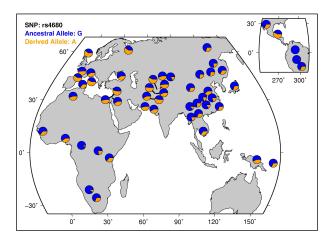


Introduction to Genetics and Genomics

4. Population and Evolutionary Genetics

lachance.joseph@gmail.com https://popgen.gatech.edu/


Case Study #1

• *COMT* (catechol-O-methyltransferase) and test-taking anxiety

"Some scholars have suggested that we are all Warriors or Worriers. Those with fast-acting dopamine clearers are the Warriors, ready for threatening environments where maximum performance is required. Those with slow-acting dopamine clearers are the Worriers, capable of more complex planning. Over the course of evolution, both Warriors and Worriers were necessary for human tribes to survive. In truth, **because we all** get one *COMT* gene from our father and one from our mother, about half of all people inherit one of each gene variation, so they have a mix of the enzymes and are somewhere in between the Warriors and the Worriers. About a quarter of people carry Warrior-only genes, and a quarter of people Worrier-only."

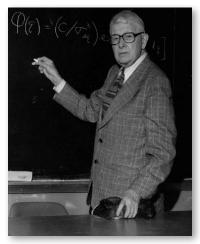
Why Can Some Kids Handle Pressure While Others Fall Apart? Po Bronson and Ashley Merryman, New York Times, February 6, 2013

• What is wrong with this claim?

Clearing up some common misconceptions

$$\frac{P_{ij}^{*}}{P_{ii}^{*}} = 2\frac{w_{ij}^{*}}{w_{ii}^{*}}$$

- Dominant alleles need not be the major (most common) allele
- Higher fitness alleles need not be major allele
- Higher fitness alleles are not always dominant (and vice versa)

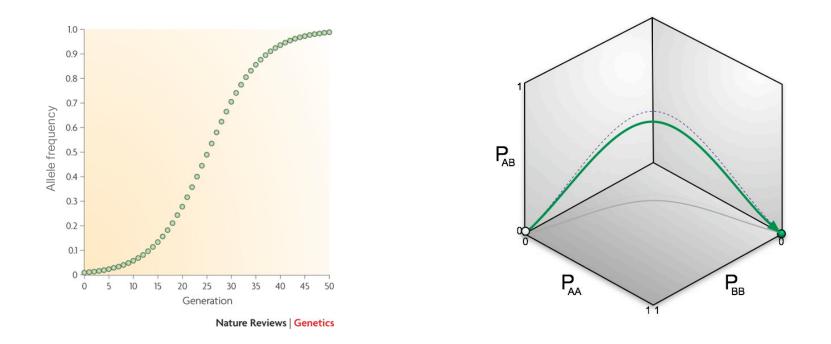

Giants of population genetics

RA Fisher

JBS Haldane

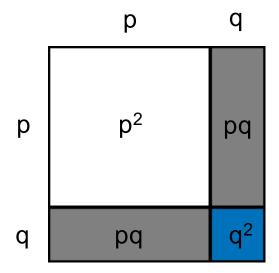
Sewall Wright

- Used mathematics to describe the genetics of populations
- Integrated evolutionary biology and Mendelian genetics
- *Neo-Darwinism* and the *Modern Synthesis*

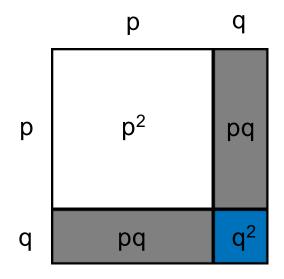

Gene pool

- Definition: the totality of the genes in a population
- Each individual contributes to a pool of gametes
- Contributions to the gene pool are weighted by fitness

