 -0.0475 -0.0102 **
year 0.0055 0.0138 0.3949 0.6929 -0.0216 0.0325

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 "' 1
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BCG Example (A): Meta-Regression Analysis

> res.mrl

Mixed-Effects Model (k = 13; tau”2 estimator: REML)

tau”2 (estimated amount of residual heterogeneity) : 0.0504 (SE = 0.0449
tau (square root of estimated tau”2 value): 0.2246

I%2 (residual heterogeneity / unaccounted variability): 57.39%

H*2 (unaccounted variability / sampling variability): 2.35

R"2 (amount of heterogeneity accounted for): 85.06%

Test for Residual Heterogeneity:
QE (df = 11) = 25.0954, p-val = 0.0088

Test of Moderators (coefficient(s) 2):
OM(df = 1) = 25.2424, p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt 0.3010 0.2146 1.4025 0.1608 -0.1197 0.7217
ablat -0.0315 0.0063 -5.0242 <.0001 -0.0438 -0.0192 **x*

Signif. codes: 0 ‘“***’/ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 '’ 1
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BCG Example (B): Bayesian Meta-Analysis

= We will consider several models and compare the results

= First, we need to re-organize the data...
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BCG Example (B): Bayesian Meta-Analysis

dat <- NULL

dat$trial <- rep(seq(l,13),2)
dat$group <- c(rep(l, 13), rep(0,13))
dat$Y <- c(dat.bcg$tpos, dat.bcg$cpos)
dat$N <- rep(NA, 26)

dat$N[1 <- d: beg$tpos + dat.bcg$tneg

dat$N (1 begcpos + dat.beg$cneg

dat$Latitude <- rep(dat.bcg$ablat,2)

dat$centeredLatitude = dat.bcg$ablat - mean (dat.bcg$ablat)
dat$Year <- rep(dat.bcgsyear, 2)

dat$centeredYear = dat.bcg$year - mean(dat.bcgSyear|

datl <- as.data.frame (dat)

$trial
1] 1 2 3 45 6 7 8 910111213 1 2 3 4 5 6 7 8 91011 12 13

sgroup
(111111111111110000000000000

$Y
[11 4 & 3 62 33180 8505 29 17 186 5 27 11 29 11 248 47 372 10 499 45 65 141 3 29

SN
[1] 123 306 231 13598 5069 1541 2545 88391 7499 1716 50634 2498 16913 139 303 220 12867 5808 1451 629 88391
[22] 7277 1665 27338 2341 17854

$latitude
[1] 44 55 42 52 13 44 19 13 27 42 18 33 33 44 55 42 52 13 44 19 13 27 42 18 33 33

$centeredlatitude

[1] 10.5384615 21.5384615 8.5384615 18.5384615 -20.4615385 10.5384615 -14.4615385 -20.4615385 -6.4615385  8.5384615
[11] -15.4615385 -0.4615385 -0.4615385 10.5384615 21.5384615 8.5384615 18.5384615 -20.4615385 10.5384615 -14.4615385
[21] -20.4615385 -6.4615385  8.5384615 -15.4615385 -0.4615385 -0.4615385

$Year
[1] 1948 1949 1960 1977 1973 1953 1973 1980 1968 1961 1974 1969 1976 1948 1949 1960 1977 1973 1953 1973 1980 1968 1961 1974 1969 1976

$centeredYear

[1] -18.230769 -17.230769 -6.230769 10.769231  6.769231 -13.230769  6.769231 13.769231  1.769231 -5.230769  7.769231
[12]  2.769231  9.769231 -18.230769 -17.230769 -6.230769 10.769231  6.769231 -13.230769  6.769231 13.769231  1.769231
[23] -5.230769  7.769231  2.769231  9.769231
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Model 1 (B):

> fitl = inla (Y~ factor(group), data=dat, Ntrials=N, family="binomial")
> summary (£itl)

Call:
c("inla(formula = Y ~ factor(group), family = \"binomial\", data = dat, Ntrials = N)")

Time used:
Pre-processing Running inla Post-processing Total

0.0592 0.0236 0.0308 0.1135

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -4.6895 0.0260 -4.7408 -4.6893 -4.6388 -4.6891 0
factor (group)1l -0.4942 0.0403 -0.5734 -0.4941 -0.4152 -0.4940 0

The model has no random effects
The model has no hyperparameters

Expected number of effective parameters(std dev): 2.029(0.00)
Number of equivalent replicates : 12.81

Marginal Likelihood: -1833.30

The overall posterior median OR=exp(-0.49)=0.61 (95% PCI= 0.57,0.66)
- Very similar results to those obtained using Mantel-Haenszel (fixed-effects).
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Model 1 (B):
.
PostDens [(Intercept)]
: /\
] /
v
= _ ~—
T T T T
-4.80 -4.75 -4.70 -4.65 -4.60
Mean = -4.689 SD = 0.026
PostDens [factor(group)1]
=3
©
©
<
~ 4
o . __— —
T T T T T
-0.7 -0.6 -0.5 -0.4 -0.3
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Mean = -0.494 SD = 0.04




Model 2 (B):

> summary (fit2)

Call:
nla(formula

Time used:

Y ~ factor(group) + centeredlLatitude,

family = \"binomial\",

Pre-processing Running inla Post-processing Total
0.0616 0.0279 0.0370 0.1265
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant  mode kld
(Intercept) -4.3255 0.0269  -4.3787 -4.3254 -4.2730 -4.3251 0
factor(group)l  -0.4748 0.0403  -0.5541 -0.4748  -0.3959 -0.4747 0
centeredlLatitude 0.0385 0.0013 0.0360  0.0385 0.0411 0.0385 0
The model has no random effects
The model has no hyperparameters
Expected number of effective parameters(std dev): 3.028(0.00)

Number of equivalent replicates : 8.586

Marginal Likelihood: -1452.92
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Model 3 (B):

> £3t3 = inla(Y~ -1 + factor(trial) + factor(group), data=dat, Ntrials=N, family="binomial")
> summary (£it3)

call:
c("inla(formula = Y ~ -1 + factor(trial) + factor(group), family = \"binomiall\", ", " data = dat, Ntrials = M)"
Time used:
Pre-processing  Running inla Post-processing Total
0.0982 0.0437 0.0952 0.2371

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant  mode kld
factor(trial)l -2.6017 0.2667  -3.1576 =-2.5905  -2.1088 -2.5674 0
factor(trial)2 -2.5823 0.1752  -2.9403 -2.5773  -2.2519 -2.5672 0
factor(trial)3 =-3.2226 0.2722  -3.7921 -3.2103  -2.7214 -3.1851 0
factor(trial)4 -4.2176 0.0595  -4.3362 -4.2171  -4.1022 -4.2159 0
factor(trial)5 -4.7097 0.1132  -4.9387 -4.7074  -4.4937 -4.7027 0
factor(trial)6 -1.2581 0.0508  ~-1.3585 =-1.2579  -1.1590 -1.2574 0
factor(trial)7 -4.8029 0.2382  -5.2989 -4.7931  -4.3622 -4.7729 0
factor(trial)8 -4.9537 0.0356  -5.0241 -4.9535 -

