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REGRESSION MODELS 

ANOVA MODELS 
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Regression 

Examine main effects  
considering  

predictors of interest,  
and confounders 

Test effect  
modifications or other  

interactions 

Compute and plot  
Residuals 

Assess influence 

Transformation 

PUBLISH 

Do the assumptions  
appear reasonable? 

NO 

YES 

Continuous 
Outcome? 

Other methods 
(not discussed in  

this module) 

YES 

NO 

RECAP: 
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REGRESSION 

One-way 
Analysis of Variance 

Two-way  
Analysis of Variance 

Analysis of  
Covariance 

One Categorical POI Two Categorical POIs One Categorical POI + 
One continuous predictor 

Uses dummy variables to represent categorical variables! 

COMING UP NEXT: 
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Outline 
n  Motivation 

n  ANOVA as a regression model 
n  Dummy variables 

n  One-way ANOVA models 
n  Contrasts  
n  Multiple comparisons 

n  Two-way ANOVA models 
n  Interactions 

n  ANCOVA models 

n  Experimental Designs and ANOVA models 
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ANOVA 

Motivation 
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Motivation 

n  Let’s investigate if genetic factors are associated 
with cholesterol levels.  

n  Ideally, you would have a confirmatory analysis of 
scientific hypotheses formulated prior to data collection 

n  Alternatively, you could consider an exploratory analysis 
– hypotheses generation for future studies 
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ANOVA/ANCOVA: Motivation 

n  Scientific hypotheses of interest: 
n  Assess the effect of rs174548 on cholesterol levels. 

n  Assess the effect of rs174548  and gender on cholesterol 
levels 

n  Does the effect of rs174548 on cholesterol differ between males 
and females? 

n  Assess the effect of rs174548 and age on cholesterol 
levels 

n  Does the effect of rs174548 on cholesterol differ depending on 
subject’s age? 
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ANOVA: One-Way Model 
Motivation: 

n  Scientific question: 
n  Assess the effect of rs174548 on cholesterol levels. 
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Motivation: Example 

> tapply(chol, as.factor(rs174548), mean) 
       0        1        2  
181.0617 187.8639 186.5000  
 
 
> tapply(chol, as.factor(rs174548), sd) 
       0        1        2  
21.13998 23.74541 17.38333  

Here are some descriptive summaries: 
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Motivation: Example 

> by(chol, as.factor(rs174548), mean) 
as.factor(rs174548): 0 
[1] 181.0617 
----------------------------------------------------------------- 
as.factor(rs174548): 1 
[1] 187.8639 
----------------------------------------------------------------- 
as.factor(rs174548): 2 
[1] 186.5 
 
> by(chol, as.factor(rs174548), sd) 
as.factor(rs174548): 0 
[1] 21.13998 
----------------------------------------------------------------- 
as.factor(rs174548): 1 
[1] 23.74541 
----------------------------------------------------------------- 
as.factor(rs174548): 2 
[1] 17.38333 

Another way of getting the same results: 
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Motivation: Example 
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Is rs174548 associated with cholesterol?  

R command: boxplot(chol ~ as.factor(rs174548)) 
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Motivation: Example 

R commands: 
plot.design(chol ~ as.factor(rs174548)) 

Another graphical display: 
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Motivation: Example 

n  Feature: 

n  How do the mean responses compare across different 
groups? 

n  Categorical/qualitative predictor 
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ANOVA 

As a regression model 
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ANalysis Of VAriance Models (ANOVA) 

n  Compares the means of several populations 

-6 -4 -2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

Independence 
Normality 
Equal variances 

Assumptions for Classical ANOVA Framework:  
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ANalysis Of VAriance Models (ANOVA) 

n  Compares the means of several populations 

-6 -4 -2 0 2 4 6
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ANalysis Of VAriance Models (ANOVA) 

n  Compares the means of several populations 
n  Counter-intuitive name! 
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ANalysis Of VAriance Models (ANOVA) 

A B C

3
4
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A B C
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40

In both data sets, the true population means are: 3 (A), 5 (B), 7(C) 

Situation 1 Situation 2 

High variance within groups Low variance within groups 

Where do you expect to detect difference between population means? 
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ANalysis Of VAriance Models (ANOVA) 

n  Compares the means of several populations 
n  Counter-intuitive name! 

n  Underlying concept:  
n  To assess whether the population means are equal, compares: 

n  Variation between the sample means (MSR) to  
n  Natural variation of the observations within the samples (MSE). 

n  The larger the MSR compared to MSE the more support that 
there is a difference in the population means! 

n  The ratio MSR/MSE is the F-statistic.  

 

Decomposition of sum of squares 
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y
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ANalysis Of VAriance Models (ANOVA) 

n  Equivalent to regression with categorical 
predictors.  
n  Predictors represented  with “dummy” variables 
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ANOVA as a multiple regression model 

n  Dummy Variables: 
n  Suppose you have a categorical variable C with k 

categories. To represent that variable we can construct 
k-1 dummy variables of the form 

… 
 

⎩
⎨
⎧

=
                       otherwise,0
2category in  issubject  if,1

1x

⎩
⎨
⎧

=
                       otherwise,0
3category in  issubject  if,1

2x

⎩
⎨
⎧

=−                        otherwise,0
kcategory in  issubject  if,1

1kx

The omitted category (here category 1) is the reference group. 
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ANOVA as a multiple regression model 

n  Dummy Variables: 
n  Back to our motivating example:  

n  Predictor: rs174548 (coded 0=C/C, 1=C/G, 2=G/G) 
n  Outcome (Y): cholesterol 
 
Let’s take C/C as the reference group. 