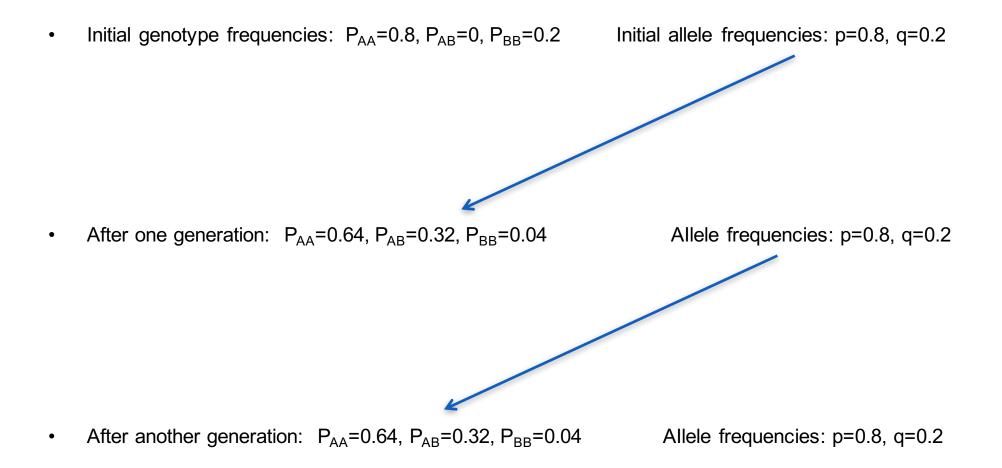
• Genotypes next generation found by binomial sampling (w/ replacement)


Allele and genotype frequency space

- Allele and genotype frequencies sum to one
- A diploid population can be represented by a point in genotype frequency space
- Allele and genotype frequencies can be tracked over time
- When alleles are rare most copies are found in a heterozygous state


Hardy-Weinberg principle

- $p^2 + 2pq + q^2 = 1$
- p: frequency of A allele
- q: frequency of a allele
- p²: frequency of AA homozygotes
- 2pq: frequency of *Aa* heterozygotes
- q²: frequency of *aa* homozygotes
- Modified Punnett Square



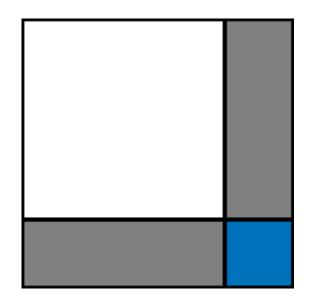
Hardy-Weinberg principle

- Allele frequencies used to calculate genotype frequencies
- Equilibrium reached in a single generation (so long as assumptions hold)
- Assumptions
 - Infinite population size
 - No selection
 - No mutation
 - No migraton
 - Random mating

Hardy-Weinberg example

Testing for departures from HW proportions

- Chi-square test with 1 degree of freedom
- $\chi^2 > 3.84$ indicates statistical significance (p-value < 0.05)
- Example:


Genotype	Observed	Expected	χ^2
AA	145	131.31	1.426
AB	68	95.37	7.854
BB	31	17.32	10.815
Total	244	244	20.095

$$p = \frac{145 + 68/2}{145 + 68 + 31} = 0.7336$$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Major processes of population genetics

- Genetic drift
- Natural selection
- Mutation
- Migration (gene-flow)
- Mating structure

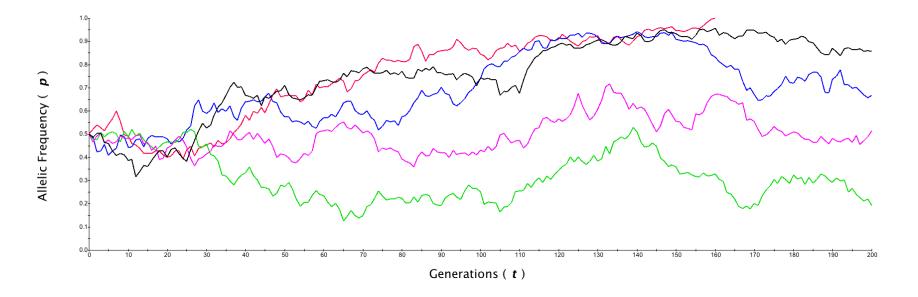
- These processes are mechanisms of evolution
- Additional factors:
 - Recombination (and linkage), gene conversion, ploidy, dominance, epistasis, developmental constraints

Random genetic drift

• In small populations there is a decay of heterozygosity:

$$H_t = H_0 \left(1 - \frac{1}{2N}\right)^t$$

Buri's 1956 experiment: 107 replicate population cages with segregating alleles at the *brown* locus (*D. melanogaster*)


Figure from Hartl and Clark (1989) *Principles of Population Genetics* Sinauer, Sunderland, MA.