4.8844 -4.9532 0

factor(trial)9 =-5.0772 0.1177  -5.3154 =-5.0747  -4.8528 -5.0696 0
factor(trial)10 -3.4792 0.1131  =-3.7075 =-3.4770  -3.2630 -3.4725 0
factor(trial)1l -5.1864 0.0597  =-5.3052 -5.1859  -5.0705 -5.1843 0
factor(trial)12 -6.1843 0.3541  -6.9374 -6.1635  -5.5445 -6.1201 0
factor(trial)13 -6.2250 0.1346  -6.4986 =-6.2217  -5.9695 -6.2150 0
factor (group)l -0.4784 0.0413  -0.5597 =-0.4784  -0.3975 -0.4783 0

The model has no random effects
The model has no hyperparameters

Expected number of effective parameters(std dev): 14.01(0.00)
Number of equivalent replicates : 1.855

Marginal Likelihood: -236.63

The overall posterior median OR=exp(-0.48)=0.62 (95% PCI= 0.57,0.67)
- Very similar results to those obtained using Mantel-Haenszel (fixed-effects). 168




Model 4 (B):

> fitd4 = inla(Y~ factor(group) + f(trial, model="iid", param=c(0.001,0.001)), data=dat, Ntrials=N, family="binomial")
> summary (fitd)

Time used:
Pre-processing Running inla Post-processing Total
0.0893 0.0381 0.0551 0.1825
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant  mode kld
(Intercept) -4.2043 0.4260  -5.0507 -4.2041  -3.3600 -4.2039 0
factor(group)l -0.4785 0.0413  -0.5598 -0.4785  -0.3976 -0.4784 0

Random effects:
Name Model
trial IID model
Model hyperparameters:

mean  sd 0.025quant 0.5quant 0.975quant mode
Precision for trial 0.4633 0.1930 0.1802 0.4335  0.9236 0.3733

Expected number of effective parameters(std dev): 13.84(0.0541)
Number of equivalent replicates : 1.879

Marginal Likelihood: =-209.55

The overall posterior median OR=exp(-0.48)=0.62 (95% PCI= 0.57,0.67)
Posterior median precision = 0.43 (posterior median variance = 1/.43=2.33)

Estimated variance under frequentist is much smaller (since it doesn‘t account for uncertainty

in random effects) 169
Model 4 (B):
PostDens [intrcept] .
27 N\ -
\ -
3 /
] /
s 5 M 5 2
o4 20450042 S
PostDens [factor(group)1] ot 0025 053 275
7 / PostDens [Precision for trial]
- ” " X |
Mean =-0479 SD = 0.041 B ‘\
N
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Model 5 (B):

summary (fit5)

Time used:
Pre-processing Running inla Post-processing Total
0.0856 0.0441 0.0602 0.1900
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -4.2001 0.3572 -4.9112 -4.1997 -3.4922 -4.1991 0
factor (group) 1 -0.4782 0.0413 -0.5595 -0.4782 -0.3973 -0.4781 0
centeredLatitude 0.0612 0.0256 0.0103 0.0612 0.1121 0.0612 0
Random effects:
Name Model
trial IID model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
0.6219 1.3772 0.5245

Precision for trial 0.6697 0.2941 0.2467

Expected number of effective parameters(std dev): 13.78(0.0743)

Number of equivalent replicates 1.887

Marginal Likelihood: -214.00

The overall posterior median OR=exp(-0.48)=0.62 (95% PCI= 0.57,0.67)
Posterior median precision = 0.62 (posterior median variance = 1/0.62=1.61)

Improved inference about precision [heterogeneity partially explained by Latitude] -

00 02 04 05 08 10 12

Model 5 (B):

PostDens [factor(group)1]

PostDens [(Intercept)] PostDens [centeredLatitude]

trial

/ A - _

03 005 000 005 010 015 020

Mean = 0478 D = 0041 Mean = 0.061 50 = 0026 ol

PostDens [Precision for trial]

6 8

|
Posthean 0.025% 05% 0975%




Model 6 (C):

> summary (fit6)

Time used:

Pre-processing Running inla Post-processing Total

0.0933 0.0473 0.0649 0.2055
Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant
(Intercept) -4.1401 0.3571 -4.8511 -4.1398 -3.4323
factor (group) 1 -0.7166 0.0480 -0.8114 -0.7164 -0.6229
centeredLatitude 0.0736 0.0256 0.0227 0.0736 0.1246
factor (group) l:centeredLatitude -0.0334 0.0028 -0.0389 -0.0333 -0.0279
Random effects:
Name Model
trial IID model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode

Precision for trial 0.6693 0.2933 0.2461 0.6220 1.3742 0.5249

Expected number of effective parameters(std dev):

Number of equivalent replicates 1.76

Marginal Likelihood: -147.66

14.77(0.0746)

4.
-0.

-0.

mode kld
1391 0
7161 0
.0736 0
0333 0

The posterior mean log-odds ratio (comparing the odds of TB among vaccinated
versus not) decreases by approximately 0.03 for each unit difference from the

average latitude.
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Model 6 (C):

PostDens [(Intercept)] PostDens [factor(group)1]

00 02 04 06 08 10 12

PostDens [centeredLatitude]

Mean = 4.14 8D = 0.357

PostDens [factor(group) :centeredLatitude]

005 000 005 010 015 020

Mean=0074 SD =026

Postbens [Precision for trial]

0 20 40 &0 ® 10

0045 0040 0035 0030

Mean = 0033 $D 0,003 |

tial

. i 10 ”

Pasttean 00255 055 09755
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BCG Example: recap

= With this example we illustrated a few ways in which we could

combine the data from the different studies.
» Random effects: model heterogeneity

= (example: no trivial variation in the response rates across studies!)

= Which model?
= model choice guided by scientific questions
= model choice guided by statistical criteria
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DEPARTMENT OF BIOSTATISTICS

UNIVERSITY of WASHINGTON
School of Public Health

Markov Chain Monte Carlo (MCMC)
* Methods

(Implementation via JAGS)
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iMarkov Chains

= Definition:

= A Markov Chain is a sequence of random variables X;, X,,
X3, ... with the Markovian property, namely that, given the

present state, the future and past states are independent.
Formally,

PX  =x,1X =x,..X,=x,)=P(X,, =x

n+l

X, =x,)

= Definition:
= A Markov Chain is homogeneous if

PX,=ylX =x)=P(X, =ylX, ,=x)=P(x,y) $
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i Markov Chains

= Example:
» State Space: S={0,1}
» Transition Matrix: (conditional probs. in rows)

0.7 03
04 0.6

0.3
How does it behave?
0.7 ° 0 0.6
0.4
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Markov Chains

= Transition matrix in n steps?
P"=SA"S™

« In our example, the eigenvalues of P are 1 and 0.3 with
corresponding eigenvectors (1,1)" and (0.3,-0.4)’ .