 
⎩
⎨
⎧

=
        otherwise,0

(C/G) 1 code if,1
1x

⎩
⎨
⎧

=
         otherwise,0
(G/G) 2 code if,1

2x
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ANOVA as a multiple regression model 

rs174548 X1 X2 

C/C 0 0 

C/G 1 0 

G/G 0 1 
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ANOVA as a multiple regression model 

n  Regression with Dummy Variables: 
n  Example:  

  Model: E[Y|x1, x2] = β0 + β1x1 + β2x2  
 
 
n  Interpretation of model parameters? 
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ANOVA as a multiple regression model 

n  Regression with Dummy Variables: 
n  Example:  

  Model: E[Y|x1, x2] = β0 + β1x1 + β2x2  
 
 
n  Interpretation of model parameters? 

n  β0: mean cholesterol when rs174548 is C/C 
n  β0+β1: mean cholesterol when rs174548 is C/G 
n  β0+β2: mean cholesterol when rs174548 is G/G 
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ANOVA as a multiple regression model 

n  Regression with Dummy Variables: 
n  Example:  

  Model: E[Y|x1, x2] = β0 + β1x1 + β2x2  
 
 
n  Interpretation of model parameters? 

n  β0: mean cholesterol when rs174548 is C/C 
n  β0+β1: mean cholesterol when rs174548 is C/G 
n  β0+β2: mean cholesterol when rs174548 is G/G 

n  Alternatively 
n  β1: difference in mean cholesterol levels between groups with rs174548 

equal to C/G and C/C. 

n  β2: difference in mean cholesterol levels between groups with rs174548 
equal to G/G and C/C. 
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ANOVA as a multiple regression model 

n  Alternative parameterization 
n  Each group with its own mean!  

n  Let’s re-write the model: 

  Model: E[Yij] = µi 
     (i: genotype index, j: subject index) 
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ANOVA as a multiple regression model 

n  Regression Model: 
  Model 1: E[Y|x1, x2] = β0 + β1x1 + β2x2. 

n  ANOVA Model:  
  Model 2:  E[Yij] = µi  
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ANOVA as a multiple regression model 

Mean Regression 
Model 

µ1 β0 

µ2 β0 + β1 

µ3 β0 + β2 
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ANOVA as a multiple regression model 

n  Regression Model: 
  Model 1: E[Y|x1, x2] = β0 + β1x1 + β2x2. 

n  ANOVA Model:  
  Model 2:  E[Yij] = µi 

 
Key Message:  

 ANOVA is a special case of a regression model! 
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ANOVA as a multiple regression model 

n  The same idea applies to problems with several 
categorical predictors [aka: factors] 
n  One-way ANOVA: one factor 
n  Two-way ANOVA: two factors 
n  … 

n  Model assumptions 
n  Equal variances 
n  Normality 
n  Independence 
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ANOVA 

One-way ANOVA models 
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ANOVA: One-Way Model 

n  Goal:  
n  Compare the means of K independent groups (defined 

by a categorical predictor) 
n  Statistical Hypotheses: 

n  (Global) Null Hypothesis: 

    H0: µ1= µ2 =…= µK. 
n  Alternative Hypothesis: 

    H1: not all means are equal 
 
n  If the means of the groups are not all equal (i.e. you 

rejected the above H0), determine which ones are 
different (multiple comparisons) 
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Estimation and Inference 

n  Global Hypotheses 
H0:                                           vs.       H1:  not all means are equal 

n  Analysis of variance table 

Kµµµ === ...21

Source df SS MS F 

Regression K-1 SSR= MSR= 
  SSR/(K-1) 

MSR/ 
MSE 

Residual n-K SSE= MSE= 
 SSE/n-K 

Total n-1 SST= 

∑
i

2
i )y-y(

∑
ji,

2
iij )y-(y

∑
ji,

2
ij )y-(y
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ANOVA as a multiple regression model 

Mean Regression 
Model 

µ1 β0 

µ2 β0 + β1 

µ3 β0 + β2 

Back to example: 
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Estimation and Inference 

n  Global Hypotheses 
H0:                                           vs.       H1:  not all coeffs are zero 

n  Analysis of variance table 

0... 11 === −Kββ

Source df SS MS F 

Regression K-1 SSR= MSR= 
  SSR/(K-1) 

MSR/ 
MSE 

Residual n-K SSE= MSE= 
 SSE/n-K 

Total n-1 SST= 

∑
i

2
i )y-y(

∑
ji,

2
iij )y-(y

∑
ji,

2
ij )y-(y
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ANOVA: One-Way Model 

n  How to fit a one-way model as a regression 
problem? 
n  Need to use “dummy” variables 

n  Create on your own (can be tedious!) 
n  Most software packages will do this for you 

n  R creates dummy variables in the background as long as you state 
you have a categorical variable (may need to use: as.factor) 
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ANOVA: One-Way Model 
> fit0 = lm(chol ~ dummy1 + dummy2) 
> summary(fit0) 
Call: 
lm(formula = chol ~ dummy1 + dummy2) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  181.062      1.455 124.411  < 2e-16 *** 
dummy1         6.802      2.321   2.930  0.00358 **  
dummy2         5.438      4.540   1.198  0.23167     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,     Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit0) 
Analysis of Variance Table 
 
Response: chol 
           Df Sum Sq Mean Sq F value   Pr(>F)    
dummy1      1   3624    3624  7.5381 0.006315 ** 
dummy2      1    690     690  1.4350 0.231665    
Residuals 397 190875     481                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> dummy1 = 1*(rs174548==1) 
> dummy2 = 1*(rs174548==2) 