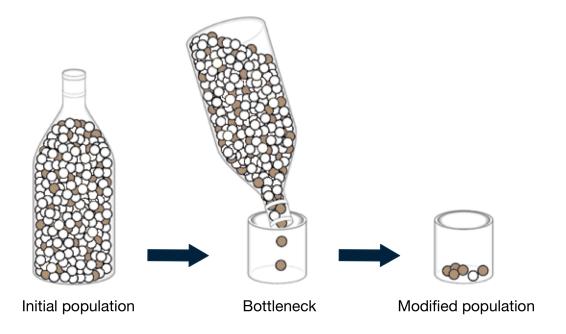
The net effect of drift is to reduce the amount of genetic variation segregating in a population

Random genetic drift

- Random walks through allele frequency space
- Genetic drift is stronger in small populations
- Can lead to differentiation between isolated populations
- Relatively slow process (relative to selection)
 - Mean time for new mutation to reach fixation = 4N generations

Simulations of genetic drift

Genetic drift and effective population size


- Effective population size (N_e): The idealized (haploid) population size that behaves the same way with respect to drift as a population of size N
- N_e due to unequal sex ratio $N_e = \frac{4N_m N_f}{N_m + N_f}$
- N_e due to variance in reproductive success
- N_e due to changing population size

 $N_e = \frac{4N-2}{V_k+2}$

$$N_e = \frac{t}{\sum_{i=1}^{t} \frac{1}{N_i}}$$

 Caveat: N_e is a descriptive term, and two populations with the same effective population size can have quite different dynamics

Population bottlenecks and founder effects

- **Population bottleneck**: A sharp reduction in the size of a population
- Founder effect: Bottleneck caused by the founding of a new population
- Random chance determines whether an allele increases or decreases in frequency

Genetic drift example

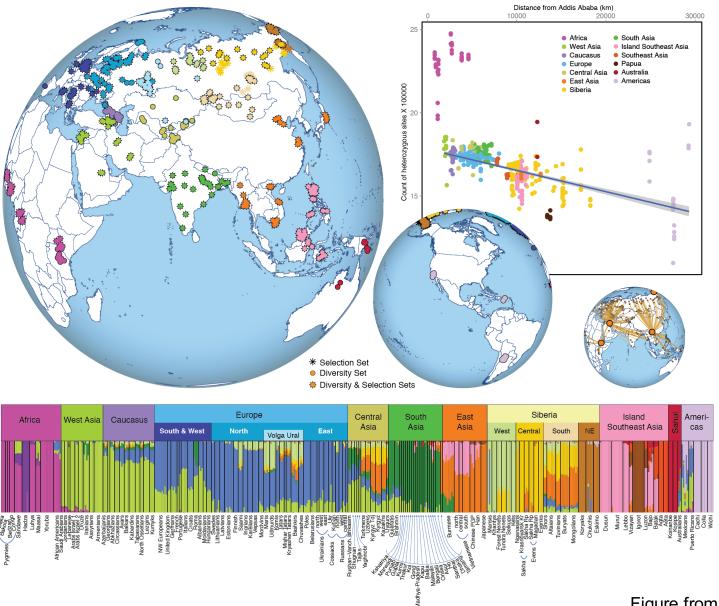
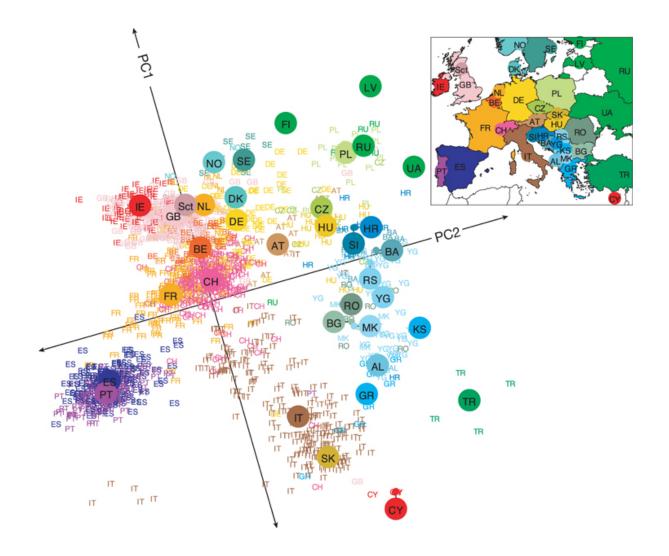



Figure from Pagani et al. 2016 (Nature)


Genes mirror geography in Europe

Novembre et al. (2008, Nature)