= Thus:
A= 1 0 5= 1 03 S = 4/7 3/7
0 03 1 -04 10/7 -10/7

4/7+03™)10/7 3/7+(0.3"*)10/7
417-(03Y4/7  3/7+(03)4/7

P'=
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Markov Chains

= Limiting distribution:
lim P"=[

n—>00

477 317
4/7 3/7

= Note that:
= Largest eigenvalue is 1 (this gives the stationary distribution)
= Rate of convergence is given by the second eigenvalue
= Convergence describe “state” after many iterations
= Stationary distribution does not depend on initial state

= “Subliminal” message:
= If we want to generate an observation from n, we can start anywhere and
generate values from the transition probability matrix. After a length of time
(burn-in), we can pick X, whose distribution is !
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Markov Chains

= Conditions for convergence:
= Aperiodic

= Avoids the chain from oscillating between different sets in a regular
movement

= Irreducible

= Starting from any point, the MC can reach any set with positive
probability

Reducible
chain

Periodic
chain

Disease
2
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Markov Chains and MCMC

= Q: How do we construct a Markov Chain whose
stationary distribution is our target (posterior)
distribution?

= A: Markov Chain Monte Carlo (MCMC)

Luckily, for most models, you can use existing software. Bugs/Winbugs/Jags
are very popular. However, some models are more complex and you would
need to implement your own MCMC (beyond the scope of this module)...
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MCMC methods

= Implementing your own MCMC can be challenging!

= A large variety of models can be implemented in Bugs/
Winbugs/Jags
= “Black-Box”
= You will not need to derive full conditionals
= You will not need to decide on MCMC samplers
= Input:
= Likelihood
= Priors
= [Define any quantity of interest (e.g. Odds Ratio, etc)]
= Output
= Posterior samples
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Jags (Just Another Gibbs Sampler)

= Website:
http://mcmc-jags.sourceforge.net

For MAC: http://sourceforge.net/projects/mcmc-jags/files/JAGS/3.x/Mac OS X/
= Very similar to WinBUGS (with a few differences)
= Goals/features:

» Cross-platform engine for the BUGS language

= Extensible, allowing users to write their own functions,
distributions and samplers.

= Platform for experimentation with ideas in Bayesian
modelling

= Packages:

= rjags: Allows you to run Jags from within R
» coda: Allows you to perform convergence diagnosis
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DEPARTMENT OF BIOSTATISTICS

UNIVERSITY of WASHINGTON
School of Public Health

Bayesian estimation, inference and
prediction using JAGS

Using Jags

Name Usage Density Lower Upper

Beta dbeta(a,b) 2% 11— )t ! 0 1
a>0,b>0 Bla,b)

Chi-square  dchisqr (k) H 0
k>0

Double ddexp (mu, tau)

exponential 7 > é’ Texp(—rlz —pul)/2

Exponential ~dexp(lambda) 0

P N >p0 Aexp(—Ax)

F af (n,m) FEsm) m ay o wm)
n>0,m>0 rate (m) 72 {1+

Gamma dgamma(r, lambda) ATz exp(—A\z) 0
A>0,7>0 I(r

Generalized dgen.gamma(r,lambda,b) APzt exp{—(Az)?} 0

gamma A>0,6>0,7>0 T(r)

Logistic dlogis(mu, tau) Texp{(z —p)r
7>0 [1+exp{(z — p)r}*

Log-normal  dlnorm(mu,tau) 1
>0 ({7) 2z lexp {—T(lug(z) — p)2/2}

Noncentral ~ dnchisqr(k, delta) oo exp(=2)(3)" 2*/27V exp(—% 0

Chisque  k>0,6>0 Y= e

Normal dnorm(mu, tau) Y 2
>0 ()7 exp{—r(z — p)?*/2}

Pareto dpar(alpha, c) actg—(at1) c
a>0,¢>0

Student t dt (mu, tau, k) r(ktl) 1 r(z—p)? 1
7>0,k>0 ) (@) {1+ )

Uniform dunif (a,b) 1 a b
a<b b—a

Weibull :w>elc:a (/‘\I.> tambda) oA exp(—Aa¥) 0

Table 6.1: Univariate real-valued distributions in the bugs module




Using Jags

Name Usage Density Lower Upper
Beta dbetabin(a, b, n) (a+z—1) (b+n—z—1) (Hbﬂl,l)_l 0 n
binomial a>0,b>0,neN* z n—a n
Bernoulli dbern(p) = 1— 0 1
1_ z

O<p<t P"(1-p)

Binomial dbin(p,n) - _ 0 n
1 p)yn—=z

Depelnen Dr(1-p)
Categorical dcat (pi) Tz 1 N

we RHN YT
Noncentral dhyper(ni,n2,m1,psi) (")) (2 )%™ max(0;ny—my)  min(ny,my)
hypergeometric 0 <mn;, 0 <my <ny ()¢
Negative dnegbin(p, r) o4r—1\ 1 - 0
binomial 0<p<l,r>0 (T wra—p)
Poisson dpois(lambda) exp(—A)\® 0

A>0 !

Table 6.2: Discrete univariate distributions in the bugs module
Name Usage Density
Dirichlet p ~ ddirch(alpha) el p]"]_]
. T a
a; >0 4 1L Ta;

Multivariate
normal
Wishart

x ~ dmnorm(mu,Omega)
2 positive definite
Omega ~ dwish(R,k)

()? expt~( — w70 — w)/2}
Q| <—P=1/2| RI¥/2 exp{ —Tr(RQ/2)}

Rpxppos. def., k> p
x ~ dmt(mu,Omega,k)

2PF/2T,(k/2)

Multivariate

Student t Q pos. def. T(k/2)(nr)P?
Multinomial x ~ dmulti(pi, n) \ n;’
Sya=n Lz

TG L 02 1+ fo - )P - )}

Table 6.3: Multivariate distributions in the bugs module
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Link function Description Range Inverse
cloglog(y) <- x Complementary loglog 0<y <1 y <- icloglog(x)
log(y) <- x Log 0<y y <- exp(x)
logit(y) <- x Logit 0<y<1l y <= ilogit(x)
probit(y) <- x  Probit 0<y<1l y <= phi(x)

Table 5.4: Link functions in the bugs module

Function Description

Restrictions

inprod(x1,x2)
interp.lin(e,v1,v2)

Inner product
Linear Interpolation

logdet (m) Log determinant

max(x1,x2,...) Maximum element among all arguments
mean (x) Mean of elements of =

min(x1,x2,...) Minimum element among all arguments
prod(x) Product of elements of x

sum(x) Sum of elements of =

sd(x) Standard deviation of elements of x

Dimensions of z1, z2 conform

e scalar,

v1,v2 conforming vectors

m is a symmetric positive definite mat

Table 5.5: Scalar-valued functions with general arguments in the bugs module

Usage Description Restrictions

inverse(a) Matrix inverse a is a symmetric positive definite matrix
rank (v) Ranks of elements of v v is a vector

order (v) Ordering permutation of v v is a vector

sort (v) Elements of v in order v is a vector

t(a) Transpose a is a matrix

a %*% b Matrix multiplication a,b conforming vector or matrices

Table 5.6: Vector- or matrix-valued functions in the bugs module
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Example 1: using jags

model{
## define likelihood of observations
for (iin 1:n){

yli] ~ dnorm(mu, tausq)
b
## define priors
mu ~ dnorm(0.0, 0.0001)
tausq <- 1/sigmasq
sigmasq ~ dunif(0,100)