By hand:  
Creating “dummy” 
variables: 

Fitting the 
ANOVA model: 
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ANOVA: One-Way Model 
> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 *** 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358 **  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,     Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Better: 
Let R do it for you! 
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ANOVA: One-Way Model 

n  Your turn! 
n  Compare model fit results (fit0 & fit1.1) 
   What do you conclude?  
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ANOVA: One-Way Model 
> fit0 = lm(chol ~ dummy1 + dummy2) 
> summary(fit0) 
Call: 
lm(formula = chol ~ dummy1 + dummy2) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  181.062      1.455 124.411  < 2e-16 *** 
dummy1         6.802      2.321   2.930  0.00358 **  
dummy2         5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit0) 
Analysis of Variance Table 
 
Response: chol 
           Df Sum Sq Mean Sq F value   Pr(>F)    
dummy1      1   3624    3624  7.5381 0.006315 ** 
dummy2      1    690     690  1.4350 0.231665    
Residuals 397 190875     481                     
--- 

> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 *** 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358 **  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 
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ANOVA: One-Way Model 
> fit0 = lm(chol ~ dummy1 + dummy2) 
> summary(fit0) 
Call: 
lm(formula = chol ~ dummy1 + dummy2) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  181.062      1.455 124.411  < 2e-16 *** 
dummy1         6.802      2.321   2.930  0.00358 **  
dummy2         5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit0) 
Analysis of Variance Table 
 
Response: chol 
           Df Sum Sq Mean Sq F value   Pr(>F)    
dummy1      1   3624    3624  7.5381 0.006315 ** 
dummy2      1    690     690  1.4350 0.231665    
Residuals 397 190875     481                     
--- 

> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 *** 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358 **  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 

> 1-pf(4.4865,2,397) 
[1] 0.01183671 
> 1-pf(((3624+690)/2)/481,2,397) 
[1] 0.01186096 
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ANOVA: One-Way Model 

n  Let’s interpret the regression model 
results! 

n  What is the interpretation of the regression 
model coefficients? 

> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 
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ANOVA: One-Way Model 

n  Interpretation: 
n  Estimated mean cholesterol for C/C 

group: 181.062 mg/dl 
n  Estimated difference in mean 

cholesterol levels between C/G and 
C/C groups: 6.802 mg/dl 

n  Estimated difference in mean 
cholesterol levels between G/G and 
C/C groups: 5.438 mg/dl 

> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 
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ANOVA: One-Way Model 

 

n  Overall F-test shows a significant 
p-value. We reject the null 
hypothesis that the mean 
cholesterol levels are the same 
across groups defined by 
rs174548 (p=0.01184).  

n  This does not tell us which 
groups are different! 

   (Need to perform multiple 
comparisons! More soon…) 

> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 
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ANOVA: One-Way Model 
> fit1.2 = lm(chol ~ -1 + as.factor(rs174548))  
> summary(fit1.2) 
Call: 
lm(formula = chol ~ -1 + as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
as.factor(rs174548)0  181.062      1.455  124.41   <2e-16 *** 
as.factor(rs174548)1  187.864      1.809  103.88   <2e-16 *** 
as.factor(rs174548)2  186.500      4.300   43.37   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.9861,     Adjusted R-squared: 0.986  
F-statistic:  9383 on 3 and 397 DF,  p-value: < 2.2e-16  
 
> anova(fit1.2) 
Analysis of Variance Table 
Response: chol 
                     Df   Sum Sq Mean Sq F value    Pr(>F)     
as.factor(rs174548)   3 13534205 4511402  9383.2 < 2.2e-16 *** 
Residuals           397   190875     481                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Alternative form: 
(better if you will  
perform multiple  
comparisons) 
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ANOVA: One-Way Model 

> fit1.3 = aov(chol ~ as.factor(rs174548)) 
> summary(fit1.3) 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314 2157.10  4.4865 0.01184 * 
Residuals           397 190875  480.79                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
> anova(fit1.3) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314 2157.10  4.4865 0.01184 * 
Residuals           397 190875  480.79                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> fit1.3$coeff 
         (Intercept) as.factor(rs174548)1 as.factor(rs174548)2  
          181.061674             6.802272             5.438326  

Alternative form: 
- Different command! 
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ANOVA: One-Way Model 
> fit2 = lm(chol ~ rs174548) 
> summary(fit2) 
 
Call: 
lm(formula = chol ~ rs174548) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-64.575 -16.278  -0.575  15.120  60.722  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  181.575      1.411 128.723  < 2e-16 *** 
rs174548       4.703      1.781   2.641  0.00858 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.95 on 398 degrees of freedom 
Multiple R-squared: 0.01723,    Adjusted R-squared: 0.01476  
F-statistic: 6.977 on 1 and 398 DF,  p-value: 0.008583  
 
> anova(fit2) 
Analysis of Variance Table 
 
Response: chol 
           Df Sum Sq Mean Sq F value   Pr(>F)    
rs174548    1   3363    3363  6.9766 0.008583 ** 
Residuals 398 191827     482                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

How about this one? 
How is rs174548 being  
treated now? 
 
 
Compare model fit  
results from (fit1.1 & fit2). 
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ANOVA: One-Way Model 

n  Model: E[Y|x] = β0 + β1x  
where Y: cholesterol, x: rs174548  
 
n  Interpretation of model parameters? 

n  β0: mean cholesterol in the C/C 
group [estimate: 181.575 mg/
dl] 

n  β1: mean cholesterol difference 
between C/G and C/C – or –  
between G/G and C/G groups 
[estimate: 4.703 mg/dl] 

n  This model presumes differences 
between “consecutive” groups 
are the same (in this example, 
linear dose effect of allele) – 
more restrictive than the ANOVA 
model! 