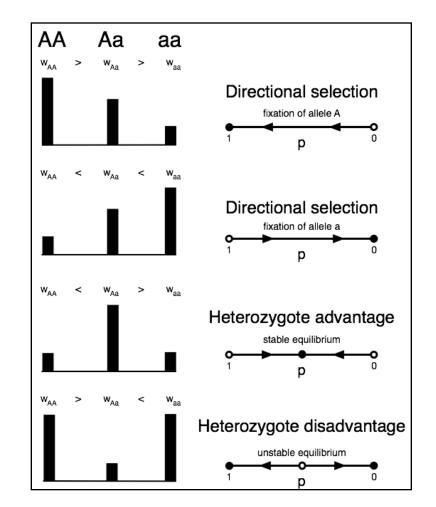
Natural selection

- **Natural selection**: The differential survival and/or reproduction of different genotypes due to unequal fitnesses
- Natural selection is not the same thing as evolution
- Selection coefficient (*s*)
 - *s* = 0.01 indicates a 1% fitness advantage
 - |s| tends to be close to 0

- Operates on short time scales (~1/s generations)
- The outcome of natural selection depends on fitnesses and initial frequencies
- Probability of fixation: ~2s
 - Most advantageous mutations are not fixed

Natural selection: fitness

- Genotype-specific fitness is often represented by the parameter $oldsymbol{w}$
- **Relative** fitness determines allele frequency changes over time
- Absolute fitness determines population growth rates



The Far Side (Gary Larson)

- Neutral genotypes have a fitness of 1
- Advantageous genotypes have a fitness greater than 1
- Deleterious genotypes have a fitness less than 1

Types of natural selection

- Directional selection
- Overdominant selection
 - Heterozygte advantage
- Underdominant selection
 - Heterozygote disadvantage
- Frequency dependent selection

Mathematics of natural selection

- Haploid scenario
- Allele frequency next generation can be found by weighting alleles by how much they contribute to the gene pool (fitness)

$$p' = \frac{pw_A}{pw_A + qw_B}$$

• Allele frequency at an arbitrary point in time:

$$p_t = \frac{p_0 w_A{}^t}{p_0 w_A{}^t + q_0 w_B{}^t}$$

Mathematics of natural selection

- Diploid scenario with fitness dominance
- Frequencies next generation can be found by weighting contributions to the gene pool

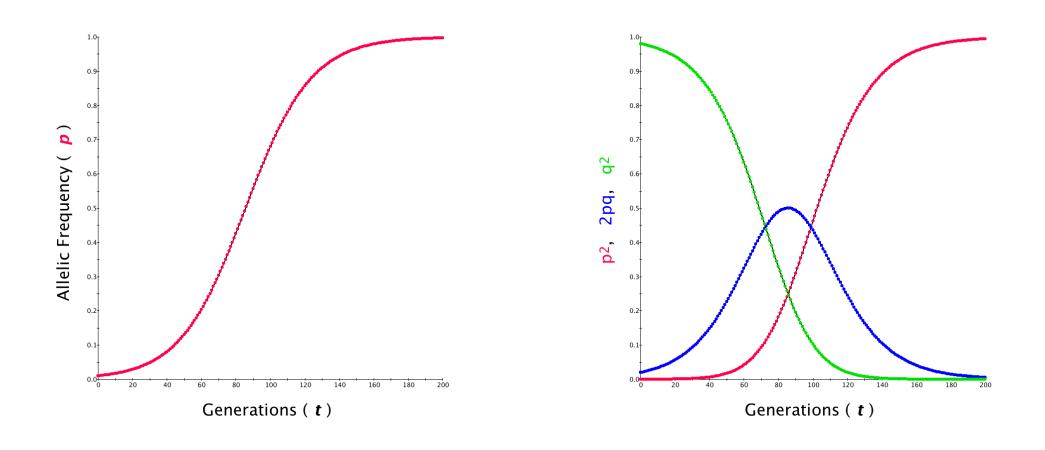
$$P_{AA}' = \frac{p^2 w_{AA}}{p^2 w_{AA} + 2pqw_{AB} + q^2 w_{BB}}$$