Code saved in a text file
(in this case, examplel.jag)
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Example 1: using jags

## simulate data

data.sim <- function(N=1000, mu=0, sigma2=.5) {
y = rnorm(N, mu, sqgrt(sigma2))
return (y)

}

## true values for simulation
n <- 100

mu <-0

sigmasg<- 5

## simulated data
set.seed (1)
y <- data.sim(N=n, mu=mu, sigma2=sigmasq)

## load libraries
library(coda)
library(rjags)

## now prepare data for Jags
data <- list(y=y, n=n)

## initial values
inits <- list (mu=0, sigmasg=1)
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Example 1: using jags

## define Jjags model within R

jags.m <- jags.model (file="examplel.jag", data=data, inits=inits,

n.chains=2, n.adapt=500)

## specify parameters to be monitored
params <- c("mu","sigmasqg")

## run jags and save posterior samples
samps <- coda.samples(jags.m, params, n.iter=10000

## summarize posterior samples
summary (samps)

summary (window (samps, start=1000))
plot (samps)
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Example 1: using jags

jags.m <- jags.model (file="examplel.jag", data=data, inits=inits,
mpiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 108

itializing model

| | 100%
## specify parameters to be monitored

params <- c("mu","sigmasqg")

## run jags and save posterior samples

samps <- coda.samples(jags.m, params, n.iter=10000

| kK KRR KKK KKK KKK KKK KKK KR KKK KRRk kR k%K | 1009

## summarize posterior samples
summary (samps)

erations = 501:10500
inning interval = 1

mber of chains = 2
mple size per chain = 10000
Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
0.2417 0.2057 0.001454 0.001454
gmasq 4.2044 0.6123 0.004329 0.005847
Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
-0.1595 0.1037 0.243 0.3812 0.6408

gmasq 3.1678 3.7724 4.150 4.5722 5.5553

n.chains=2,

n.adapt=500)
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Example 1: using jags

> summary (window (samps, start=1000))

Iterations = 1000:10500
Thinning interval = 1
Number of chains = 2
Sample size per chain = 9501

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Trace of mu Density of mu

Mean SD Naive SE Time-series SE o . ~
mu 0.242 0.2057 0.001492 0.001492 -
sigmasqg 4.207 0.6138 0.004453 0.006198 - . /o
2. Quantiles for each variable: - . / \
2.5% 25% 50% 75% 97.5% ° / \
mu -0.1594 0.1034 0.2434 0.3815 0.6401 < [ [

sigmasq 3.1672 3.7730 4.1526 4.5749 5.5636 oo 1m0 emo w0 1o 4 00 e 1

Herations

Trace of sigmasq

N'=10000 Bandwidth = 0.03008.

Density of sigmasq

00 01 02 03 04 0.5 06 07

T T
2000 4000 6000 8000 10000 3 a 5 6
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erations N'=10000 Bandwidth = 0.08729

Convergence Diagnostics Methods

Brooks, Gelman & Rubin
= Two or more parallel chains (different starting values)

= Comparison of within and between chain variance for each variable using the second half
of chains

= “Rule-of-thumb”: Samples are considered to arise from the stationary distribution if
estimates are approximately equal to 1 (0.975 quantile is less than or equal to 1.2)

Geweke
= Individual chain

= Chain divided in two “windows” — comparison of the mean of sampled values in the first
window to the mean in the second window

= “Rule-of-thumb”: Lack of convergence if p-values < 0.05




Convergence Diagnostics Methods

= Heidelberger and Welch

Individual chains

Based on Brownian bridge theory and uses Cramer-von-Mises statistic

Repeatedly discards 10% of iterations until the chain passes the test, or more than 50%
of the iterations have been discarded

“Rule-of-Thumb”: Failure of the chain to pass the test indicates that a longer run is
needed

= Raftery and Lewis

Individual chains
“Rule-of-Thumb”: Dependence factors greater than 5 indicate lack of convergence

Example 1: using jags

Autocorrelation

autocorr.plot(samps)
mu sigmasq
e 2 gelman.diag(samps)
o | c Potential scale reduction factors:
S é S | Point est. Upper C.I.
S 5 = R . mu 1 1
© £ » sigmasqg 1 1
< < <9
b e Multivariate psrf
05 15 25 35 05 15 25 35 1
Lag Lag
gelman.plot(samps)
mu sigmasq
—— median < —— median
- ‘ 97.5% .- 97.5%
g 8] g 2
g S s T
IR TN : o
5 | — 5o,
2 | - \\
b o
o -~ — T TT
2000 6000 10000 2000 6000 10000
last iteration in chain last iteration in chain 196




Example 1: using jags

geweke.diag(samps)
[[11]

Fraction in 1lst window
Fraction in 2nd window

mu sigmasqg
-0.4963 -0.6335
[rz11]

Fraction in 1st window
Fraction in 2nd window

mu sigmasqg
-0.2554 0.2781

U=

o

raftery.diag(samps)

[[111

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95
Burn-in Total Lower bound
(M) (N) (Nmin)

mu 2 3865 3746

sigmasq 4 5299 3746

[r211

Quantile (g) = 0.025

Accuracy (r) = +/- 0.005
Probability (s) = 0.95
Burn-in Total Lower bound
(M) (N) (Nmin)
mu 2 3771 3746
sigmasqg 4 5210 3746

Dependence
factor (I)
1.03

1.41
Dependence
factor (I)
1.01
1.39
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Example 1: using jags

heidel.diag(samps)
(1111
Stationarity start p-value
test iteration
mu passed 0.503
sigmasqg passed 0.533
Halfwidth Mean Halfwidth
test
mu passed 0.242 0.0040
sigmasqg passed 4.210 0.0158
[r211]
Stationarity start p-value
test iteration
mu passed 0.563
sigmasq passed 0.259
Halfwidth Mean Halfwidth
test
mu passed 0.241 0.00406
sigmasq passed 4.199 0.01658
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Example 1: using jags

Posterior predictive distribution

## adding observation at last position for prediction (value is missing with NA)

y <= c(y, NA)

n <- length(y

data <- list(y=y, n=n)

inits <- list(mu=0, sigmasg=1)
jags.m <- jags.model (file=
params <- c("mu","sigmasqg","y")

samps <- coda.samples(jags.m, params, n.iter=2000
summary (samps)

data=data, inits=inits,

n.chains=2,

n.adapt=500)
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Example 1: using jags

Posterior predictive distribution

> summary (samps)