  Back to the ANOVA model… 

> fit2 = lm(chol ~ rs174548) 
> summary(fit2) 
 
Call: 
lm(formula = chol ~ rs174548) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-64.575 -16.278  -0.575  15.120  60.722  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  181.575      1.411 128.723  < 2e-16 *** 
rs174548       4.703      1.781   2.641  0.00858 **  
 
Residual standard error: 21.95 on 398 degrees of freedom 
Multiple R-squared: 0.01723, Adjusted R-squared: 0.01476  
F-statistic: 6.977 on 1 and 398 DF,  p-value: 0.008583  
 
> anova(fit2) 
Analysis of Variance Table 
 
Response: chol 
           Df Sum Sq Mean Sq F value   Pr(>F)    
rs174548    1   3363    3363  6.9766 0.008583 ** 
Residuals 398 191827     482                     
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ANOVA: One-Way Model 

n  We rejected the null 
hypothesis that the mean 
cholesterol levels are the 
same across groups 
defined by rs174548 
(p=0.01184).  

n  What are the groups with 
differences in means? 

  MULTIPLE COMPARISONS 
 

   

> fit1.1 = lm(chol ~ as.factor(rs174548)) 
> summary(fit1.1) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,  Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit1.1) 
Analysis of Variance Table 
 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 

ANOVA 

MULTIPLE COMPARISONS 
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ANOVA: One-Way Model 

n  What are the groups with differences in means? 
 

 MULTIPLE COMPARISONS: 
   
  µ0= µ1? 

 
  µ0= µ2?      Pairwise comparisons 

 
  µ1= µ2? 

 
 (µ1+ µ2)/2 = µ0?    Non-pairwise comparison 
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Multiple Comparisons: Family-wise error rates 

n  Illustrating the multiple comparison problem 
n  Truth: null hypotheses 
n  Tests: pairwise comparisons - each at the 5% level.  
 
What is the probability of rejecting at least one? 
 
 
 
 
 
 
That is, if you have three groups and make pairwise comparisons, each at the 5% level, your family-

wise error rate (probability of making at least one false rejection) is over 14%! 
 

Need to address this issue!  
Several methods!!! 

#groups 
= K 

2 3 4 5 6 7 8 9 10 

#pairwise 
comparisons 
= K(K-1)/2 

1 3 6 10 15 21 28 36 45 

P(at least 
one sig) 
=1-(1-0.05)c 

0.05 0.143 0.265 0.401 0.537 0.659 0.762 0.842 0.901 
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Multiple Comparisons 

n  Several methods: 
n  None (no adjustment) 
n  Bonferroni 
n  Holm 
n  Hochberg 
n  Hommel 
n  BH 
n  BY 
n  FDR 
n  … 
 

Available in R 
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Multiple Comparisons 

n  Bonferroni adjustment: for k tests performed, 
use level α/k (or multiply P-values by k). 
n  Simple 
n  Conservative 
n  Must decide on number of tests beforehand 
n  Widely applicable 
n  Can be done without software! 
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Multiple Comparisons 

> ## call library for multiple comparisons 
> library(multcomp) 
>  
> ## fit model  
> fit1 = lm(chol ~ -1 + as.factor(rs174548))  
>  
> ## all pairwise comparisons 
> ## -- first, define matrix of contrasts 
> M = contrMat(table(rs174548), type="Tukey") 
> M 
 
         Multiple Comparisons of Means: Tukey Contrasts 
 
       0  1 2 
1 - 0 -1  1 0 
2 - 0 -1  0 1 
2 - 1  0 -1 1 
>  
> ## -- second, obtain estimates for multiple comparisons 
> mc = glht(fit1, linfct =M) 

This option considers all  
pairwise comparisons  

Stands for general linear  
hypothesis testing 
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Multiple Comparisons 

> ## -- third, adjust the p-values (or not) for multiple comparisons 
> summary(mc, test=adjusted("none")) 
 
         Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: lm(formula = chol ~ -1 + as.factor(rs174548)) 
 
Linear Hypotheses: 
           Estimate Std. Error t value Pr(>|t|)    
1 - 0 == 0    6.802      2.321   2.930  0.00358 ** 
2 - 0 == 0    5.438      4.540   1.198  0.23167    
2 - 1 == 0   -1.364      4.665  -0.292  0.77015    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- none method) 
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Multiple Comparisons 

> summary(mc, test=adjusted("bonferroni")) 
 
         Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: lm(formula = chol ~ -1 + as.factor(rs174548)) 
 
Linear Hypotheses: 
           Estimate Std. Error t value Pr(>|t|)   
1 - 0 == 0    6.802      2.321   2.930   0.0107 * 
2 - 0 == 0    5.438      4.540   1.198   0.6950   
2 - 1 == 0   -1.364      4.665  -0.292   1.0000   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- bonferroni method) 
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Multiple Comparisons 

n  What if nonpairwise comparison?  
n  Suppose you want to compare the mean cholesterol among those 

with genotype C/C with the mean cholesterol for the combined 
group with genotypes C/G and G/G.   

   µ0 = (µ1+ µ2)/2 
 
Or equivalently,  

   2µ0 = (µ1+ µ2) 
 
Or equivalently, 

   2µ0 - µ1- µ2 = 0 
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Multiple Comparisons 

n  What if nonpairwise comparison?  
n  Your turn: Suppose you want to compare the mean cholesterol 

among those with genotype C/G with the mean cholesterol for the 
combined group with genotypes C/C and G/G.   
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Multiple Comparisons 

n  What if nonpairwise comparison?  
n  Your turn: Suppose you want to compare the mean cholesterol 

among those with genotype C/G with the mean cholesterol for the 
combined group with genotypes C/C and G/G.   
   