$$P_{AB}' = \frac{2pqw_{AB}}{p^2w_{AA} + 2pqw_{AB} + q^2w_{BB}}$$

$$P_{BB}' = \frac{q^2 w_{BB}}{p^2 w_{AA} + 2pqw_{AB} + q^2 w_{BB}}$$

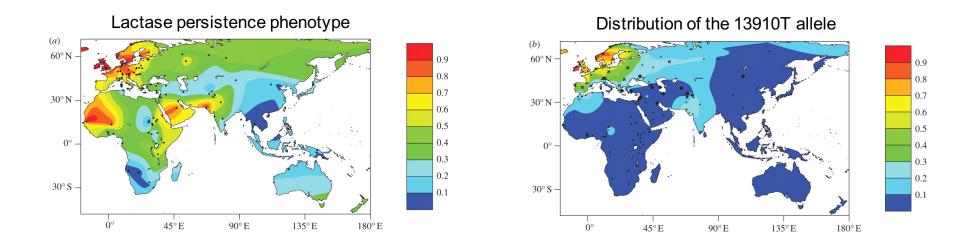
$$p' = \frac{p^2 w_{AA} + pq w_{AB}}{p^2 w_{AA} + 2pq w_{AB} + q^2 w_{BB}}$$

Mathematics of natural selection

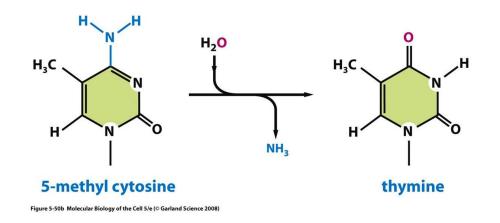

$$\Delta p = p' - p = \frac{pw_A}{\bar{w}} - p$$

• General equation for single generation allele frequency change:

$$\Delta p = \frac{p(w_A - \bar{w})}{\bar{w}}$$


- Response to selection hinges on:
 - Allele frequencies
 - The relative fitness of an allele
 - Mean fitness of a population

Simulations of directional selection


Natural selection example

- Figures from Gerbault et al. 2011 (*Phil Trans Roy Soc B*)
- Lactase persistence alleles show evidence of positive selection
- Different causal alleles in Africa (convergent phenotypic evolution)

Mutation

- A "Goldilocks" scenario: Too low a mutation rate and populations lack genetic diversity. Too high of a mutation rate and natural selection is unable to purge deleterious mutations.
- Evolutionary genetics tends to focus on *germline* mutations, as opposed to somatic mutations (most germline mutations occur during DNA replication)
- Mutation rates vary across the genome (much more common at CpG sites)

Human germline mutation rates

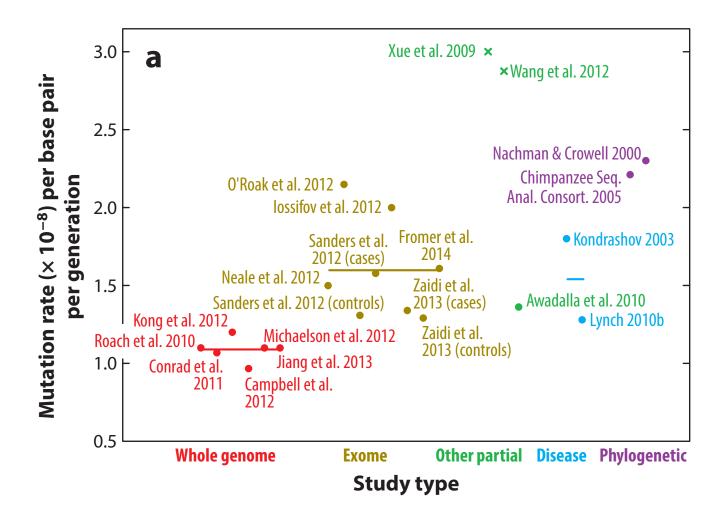
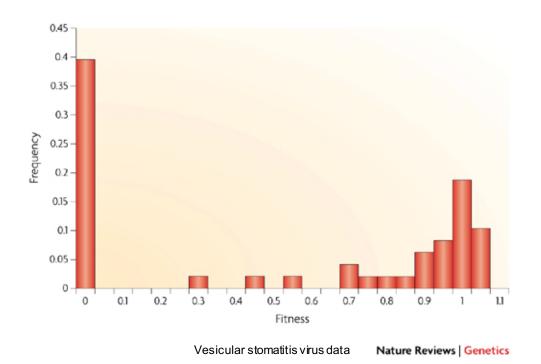



Figure from Ségurel et al 2015 (Annual Review of Genomics and Human Genetics)

Distribution of fitness effects (DFE)

Most mutations are deleterious or neutral

(they do not increase Darwinian fitness)