Iterations = 501:2500
Thinning interval =1
Number of chains = 2
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 0.243185 0.2036 0.003219 0.003219
sigmasg 4.199118 0.6070 0.009597 0.012994
y[1] -1.400793 0.0000 0.000000 0.000000
v(2] 0.410639 0.0000 0.000000 0.000000
yv[3] -1.868522 0.0000 0.000000 0.000000
[1001 _—1.0058006 0,0000 0,000000 0,000000
Iy[lOl] 0.297378 2.0684 0.032704 0.033294 I
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
mu -0.153727 0.111128 0.242856 0.374422 0.641681
sigmasg 3.183236 3.764582 4.134646 4.580882 5.517943
yI[1] -1.400793 -1.400793 -1.400793 -1.400793 -1.400793
[1001 _—1.008006 —1.008006 —1,008506 —1,008506 —1,008506
Iy[lOl] -3.825483 -1.086550 0.326903 1.669352 4.398195 I
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Revisiting the FEV Data Set with Jags

## Revisiting the analysis of the FEV dataset using Jags

## read FEV data set

data = read.table("data/fev.txt", col.names=c("seqnbr", "subjid", "age", "fev", "height", "sex", "smoke"))
## now prepare data for Jags

datajag <- list(n=length(data$fev), y=log(data$fev), smoke=1*(data$smoke==2), age=data$age-mean (data$age))
inits <- list(beta=rep(0,3),sigmasq=1)

## define jags model within R

model <- jags.model (file="fev.jag", data=datajag, inits=inits, n.chains=2, n.adapt=500)
params <- c("beta", "sigmasq", "ratiogm")

fev.post <- coda.samples (model, params, n.iter=10000)

## summarize posterior samples
summary (fev.post)
plot (fev.post)

. modeK
[} comvergence dissnosts ## define likelihood of observations
autocorr.plot (fev.pos for (iin 1)
gelman.plot (fev.post) - ; .
heidel.diag(fev.post) yl[il ~ dnorm(mul[i], tausq)

mu[i] <- beta[1] + beta[2]*smoke[i] + beta[3]*agel[i]

}
#4# define priors
for (i in 1:3){
betal[i] ~ dnorm(0, 0.0001)

tausq <- 1/sigmasq
sigmasq ~ dunif(0,10)
## deriving quantities of interest (ratios of geometric means)
for (iin 1:2){
ratiogm[i] <- exp(beta[i+1])
}
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Revisiting the FEV Data Set with Jags

> summary (fev.post)

Iterations = 501:10500
Thinning interval =1

Number of chains = 2

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta[l] 0.83441 0.028043 1.983e-04 9.359e-04
beta[2] 0.08997 0.029832 2.109%e-04 1.004e-03
beta[3] 0.09078 0.003063 2.166e-05 4.416e-05
ratiogm[1] 1.09463 0.032622 2.307e-04 1.096e-03
ratiogm[2] 1.09503 0.003354 2.371e-05 4.836e-05
sigmasq 0.04469 0.002473 1.749e-05 2.181e-05

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta[l] 0.78038 0.81522 0.83430 0.85315 0.89011
beta[2] 0.03107 0.07004 0.09003 0.11047 0.14729
beta[3] 0.08472 0.08872 0.09077 0.09285 0.09678
ratiogm[1] 1.03156 1.07255 1.09420 1.11680 1.15869
ratiogm[2] 1.08841 1.09277 1.09502 1.09730 1.10162
sigmasq 0.04010 0.04297 0.04462 0.04632 0.04972
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Comparing Bayesian and Frequentist
Approaches for Multiple Outcome Mixed
Treatment Comparisons

STUDY

’/

Hwanhee Hong, MS, Bradley P. Carlin, PhD, Tatyana A. Shamliyan, MD, MS,

Jean F. Wyman, PhD, Rema Ramakrishnan, MPH, Frangois Sainfort, PhD,
Robert L. Kane, MD

Objectives. Bayesian statistical methods are increasingly
popular as a tool for meta-analysis of clinical trial data
involving both direct and indirect treatment comparisons.
However, appropriate selection of prior distributions
for unknown model parameters and checking of consis-
tency assumptions required for modeling remain particu-
larly challenging. We compared Bayesian and traditional
frequentist statistical methods for mixed treatment com-
parisons with multiple binary outcomes. Data. We
searched major electronic bibliographic databases, Food
and Drug Administration reviews, trial registries, and
research grant databases up to December 2011 to find
randomized studies published in English that examined
drugs for female urgency urinary incontinence (UI) on
continence, improvement in UI, and treatment discontin-
uation due to harm. Methods. We describe and fit fixed
and random effects models in both Bayesian and fre-
quentist statistical frameworks. In a hierarchical model
of 8 treatments, we separately analyze 1 safety and 2 effi-
cacy outcomes. We produce Bayesian and frequentist

treatment ranks and odds ratios across all drug v placebo
comparisons, as well as Bayesian probabilities that
each drug is best overall through a weighted scoring
rule that trades off efficacy and safety. Results. In our
study, Bayesian and frequentist random effects models
generally suggest the same drugs as most attractive,
although neither suggests any significant differences
between drugs. However, the Bayesian methods more
consistently identify one drug (propiverine) as best over-
all, produce interval estimates that are generally better at
capturing all sources of uncertainty in the data, and
also permit attractive “rankograms” that visually capture
the probability that each drug assumes each possible
rank. Conclusions. Bayesian methods are more flexible
and their results more clinically interpretable, but
they require more careful development and specialized
software. Key words: nephrology; Bayesian meta-
analysis; comparative effectiveness; systematic reviews;
hierarchical models. (Med Decis Making 2013;33:
702-714)
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Figure1

Network graphs of urinary incontinence (Ul) data for each outcome: (a) continence, (b) Ul improvement, and (c) discontinuation

due to adverse events (AEs). The size of each node represents the number of studies investigating the drug, and the thickness of each edge
implies the total number of samples for the relation. The number on the line is the number of studies for the relation.




Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= Suppose there are several trials

= Comparing treatment A to B (AB trials)

= Trials AB provide “direct evidence” of the effect of treatment B relative
to A.

= Comparing treatment A to C (AC trials)

= Trials AC provide “direct evidence” of the effect of treatment C relative
to A.

= Comparing treatment B to C (BC trials)

= Trials BC provide “direct evidence” of the effect of treatment C relative
to B.
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= Suppose there are several trials
« What if: NO LONGER TRIALS AB!!!

= Comparing treatment A to C (AC trials)

= Trials AC provide “direct evidence” of the effect of treatment C relative
to A.

» Comparing treatment B to C (BC trials)

= Trials BC provide “direct evidence” of the effect of treatment C relative
to B.
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= Best evidence on the effect of treatment B relative to A
is provided by head-to-head trials.