   (µ0 + µ2)/2 = µ1 

 
Or equivalently,  

   µ0 + µ2 = 2µ1 
 
Or equivalently, 

   µ0 - 2µ1+ µ2 = 0 
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Multiple Comparisons 

Using R for multiple comparisons with “user-defined” contrasts: 

> contr = rbind("mean(C/G+G/G) - mean(C/C)" = c(-2, 1, 1)) 
> mc2 = glht(fit1, linfct =contr) 
> summary(mc2, test=adjusted("none")) 
 
         Simultaneous Tests for General Linear Hypotheses 
 
Fit: lm(formula = chol ~ -1 + as.factor(rs174548)) 
 
Linear Hypotheses: 
                               Estimate Std. Error t value Pr(>|t|)   
mean(C/G+G/G) - mean(C/C) == 0   12.241      5.499   2.226   0.0266 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- none method) 
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Multiple Comparisons 
> ## more than one contrast (again user-defined) 
> contr2 = rbind("mean(C/G+G/G) - mean(C/C)" = c(-2, 1, 1), 
+                "mean(C/C+G/G) - mean(C/G)" = c(1, -2, 1)) 
> mc3 = glht(fit1, linfct =contr2) 
> summary(mc3, test=adjusted("none")) 
 
         Simultaneous Tests for General Linear Hypotheses 
Fit: lm(formula = chol ~ -1 + as.factor(rs174548)) 
Linear Hypotheses: 
                               Estimate Std. Error t value Pr(>|t|)   
mean(C/G+G/G) - mean(C/C) == 0   12.241      5.499   2.226   0.0266 * 
mean(C/C+G/G) - mean(C/G) == 0   -8.166      5.805  -1.407   0.1603   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- none method) 
 
> summary(mc3, test=adjusted("bonferroni")) 
 
         Simultaneous Tests for General Linear Hypotheses 
Fit: lm(formula = chol ~ -1 + as.factor(rs174548)) 
Linear Hypotheses: 
                               Estimate Std. Error t value Pr(>|t|)   
mean(C/G+G/G) - mean(C/C) == 0   12.241      5.499   2.226   0.0531 . 
mean(C/C+G/G) - mean(C/G) == 0   -8.166      5.805  -1.407   0.3205   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- bonferroni method) 
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Multiple Comparisons 

n  What about using other adjustment methods? 
n  For example, we used: 
    > summary(mc, test=adjusted("bonferroni")) 

(all pairwise comparisons, with Bonferroni adjustment) 
 

n  Other options, in place of “bonferroni”, are: 
n  summary(mc, test=adjusted("holm")) 
n  summary(mc, test=adjusted("hochberg")) 
n  summary(mc, test=adjusted("hommel")) 
n  summary(mc, test=adjusted("BH")) 
n  summary(mc, test=adjusted("BY")) 
n  summary(mc, test=adjusted("fdr")) 

Results, in this particular example, are basically the same, but they 
don’t need to be! Different criteria could lead to different results! 
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Multiple Comparisons 

> summary(mc, test=adjusted("fdr")) 
 
         Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: lm(formula = chol ~ -1 + as.factor(rs174548)) 
 
Linear Hypotheses: 
           Estimate Std. Error t value Pr(>|t|)   
1 - 0 == 0    6.802      2.321   2.930   0.0107 * 
2 - 0 == 0    5.438      4.540   1.198   0.3475   
2 - 1 == 0   -1.364      4.665  -0.292   0.7702   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- fdr method) 
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Multiple Comparisons 

n  FDR (False Discovery Rate) 
n  Less conservative procedure for multiple comparisons 
n  Among rejected hypotheses, FDR controls the expected 

proportion of incorrectly rejected null hypotheses (that 
is, type I errors).  

ANOVA 

MODEL CHECKING 

209 
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ANOVA Assumptions 

n  Recall the assumptions for classical ANOVA are: 

-6 -4 -2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

Independence 
Normality 
Equal variance 
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Bartlett’s test 

n  We assume that variances are the same across populations 

n  Bartlett’s test allows you to test the hypothesis that the 
population variances are the same (versus they are not all 
equal).  

> bartlett.test(chol ~ as.factor(rs174548)) 
 
        Bartlett test of homogeneity of variances 
 
data:  chol by as.factor(rs174548)  
Bartlett's K-squared = 4.8291, df = 2, p-value = 0.0894 
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Bartlett’s test? 

n  No real need to test variances! 

n  You can perform one-way ANOVA allowing for unequal 
variances! 

 

n  You can perform one-way ANOVA – using the regression 
framework with robust standard errors! 
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One-Way ANOVA allowing for unequal variances 

> oneway.test(chol ~ as.factor(rs174548)) 
 
        One-way analysis of means (not assuming equal variances) 
 
data:  chol and as.factor(rs174548)  
F = 4.3258, num df = 2.000, denom df = 73.284, p-value = 0.01676 



214 

One-Way ANOVA with robust standard errors 

> summary(gee(chol ~ as.factor(rs174548), id=seq(1,length(chol)))) 
Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27 
running glm to get initial regression estimate 
         (Intercept) as.factor(rs174548)1 as.factor(rs174548)2  
          181.061674             6.802272             5.438326  
 
 GEE:  GENERALIZED LINEAR MODELS FOR DEPENDENT DATA 
 gee S-function, version 4.13 modified 98/01/27 (1998)  
 