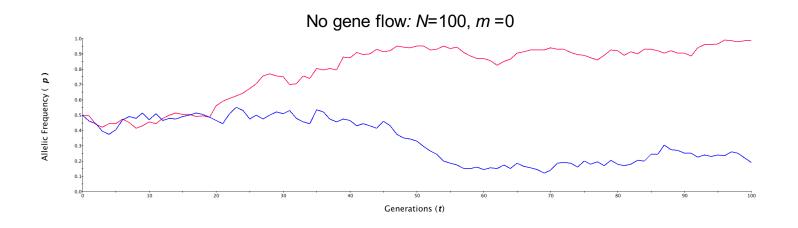
• Alas, most mutations don't result in hopeful monsters (a la Goldschmidt)

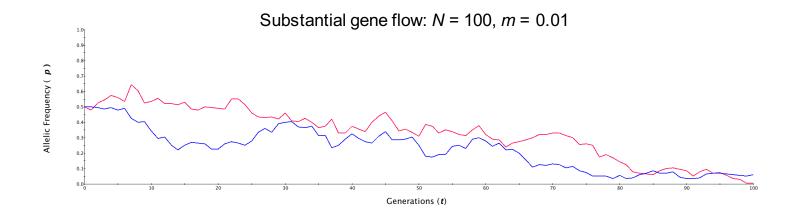
Mutation and molecular clocks

• The rate of neutral substitution depends on mutation rate alone (surprisingly it is independent of population size)

$$2N\mu \times \frac{1}{2N} = \mu$$
 substitutions per generation

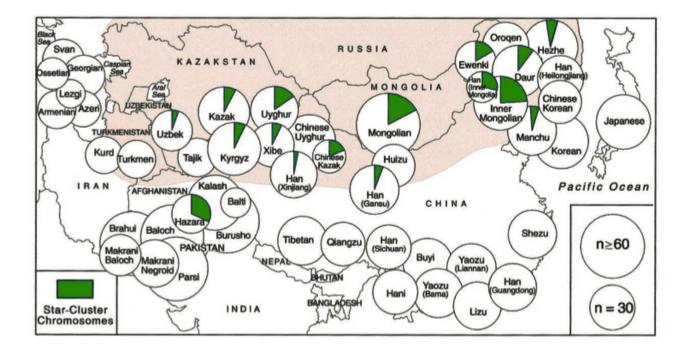
- Derivation:
 - A population of N diploid alleles
 - $2N\mu$ mutations per generation
 - Each of the 2N alleles present as an equal chance to be fixed
 - Rate of fixation=(population-level rate of mutation) × (probability of fixation)
 - Assumes that mutation rates are low $(4N\mu >> 1)$


Migration

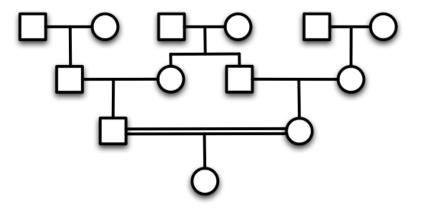

- When population geneticists refer to migration they mean *gene* flow
- The parameter *m* equals the proportion of alleles in a population that are from immigrants
- Gene flow homogenizes populations
- Local differentiation occurs when there is
 < 1 migrant per generation (i.e. Nm < 1)

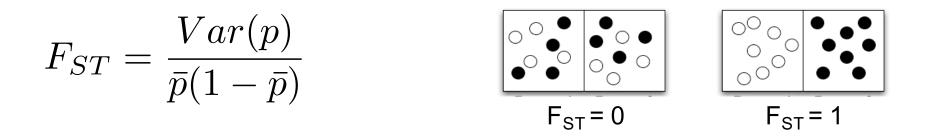
National Geographic

Simulations of migration (and genetic drift)