= In the absence (or even sparsity) of such trials, there
can be “indirect” evidence of the effect of B relative to

A:
o 77? ) )
dz;itrect= dggect _ ngect
= The mixing of direct and indirect evidence is called
“mixed treatment comparison” (MTC)

207

Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= More generically:
= With K treatments, there are a total of K(K-1)/2 possible
pairwise comparisons
= E.g. K=6 means 15 potential comparisons of interest

= Direct evidence for a subset of pairwise comparisons

» Extending (pairwise) meta-analysis for MTD
« Fixed effects model
=« Random effects model
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

> data= read.csv("mtc.csv")
> head (data, 20)

Study Treatment Response N Baseline Data from a SmOklng Cessat|0n StUdy

1 1 9 140
23 140
10 138
11 78
12 85
29 170
75 731

363 714

Randomized trials: 24 RCTs

Interventions:

A: No Contact

B: Self-Help

C: Individual Counseling
D: Group Counseling

[ N N N

Response:

,_.
=
VW OO TN U U S SWWN NN
WHE W WEREWREWE WEWRES WD S W
0
© ©
[CN
S o
©o o
PR RRRRERERRRRRERRNDODNDRE R

Number of patients ceasing smoking
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= Four Treatments: = Indirect evidence for:
= A (reference
. B( ) dBC=dAC_dAB
a C dyp=d,p—d
= D dCD = dAD - dAC

= Direct evidence for: .
= Consistency:

d...d. ..d = “Rationale™:
(basic pérametersy If (b-a)=2, (c-a)=3, then
b) must be 1

= Total number of
contrasts: 6
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= Fixed Effects = Random Effects

ry ~ Binomial(p

Njk) Ty~ Binomial(ij’N jk)

Jjk?

Treatment effect in the béseline groupfe j Mj, dAB’d dAD ~ N(O,IOOZ)

AC»
o~U(0,2)

Effect of treatment Y relative to X in trial j
(Y and X in generic notation)
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

Preparing for Coding in Jags:

Treatment d[Treatment[i]]-
Contrast Treatment[i] Baseline[i] d[Baselinel[i]]
1,2 2 1 di2)-d[1]=d[2] %
1,3 3 1 d[3]-d[1]=d[3] %
1,4 4 1 d[4]-d[1]=d[4] 9w
2,3 3 2 d[3]-d[2] dyc=d,c—d,y
2,4 4 2 d[4]-d[2] dBD = dAD - dAB
3,4 4 3 d[4]-d[3] dep=d,,—d,
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

= Sometimes it is useful to have the absolute risk
difference instead of odds ratios...

= Can get this from (log-) odds ratios but need information
about the “baseline” probability of the outcome:
= What is the probability of smoking cessation in the “no treatment
group?
Can get this information from cohort studies, trials, etc

Assume, for example, that for “no treatment”, the log-odds of
smoking cessation has N(-2.6, 0.382) distribution

Absolute effects for other treatments are:
Logit(T,)= A + di

"
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

## Fixed Effects mode
model{
# loop over 50 observations
for(i in 1:50) {
# likelihood
Response[i] ~ dbin(p[i],N[i]
logit(p[i]) <- m
delta[i] <- d[Treatment([i]]

Study[i]]+ delta[i]*(l-equals(Treatment[i], Baseline[i])
[Baseline[i]]

# vague priors for intercepts (effect for baseline comparison group.
for (j in 1:24) { mu[j] ~ dnorm(0,.0001)
# set effect of Treatment 1 as 0 (effects of other Treatments is relative to this Treatment 1)
dr1] <- 0
# flat priors for 3 basic treatment effect parameters
for (k in 2:4)
drk] ~ dnorm(0,.001)
}

# Absolute treatment effects

# prior precision for Treatment 1, sd=.38
prech <- pow(.38,-2

# external info on A.

A ~ dnorm(-2.6,prech)

for (i in 1:4){
logit(T[i]) <- A + d[i
}

#Rank the treatment effects (with l=best) & record the best treatment
rk <= 5- rank(d)
best <- equals (rk,1)

#All pairwise log odds ratios and odds ratios (some of these calculations are redundant, but needed to run
for (c in 1:4) {
for (k in 1:4) {
lor[c, k] <- d[k] - d[c]
i
i
i
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

jom effects model
del{
# loop over 50 observations
for(i in 1:50) (
# likelihood
Response(i] ~ dbin(p[il,N[i])
logit(p[i]) <- mu[Study[i]]+ delta(i]*(l-equals(Treatment[i], Baseline(i]))

# draw effect from random effects distribution
delta[i] ~ dnorm(md[i],tau)

# population mean effect

md[i] <- d[Treatment[i]] - d[Baseline[i]]

# vague priors for intercepts (baseline group)
for (j in 1:24) {
mu(3] ~ dnorm(0,.0001)
}
# set effect of treatment 1 as 0 (all other treatment effects are relative to this one)
Q) <= o
# flat priors for 3 basic treatment parameters
for (k in 2:4)
dx] ~ dnorm(0,.001)

atment effects
ion for Treatment 1, sd=.38

logit(T[i]) <- A + d[i])

}

## prior for variance component

tau <~ pow(sd,-2)

sd ~ dunif(0,2)

the treatment effects (with l=best) & record the best treatment

s ratios and odds ratios (some of these calculations are redundant, but needed to run)

lorlc, k] <- dlk] - dlc]
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

#4# define jags model within R

datajag <- list(N=data$N, Study=data$Study, Response=data$Response, Treatment=data$Treatment, Baseline=data$Baseline)
inits <- list(A=1)

modell <- jags.model(file="mtc-fe.jag", data=datajag, inits=inits, n.chains=2, n.adapt=500)

paramsl <- ¢("d", "lor", "rk", "best","T")

postl <- coda.samples(modell, params1, n.iter=10000)

summary(post1)

## define jags model within R

datajag <- list(N=data$N, Study=data$Study, Response=data$Response, Treatment=data$ Treatment, Baseline=data$Baseline)
inits <- list(A=1)

model2 <- jags.model(file="mtc-re.jag", data=datajag, inits=inits, n.chains=2, n.adapt=500)

params2 <- c("d", "lor", "rk", "best","T""sd")

post2 <- coda.samples(model2, params2, n.iter=10000)

summary(post2)
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

> summary (post1) > summary (post2)
Iterations = 501:10500 Iterations =
Thinning interval = 1 Thinning interval = 1
Number of chains = 2 Number of chains = 2
Semple size per chain = 10000 Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable, 1. Empirical mean and standard deviation for each variable,
plus standard error of the mean: plus standard error of the mean:

rean Naive SE Time-series SE Mean SD Naive SE Time-series SE
TI1] 0.07296 0.02620 0.0001853 0.0001853 (1] 0.07306 0.02630 0.0001860 0.0001860
T12] 0.09022 0.03341 0.0002363 0.0002988 T12] 0.12326 0.05980 0.0004228 0.0006149
(3] 0.14352 0.04735 0.0003348 0.0003539 (3] 0.15244 0.05826 0.0004120 0.0005674
T14] 0.15490 0.05472 0.0003869 0.0005126 (4] 0.21058 0.09726 0.0006877 0.0012472
best[1]  0.00000 0.00000 0.0000000 0.0000000 best[1]  0.00000 0.00000 0.0000000 0.0000000
best[2]  0.00000 0.00000 0.0000000 0.0000000 best[2]  0.04945 0.21681 0.0015331 0.0018612
best[3]  0.31590 0.46488 0.0032872 0.0063026 best[3]  0.18735 0.3%020 0.0027591 0.0043136
best[4]  0.68410 0.46488 0.0032872 0.0063026 best[4]  0.76320 0.42513 0.0030061 0.0048088
ar 0.00000 0.00000 0.0000000 0.0000000 ar] 0.00000 0.00000 0.0000000 0.0000000
darz] 0.22728 0.12619 0.0008923 0.0024422 dafe) 0.53029 0.39518 0.0027944 0.0051176
di3) 0.76522 0.05784 0.0004090 0.0011966 dr3] 0.81824 0.23657 0.0016728 0.0036416
ata] 0.84744 0.17441 0.0012333 0.0030385 aral 1.18190 0.46436 0.0032835 0.0073618
lor(1,1] 0.00000 0.00000 0.0000000 0.0000000 lor(1,1] 0.00000 0.00000 0.0000000 0.0000000
lor(2,1] -0.22728 0.12619 0.0008923 0.0024422 lor(2,1] -0.53029 0.39518 0.0027944 0.0051176
lor(3,1] -0.76522 0.05784 0.0004090 0.0011966 lor(3,1] -0.81824 0.23657 0.0016728 0.0036416
lor(4,1] -0.84744 0.17441 0.0012333 0.0030385 lor(4,1] -1.18190 0.46436 0.0032835 0.0073618
lor(1,2] 0.22728 0.12619 0.0008923 0.0024422 lor(1,2] 0.53029 0.39518 0.0027944 0.0051176
lor[2,2] 0.00000 0.00000 0.0000000 0.0000000 lor(2,2] 0.00000 0.00000 0.0000000 0.0000000
lor(3,2] -0.53795 0.13485 0.0009536 0.0025670 lor(3,2] -0.28795 0.40115 0.0028366 0.0048623
lor(4,2] -0.62016 0.19335 0.0013672 0.0034821 lor(4,2] -0.65161 0.48342 0.0034183 0.0065579
lor[1,3] 0.76522 0.05784 0.0004090 0.0011966 lor(1,3] 0.81824 0.23657 0.0016728 0.0036416
lor(2,3] 0.53795 0.13485 0.0009536 0.0025670 lor(2,3] 0.28795 0.40115 0.0028366 0.0048623
lor(3,3] 0.00000 0.00000 0.0000000 0.0000000 lor(3,3] 0.00000 0.00000 0.0000000 0.0000000
lor([4,3] -0.08222 0.17194 0.0012158 0.0027551 lor(4,3] -0.36366 0.45632 0.0032267 0.0060984
lor(1,4] 0.84744 0.17441 0.0012333 0.0030385 lor(1,4] 1.18190 0.46436 0.0032835 0.0073618
lor(2,4] 0.62016 0.19335 0.0013672 0.0034821 lor(2,4] 0.65161 0.48342 0.0034183 0.0065579
lor(3,4] 0.08222 0.17194 0.0012158 0.0027551 lor(3,4] 0.36366 0.45632 0.0032267 0.0060984
lor[4,4] 0.00000 0.00000 0.0000000 0.0000000 lor(4,4] 0.00000 0.00000 0.0000000 0.0000000
rk(1] 3.96280 0.18926 0.0013382 0.0025080 k(1] 3.91070 0.29314 0.0020728 0.0027927
k(2] 3.03660 0.19095 0.0013502 0.0025454 k(2] 2.76745 0.66498 0.0047021 0.0071024
k(3] 1.68410 0.46488 0.0032872 0.0063026 k(3] 2.02115 0.62930 0.0044498 0.0065797
k(4] 1.31650 0.46641 0.0032980 0.0063417 k(4] 1.30070 0.58881 0.0041635 0.0066858

sd 0.83107 0.18728 0.0013243 0.0067195
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Meta-Analysis:
Mixed and Indirect Treatment Comparisons

(model 1) (model 2)
2. Quantiles for each variable: 2. Quantiles for each variable:
2.5% 25% 50% 75%  97.5% 2.5% 25% 50% 75%  97.5%
1] 0.03338 0.05401 0.06931 0.08751 0.13360 T1] 0.03400 0.05420 0.06877 0.08744 0.1357
T(2] 0.04018 0.06597 0.08526 0.10886 0.16894 (2] 0.04156 0.08041 0.11183 0.15366 0.2690
T3] 0.06876 0.10912 0.13785 0.17153 0.25160 T3] 0.06525 0.11029 0.14350 0.18408 0.2910
4] 0.06965 0.11441 0.14775 0.18683 0.28209 T14] 0.06966 0.13885 0.19332 0.26563 0.4403
best[1]  0.00000 0.00000 0.00000 0.00000 0.00000 best[1] ~ 0.00000 0.00000 0.00000 0.00000 0.0000
best[2]  0.00000 0.00000 0.00000 0.00000 0.00000 best[2]  0.00000 0.00000 0.00000 0.00000 1.0000
best[3]  0.00000 0.00000 0.00000 1.00000 1.00000 best[3]  0.00000 0.00000 0.00000 0.00000 1.0000
best[4]  0.00000 0.00000 1.00000 1.00000 1.00000 best[4]  0.00000 1.00000 1.00000 1.00000 1.0000
ari) 0.00000 0.00000 0.00000 0.00000 0.00000 a1 0.00000 0.00000 0.00000 0.00000 0.0000
drz] -0.02449 0.14317 0.22808 0.31171 0.47287 arz] -0.24088 0.27085 0.52436 0.77945 1.3193
ar3] 0.65205 0.72584 0.76562 0.80482 0.87714 ar3] 0.36985 0.66280 0.80985 0.96789 1.3099
dr4] 0.50183 0.73074 0.84815 0.96487 1.18863 dra] 0.28324 0.87465 1.17071 1.47888 2.1348
lor[1,1] 0.00000 0.00000 0.00000 0.00000 0.00000 lor[1,1] 0.00000 0.00000 0.00000 0.00000 0.0000
lor(2,1] -0.47287 -0.31171 -0.22808 -0.14317 0.02449 lor(2,1] -1.31928 -0.77945 -0.52436 -0.27085 0.2409
lor(3,1] -0.87714 -0.80482 -0.76562 -0.72584 -0.65205 lor(3,1] -1.30986 -0.96789 -0.80985 -0.66280 -0.3699
lor[4,1] -1.18863 -0.96487 -0.84815 -0.73074 -0.50183 lor[4,1] -2.13481 -1.47888 -1.17071 -0.87465 -0.2832
lor(1,2] -0.02449 0.14317 0.22808 0.31171 0.47287 lor(1,2] -0.24088 0.27085 0.52436 0.77945 1.3193
lor(2,2] 0.00000 0.00000 0.00000 0.00000 0.00000 lor(2,2] 0.00000 0.00000 0.00000 0.00000 0.0000
lor(3,2] -0.80440 -0.62754 -0.53865 -0.44647 -0.27571 lor(3,2] -1.08952 -0.54691 -0.28594 -0.02666 0.5045
lor[4,2] -1.00369 -0.74952 -0.61940 -0.48892 -0.23973 lor(4,2] -1.61722 -0.96223 -0.64931 -0.33448 0.3008
lor(1,3] 0.65205 0.72584 0.76562 0.80482 0.87714 lor(1,3] 0.36985 0.66280 0.80985 0.96789 1.3099
lor(2,3] 0.27571 0.44647 0.53865 0.62754 0.80440 lor(2,3] -0.50450 0.02666 0.28594 0.54691 1.0895
lor([3,3] 0.00000 0.00000 0.00000 0.00000 0.00000 lor(3,3] 0.00000 0.00000 0.00000 0.00000 0.0000
lor(4,3] -0.41659 -0.19782 -0.08315 0.03212 0.25543 lor(4,3] -1.28817 -0.65763 -0.36012 -0.06286 0.5276
lor(1,4] 0.50183 0.73074 0.84815 0.96487 1.18863 lor(1,4] 0.28324 0.87465 1.17071 1.47888 2.1348
lor[2,4] 0.23973 0.48892 0.61940 0.74952 1.00369 lor[2,4] -0.30075 0.33448 0.64931 0.96223 1.6172
lor(3,4] -0.25543 -0.03212 0.08315 0.19782 0.41659 lor[3,4] -0.52756 0.06286 0.36012 0.65763 1.2882
lor(4,4] 0.00000 0.00000 0.00000 0.00000 0.00000 lor(4,4] 0.00000 0.00000 0.00000 0.00000 0.0000
Tk(1] 3.00000 4.00000 4.00000 4.00000 4.00000 k(1] 3.00000 4.00000 4.00000 4.00000 4.0000
k(2] 3.00000 3.00000 3.00000 3.00000 4.00000 rk(2] 1.00000 2.00000 3.00000 3.00000 4.0000
k(3] 1.00000 1.00000 2.00000 2.00000 2.00000 k(3] 1.00000 2.00000 2.00000 2.00000 3.0000
rk(4] 1.00000 1.00000 1.00000 2.00000 2.00000 k(4] 1.00000 1.00000 1.00000 1.00000 3.0000
sd 0.54041 0.69643 0.80651 0.93827 1.2658
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B ian Estimation of Disease P I and the P: ters of