Model: 
 Link:                      Identity  
 Variance to Mean Relation: Gaussian  
 Correlation Structure:     Independent  
 
Call: 
gee(formula = chol ~ as.factor(rs174548), id = seq(1, length(chol))) 
 
Summary of Residuals: 
         Min           1Q       Median           3Q          Max  
-64.06167401 -15.91337769  -0.06167401  14.93832599  59.13605442  
 
Coefficients: 
                       Estimate Naive S.E.    Naive z Robust S.E.   Robust z 
(Intercept)          181.061674   1.455346 124.411431    1.400016 129.328297 
as.factor(rs174548)1   6.802272   2.321365   2.930290    2.402005   2.831914 
as.factor(rs174548)2   5.438326   4.539833   1.197913    3.624271   1.500530 
 
Estimated Scale Parameter:  480.7932 
Number of Iterations:  1 
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Kruskal-Wallis Test 

n  Non-parametric analogue to the one-way ANOVA 
n  Based on ranks  

n  In our example: 

n  Conclusion: 
n  Evidence that the cholesterol distribution is not the same across 

all groups. 
n  With the global null rejected, you can also perform pairwise 

comparisons [Wilcoxon rank sum], but adjust for multiplicities! 

> kruskal.test(chol ~ as.factor(rs174548)) 
 
        Kruskal-Wallis rank sum test 
 
data:  chol by as.factor(rs174548)  
Kruskal-Wallis chi-squared = 7.4719, df = 2, p-value = 0.02385 
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Multiple Comparisons  
(following Kruskal-Wallis Test) 
> wilcox.test(chol[rs174548!=0] ~rs174548[rs174548!=0])   
 
        Wilcoxon rank sum test with continuity correction 
 
data:  chol[rs174548 != 0] by rs174548[rs174548 != 0]  
W = 1974.5, p-value = 0.789 
alternative hypothesis: true location shift is not equal to 0  
 
 
> wilcox.test(chol[rs174548!=1] ~rs174548[rs174548!=1])   
 
        Wilcoxon rank sum test with continuity correction 
 
data:  chol[rs174548 != 1] by rs174548[rs174548 != 1]  
W = 2482, p-value = 0.1849 
alternative hypothesis: true location shift is not equal to 0  
 
 
> wilcox.test(chol[rs174548!=2] ~rs174548[rs174548!=2])   
 
        Wilcoxon rank sum test with continuity correction 
 
data:  chol[rs174548 != 2] by rs174548[rs174548 != 2]  
W = 14025.5, p-value = 0.009221 
alternative hypothesis: true location shift is not equal to 0  
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GOAL: Comparison of  
Means across K groups 

Multiple Regression: 
Model: E[Y|groups]= β0+ β1group2 +…+βk-1groupk 
                              where group1 is the reference group 
H0:β1= β2=…= βk-1=0 
H1: not all βi are equal to zero 

Rejected H0? 

Multiple Comparisons 
(control α overall) 

One-way ANOVA: 
 
H0:µ1= µ2=…= µk 
H1: not all means are equal 

YES 

10

203
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+=

+=
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KK ββµ

ββµ
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βµ
Relationships: 

e.g. Bonferroni: α/#comparisons 

Summary: 
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ANOVA 

Two-way ANOVA models 
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ANOVA: Two-Way Model 
Motivation: 

n  Scientific question: 
n  Assess the effect of rs174548 and gender on cholesterol 

levels. 
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ANOVA: Two-Way Model 

n  Factors: A and B 
n  Goals: 

n  Test for main effect of A 
n  Test for main effect of B 
n  Test for interaction effect of A and B 
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ANOVA: Two-Way Model 

n  To simplify discussion, assume that factor A has three 
levels, while factor B has two levels 

A1 A2 A3 

B1 µ11 µ21 µ31 

B2 µ12 µ22 µ32 

Factor A 

Fa
ct

or
 B
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A1 A2 A3 

B1 

B2 

Means 

Parallel lines = No interaction 

A1 A2 A3 

B1 

B2 

Lines are not parallel = Interaction 

ANOVA: Two-Way Model 
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ANOVA: Two-Way Model 

n  Recall:  

n  Categorical variables can be represented with “dummy” 
variables 

n  Interactions are represented with “cross-products” 
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ANOVA: Two-Way Model 

n  Model 1: 
 E[Y|A2, A3, B2] = β0 + β1A2 + β2A3 + β3B2. 

 
n  What are the means in each combination-group? 

A1 A2 A3 

B1 µ11=β0 µ21 =β0+ β1 µ31 =β0+ β2 

B2 µ12 =β0+ β3 µ22 =β0+ β1 + β3 µ32= β0+ β2 + β3 
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ANOVA: Two-Way Model 

n  Model 1: 
 E[Y|A2, A3, B2] = β0 + β1A2 + β2A3 + β3B2. 

A1 A2 A3 

B1 µ11=β0 µ21 =β0+ β1 µ31 =β0+ β2 

B2 µ12 =β0+ β3 µ22 =β0+ β1 + β3 µ32= β0+ β2 + β3 

Model with no interaction: 
• Difference in means between groups defined by factor B does not depend on  
     the level of factor A. 
• Difference in means between groups defined by factor A does not depend on  
     the level of factor B. 
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ANOVA: Two-Way Model 

n  Model 2: 
 E[Y|A2, A3, B2] = β0 + β1A2 + β2A3 + β3B2+ β4A2B2 + β5A3B2   

 
n  What are the means in each combination-group? 