Migration example


• Geographic proximity results in genetic similarity

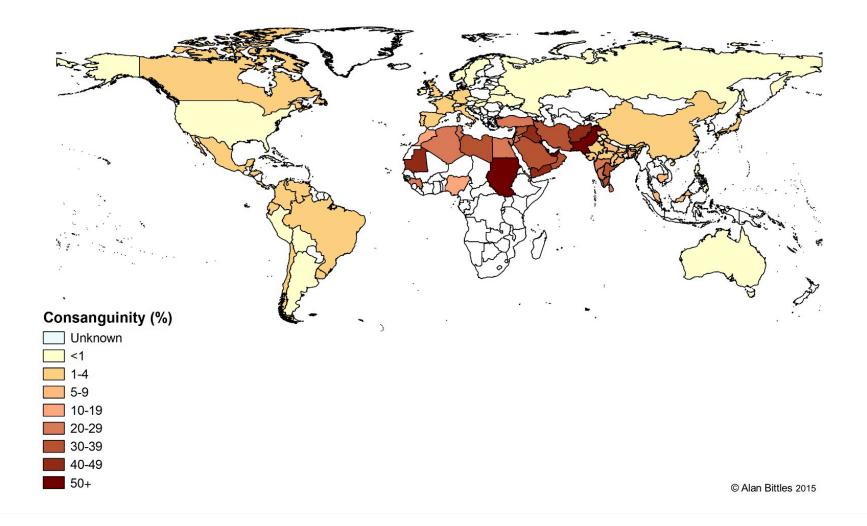

 The Y-chromosome legacy of Ghengis Khan (Zerjal et al. 2003, American Journal of Human Genetics)

Mating structure

- Panmixia: random-mating
- Assortative mating
 - Non-random
 - Leads to departures from Hardy-Weinberg *genotype* frequencies
 - Allele frequencies can remain unchanged
- Inbreeding
 - Preferential mating with relatives

Mating structure: F_{ST}

- F_{ST} measures how much genetic variation can be explained by sub-populations within the total population
- F_{ST} between divergent populations increases over time $F_{ST} = 1 \left(1 \frac{1}{2N}\right)^{t}$
- Migration reduces F_{ST} (island model) $F_{ST} = \frac{1}{(4N)}$

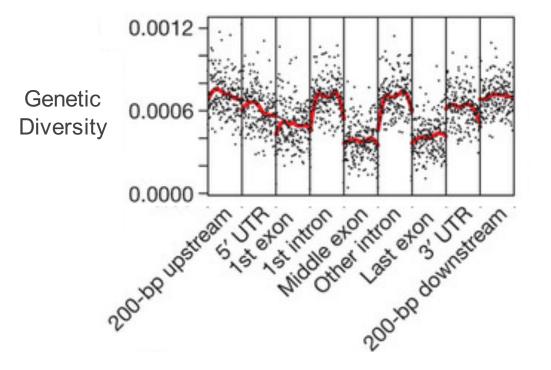

$$_{ST} = \frac{1}{(4Nm+1)}$$

Mating structure: inbreeding

$$F = 1 - \frac{H}{2pq}$$

- Inbreeding coefficient (*F*): Another F-statistic can be used to quantify the effects of inbreeding (the inbreeding coefficient
- Inbreeding results in an excess of homozygotes
- As many deleterious alleles are recessive this can result in adverse effects

Mating structure example (inbreeding)


• Consanguinity: closer than 2^{nd} cousin mating (F > 0.015625)

Effects of each major process

	Genetic Drift	Natural Selection	Mutation	Migration	Mating Structure
Time-scale	Medium	Fast	Slow	Medium	Fast
Effect on variation	Reduced	Mixed	Increased	Homogenized	Indirect

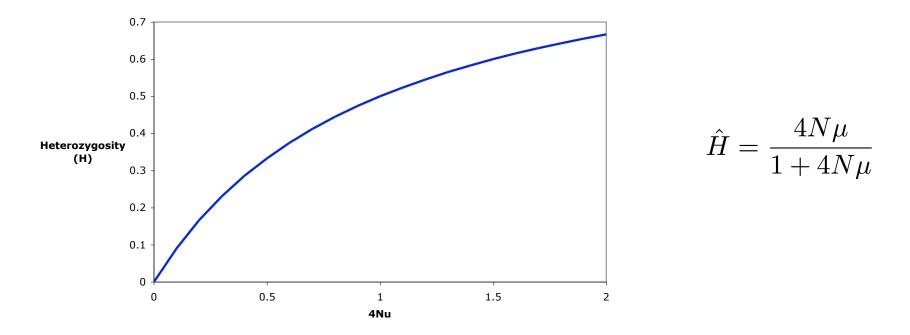
Case study #2

• Polymorphism data from the 1000 Genomes Project (*Nature*, 2010)

• What do you think causes these patterns?