Dia'gnostic Tests in the Absence of a Gold Standard

TABLE 1. Results of serologic and stool testing for
Strongyloides Infection on 162 Cambodian refugees arriving In
Montreal, Canada, between July 1882 and February 1883

Stool examination

+ -
+ 38 87 125
Serology
- 2 35 37
40 122 162
Prior Information Stool examination alone Serology alone Both tests combined
Median 95% CI Median 95% Cl Median 85% Ci Median 95% ClI
™ 0.50 0.03-0.98 0.74 0.41-0.98 0.80 0.23-0.99 0.76 0.52-0.91
Stool S 0.24 0.07-0.47 0.30 0.21-0.47 0.31 0.22-0.44
examination C, 0.95 0.89-0.99 0.95 0.88-0.99 096 0.91-0.99
PPV, 0.84 0.10-1.00 0.95 0.74-1.00 0.98 0.88-1.00
NPV, 0.56 0.03-0.98 0.33 0.02-0.73 0.30 0.11-0.63
Serology S, 0.81 0.63-0.92 0.83 0.73-0.92 0.89 0.80-0.95
C, 0.72 0.31-0.96 0.58 0.22-0.94 0.67 0.36-0.95
PPV, 0.76 0.07-1.00 0.91 0.18—-1.00 0.90 0.62-1.00
NPV, 0.78 0.08-1.00 0.44 0.03-0.94 0.70 0.28-0.92

* Cl, credible interval.

Reproducing analyses:
Using only one diagnostic test

= Recall: In the absence of ‘gold standard’ we only
observe totals

TABLE 2. Observed and latent data in the case of one
diagnostic test in the absence of a gold standard, presented

ina2 x 2 table
Truth j
+ -_—

+ Y‘ a- Y1 a

Test

- Y2 b - Yz b

Y, +Y, N—(Y,+Y,) [N ]

Y, and Y, are latent/unobserved data
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Reproducing analyses:
Using only one diagnostic test

= Probability model for positive test result?
= a ~ Binomial(N, PPT)
= Where N is the total sample size (i.e. a+b)
= PPT is the probability of a positive test

PPT =P(T+)=P(T+|D)P(D)+ P(T+|D)P(D")
=S7+(1-C)1-m)

(recall: S is sensitivity and C is the specificity)
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Reproducing analyses:
Using only one diagnostic test

model {
## model
a ~ dbin(PPT, N)

## definition of probability of positive test
PPT <- S*pi + (1-C)*(l-pi)

## priors

S ~ dbeta(aS,bs) # prior for sensitivity

C ~ dbeta (aC, bC) # prior for specificity
JagS COde pi ~ dbeta(api, bpi) # prior for prevalence

## computing probability of disease given test results
pYl <- pi*S/PPT
pY2 <- pi*(1-8)/(1-PPT)

## simulating Y1, Y2
Y1l ~ dbin(pYl,a)
Y2 ~ dbin(pY2, N-a)

Note: original paper derived full conditionals that allows one to implement full MCMC
(Gibbs Sampler) — but that is out of the scope of this introductory course. 222




Reproducing analyses:
Using only one diagnostic test

data = 1list(N=162, a=40, Y1=NA, Y2=NA, api=1, bpi=1l, aS=4.4,
bS=13.31, aC=71.25, bC=3.75)

## Initial values
inits = function() {list(pi=0.5, $=0.9, C=0.8, Y1=10, Y2=10)}

## Model specification
jags.m =jags.model (file=diagnostic.jag, data=data, n.chains=2,
n.adapt=1000, inits=inits())

## Parameters to be monitored
params = c("pi", "S", "C", "Yl", "y2m)

## Sampling
samps <- coda.samples(jags.m, params, n.iter=5000, thin=5

## Summarize posterior samples and save output results
aux <- summary (samps)

par (mfrow=c(3,2))

plot (samps)

Mean

C  0.9469572
S 0.3128120
Y1 37.4385000
Y2 82.8770000
pi 0.7401364

output <- cbind(aux[[1]][,c(1,2)], aux[[2]][,c(1,3,5)])
SD 2.5% 50% 97.5%
0.02796301 0.8771444 0.9516872 0.9862617
0.06713805 0.2093188 0.3023151 0.4756297
3.10580759 29.0000000 38.0000000 40.0000000
24.44454211 35.9750000 85.0000000 120.0000000
0.16335664 0.4075330 0.7581660 0.9855292

Posterior Estimates
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Final Comments

ere is ‘art’ in Bayesian Analysis

= Achieving ‘mastery’ requires practice!

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

P
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HOMO HOMO HOMO HOMO HONO
APRIORIUS PRAGHATICUS FREQUENTISTUS SAPIENS BAYESIANIS

224