A1 A2 A3 

B1 µ11=β0 µ21 =β0+ β1 µ31 =β0+ β2 

B2 µ12 =β0+ β3 µ22 =β0+ β1 + β3 + β4 µ32= β0+ β2 + β3 + β5 
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ANOVA: Two-Way Model 

n  Three (possible) tests 
n  Interaction of A and B (may want to start here) 

n  Rejection would imply that differences between means of A 
depends on the level of B (and vice-versa) so stop 

n  Main effect of A  
n  Test only if no interaction 

n  Main effect of B 
n  Test only if no interaction 

 

[ Note:  If you have one observation per cell, you cannot test interaction! ] 
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ANOVA: Two-Way Model 

n  Model without interaction 
 E[Y|A2, A3, B2] = β0 + β1A2 + β2A3 + β3B2. 

 
 How do we test for main effect of factor A? 
  H0: β1= β2=0   vs.  H1: β1 or β2 not zero  

 
 How do we test for main effect of factor B? 
  H0: β3=0   vs.  H1: β3 not zero  
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ANOVA: Two-Way Model 

n  Model with interaction: 
 E[Y|A2, A3, B2] = β0 + β1A2 + β2A3 + β3B2+ β4A2B2 + β5A3B2   

 
 How do we test for interactions? 
   
  H0: β4= β5=0   vs.   
   
  H1: β4 or β5 not zero  

 
IMPORTANT:  

 If you reject the null, do not test main effects!!! 
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ANOVA: Two-Way Model (without interaction) 
> fit1 = lm(chol ~ as.factor(sex) + as.factor(rs174548)) 
> summary(fit1) 
Call: 
lm(formula = chol ~ as.factor(sex) + as.factor(rs174548)) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-66.6534 -14.4633  -0.6008  15.4450  57.6350  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           175.365      1.786  98.208  < 2e-16 *** 
as.factor(sex)1        11.053      2.126   5.199 3.22e-07 *** 
as.factor(rs174548)1    7.236      2.250   3.215  0.00141 **  
as.factor(rs174548)2    5.184      4.398   1.179  0.23928     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.24 on 396 degrees of freedom 
Multiple R-squared: 0.08458,    Adjusted R-squared: 0.07764  
F-statistic:  12.2 on 3 and 396 DF,  p-value: 1.196e-07  
 
> anova(fit0,fit1) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(sex) 
Model 2: chol ~ as.factor(sex) + as.factor(rs174548) 
  Res.Df    RSS Df Sum of Sq     F   Pr(>F)    
1    398 183480                                
2    396 178681  2    4799.1 5.318 0.005259 ** 
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ANOVA: Two-Way Model (without interaction) 

> fit1 = lm(chol ~ as.factor(sex) + as.factor(rs174548)) 
> summary(fit1) 
Call: 
lm(formula = chol ~ as.factor(sex) + as.factor(rs174548)) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-66.6534 -14.4633  -0.6008  15.4450  57.6350  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           175.365      1.786  98.208  < 2e-16 *** 
as.factor(sex)1        11.053      2.126   5.199 3.22e-07 *** 
as.factor(rs174548)1    7.236      2.250   3.215  0.00141 **  
as.factor(rs174548)2    5.184      4.398   1.179  0.23928     
 
Residual standard error: 21.24 on 396 degrees of freedom 
Multiple R-squared: 0.08458,    Adjusted R-squared: 0.07764  
F-statistic:  12.2 on 3 and 396 DF,  p-value: 1.196e-07  
 
> anova(fit0,fit1) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(sex) 
Model 2: chol ~ as.factor(sex) + as.factor(rs174548) 
  Res.Df    RSS Df Sum of Sq     F   Pr(>F)    
1    398 183480                                
2    396 178681  2    4799.1 5.318 0.005259 ** 
 

n  Interpretation of results: 
n  Estimated mean cholesterol for male 

C/C group: 175.37 mg/dl 
n  Estimated difference in mean 

cholesterol levels between females 
and males adjusted by genotype: 
11.053 mg/dl 

n  Estimated difference in mean 
cholesterol levels between C/G and 
C/C groups adjusted by gender: 
7.236 mg/dl 

n  Estimated difference in mean 
cholesterol levels between G/G and 
C/C groups adjusted by gender: 
5.184 mg/dl 

n  There is evidence that cholesterol is 
associated with gender (p< 0.001). 

n  There is evidence that cholesterol is 
associated with genotype (p=0.005)  
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ANOVA: Two-Way Model (without interaction) 

n  In words: 
n  Adjusting for sex, the difference in mean cholesterol 

comparing C/G to C/C is 7.236 and comparing G/G to C/
C is 5.184. 

n  This difference does not depend on sex 
n  (this is because the model does not have an interaction between 

sex and genotype!) 
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ANOVA: Two-Way Model (with interaction) 

> fit2 = lm(chol ~ as.factor(sex) * as.factor(rs174548)) 
> summary(fit2) 
 
Call: 
lm(formula = chol ~ as.factor(sex) * as.factor(rs174548)) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-70.5286 -13.6037  -0.9736  14.1709  54.8818  
 
Coefficients: 
                                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)                          178.1182     2.0089  88.666  < 2e-16 *** 
as.factor(sex)1                        5.7109     2.7982   2.041  0.04192 *   
as.factor(rs174548)1                   0.9597     3.1306   0.307  0.75933     
as.factor(rs174548)2                  -0.2015     6.4053  -0.031  0.97492     
as.factor(sex)1:as.factor(rs174548)1  12.7398     4.4650   2.853  0.00456 **  
as.factor(sex)1:as.factor(rs174548)2  10.2296     8.7482   1.169  0.24297     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.07 on 394 degrees of freedom 
Multiple R-squared: 0.1039,     Adjusted R-squared: 0.09257  
F-statistic:  9.14 on 5 and 394 DF,  p-value: 3.062e-08  
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ANOVA: Model comparison 