Advanced concepts in population genetics

Genetic drift	Natural selection	Mutation	Migration	Mating structure	
Genetic drift	Nearly-neutral theory (Ohta)	Neutral theory (Kimura)	Gene flow	Inbreeding	Genetic drift
	Natural selection	Mutation-selection balance	Migration-selection balance	Sexual selection	Natural selection
		Mutation	Geographical genetics	Private alleles	Mutation
			Migration	Wahlund effect	Migration
				Mating structure	Mating structure


Neutral theory of evolution (Kimura)

- Drift + mutation
- Most mutations are deleterious (bad)
- Most polymorphisms are neutral (neither good nor bad)
 - Synonymous changes (codon change, but same amino acid)
 - Pseudogenes: "dead genes" that are no longer expressed
 - Intergenic DNA
- A balance exists between a decrease in variation due to drift and an increase in variation due to mutation

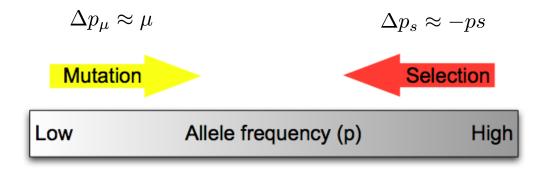
$$\Delta H_{mutation} = 2\mu(1 - H) \qquad \Delta H_{drift} = -\left(\frac{1}{2N}\right)H$$
Mutation
Drift
Low
Heterozygosity (H)
High

Neutral theory of evolution (Kimura)



- Substantial genetic variation is maintained if $4N\mu >> 1$
- Population-level mutational input $(2N\mu)$ is important
- $\theta = 4N\mu$ pervades population genetics and coalescent theory
- The neutral theory provides a null hypothesis for studies of molecular evolution

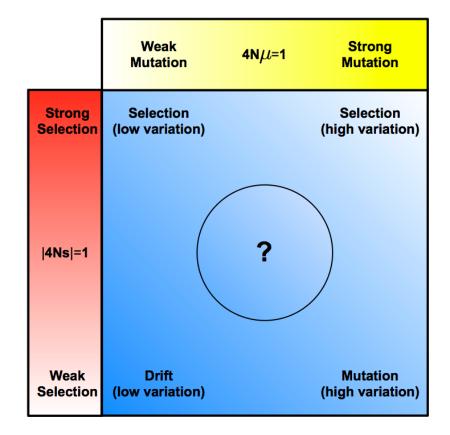
Nearly-neutral theory (Ohta)


- The critical value is 4*Ns*
 - When |4Ns| >> 1, alleles undergo selection
 - When |4Ns| << 1, alleles are effectively neutral

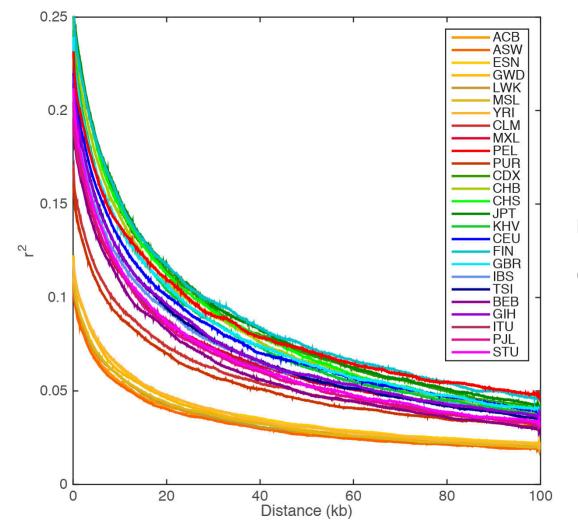
Mutation-selection balance

- Mutation + selection
- Deleterious mutants increase in frequency by mutation
- Deleterious mutants are reduced in frequency by selection
- There exists an equilibrium allele frequency where the magnitude of these two forces are balanced:
- Alleles under mutation-selection balance are rare

Mutation-selection balance


- Ploidy and dominance affect equilibrium allele frequencies
 - $\hat{p} \approx \frac{\mu}{s}$ Haploid ٠
 - Diploid, completely recessive ٠
 - Diploid, intermediate dominance ٠

$$\hat{p} \approx \sqrt{\frac{\mu}{s}}$$


 $\hat{p} \approx \frac{\mu}{hs}$

Selection, drift, and mutation

- Large populations are in the upper right and small populations are in the lower left
- Where in the blue part of this figure would you expect to find:
 - Protein coding genes?
 - Disease causing genes?
 - miRNA genes?
 - Pseudogenes?
 - MHC genes?
 - Transposons?
 - Microsatellites?
 - Cis-regulatory elements?

Linkage disequilibrium in human populations

Phase 3 data from the 1000 Genomes Project (*Nature*, 2015)

Non-African populations have higher amounts of LD