> anova(fit1,fit2) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(sex) + as.factor(rs174548) 
Model 2: chol ~ as.factor(sex) * as.factor(rs174548) 
  Res.Df    RSS  Df Sum of Sq      F  Pr(>F)   
1    396 178681                                
2    394 174902   2      3779 4.2564 0.01483 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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ANOVA: Two-Way Model (with interaction) 

> fit2 = lm(chol ~ as.factor(sex) * as.factor(rs174548)) 
> summary(fit2) 
 
Call: 
lm(formula = chol ~ as.factor(sex) * as.factor(rs174548)) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-70.5286 -13.6037  -0.9736  14.1709  54.8818  
 
Coefficients: 
                                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)                          178.1182     2.0089  88.666  < 2e-16 *** 
as.factor(sex)1                        5.7109     2.7982   2.041  0.04192 *   
as.factor(rs174548)1                   0.9597     3.1306   0.307  0.75933     
as.factor(rs174548)2                  -0.2015     6.4053  -0.031  0.97492     
as.factor(sex)1:as.factor(rs174548)1  12.7398     4.4650   2.853  0.00456 **  
as.factor(sex)1:as.factor(rs174548)2  10.2296     8.7482   1.169  0.24297     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.07 on 394 degrees of freedom 
Multiple R-squared: 0.1039,     Adjusted R-squared: 0.09257  
F-statistic:  9.14 on 5 and 394 DF,  p-value: 3.062e-08  

n  Interpretation of results: 
n  Estimated mean cholesterol 

for male C/C group:  
    178.12 mg/dl 
n  Estimated mean cholesterol 

for female C/C group? 
(178.12 + 5.7109) mg/dl 

n  Estimated mean cholesterol 
for male C/G group:  

     (178.12 +0.9597) mg/dl 
n  Estimated mean cholesterol 

for female C/G group:  
     (178.12 + 5.7109 + 0.9597 

+ 12.7398) mg/dl 
n  … 
 
 
n  There is evidence for an 

interaction between sex 
and genotype (p= 0.015) 

> anova(fit1,fit2) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(sex) + as.factor(rs174548) 
Model 2: chol ~ as.factor(sex) * as.factor(rs174548) 
  Res.Df    RSS  Df Sum of Sq      F  Pr(>F)   
1    396 178681                                
2    394 174902   2      3779 4.2564 0.01483 * 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Two-Way ANOVA 

Significant  
Interaction? 

Interpret the effect of factor A on  
mean response for each level of  
factor B (or effect of factor B on  
mean response for each level  

of factor A) 

Interpret main effects of  
factor A and factor B 

YES 

NO 
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ANCOVA MODELS 

(aka ANACOVA) 
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ANalysis of COVAriance Models (ANCOVA) 
 Motivation: 

n  Scientific question: 
n  Assess the effect of rs174548 on cholesterol levels 

adjusting for age 
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ANalysis of COVAriance Models (ANCOVA) 

n  ANOVA with one or more continuous variables 
n  Equivalent to regression with “dummy” variables and 

continuous variables 

n  Primary comparison of interest is across k groups 
defined by a categorical variable, but the k groups may 
differ on some other potential predictor or confounder 
variables [also called covariates]. 
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ANalysis of COVAriance Models (ANCOVA) 

n  To facilitate discussion assume 
n  Y: continuous response (e.g. cholesterol)  
n  X: continuous variable (e.g. age)  
n  Z: dummy variable (e.g. indicator of C/G or G/G versus C/C) 

n  Model: 

Note that: 

This model allows for different intercepts/slopes for each 
group. 

εββββ ++++= XZZXY 3210

XZXYEZ
XZXYEZ

)()(]1,|[1
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3120
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ββββ

ββ
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Interaction term 

241 

ANCOVA 

n  Testing coincident lines: 
n  Compares overall model with reduced model 

n  Testing parallelism:  
n  Compares overall model with reduced model 

 

0: 30 =βH

0,0: 320 == ββH
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ANCOVA 
> fit0 = lm(chol ~ as.factor(rs174548)) 
> summary(fit0) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-64.06167 -15.91338  -0.06167  14.93833  59.13605  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 *** 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358 **  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared: 0.0221,     Adjusted R-squared: 0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
 
> anova(fit0) 
Analysis of Variance Table 
Response: chol 
                     Df Sum Sq Mean Sq F value  Pr(>F)   
as.factor(rs174548)   2   4314    2157  4.4865 0.01184 * 
Residuals           397 190875     481                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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ANCOVA 
> fit1 = lm(chol ~ as.factor(rs174548) + age) 
> summary(fit1) 
Call: 
lm(formula = chol ~ as.factor(rs174548) + age) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-57.2089 -14.4293   0.4443  14.2652  55.8985  
 
Coefficients: 
                      Estimate Std. Error t value Pr(>|t|)     
(Intercept)          163.28125    4.36422  37.414  < 2e-16 *** 
as.factor(rs174548)1   7.30137    2.27457   3.210  0.00144 **  
as.factor(rs174548)2   5.08431    4.44331   1.144  0.25321     
age                    0.32140    0.07457   4.310 2.06e-05 *** 
 
Residual standard error: 21.46 on 396 degrees of freedom 
Multiple R-squared: 0.06592,    Adjusted R-squared: 0.05884  
F-statistic: 9.316 on 3 and 396 DF,  p-value: 5.778e-06  
 
> anova(fit0,fit1) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(rs174548) 
Model 2: chol ~ as.factor(rs174548) + age 
  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     
1    397 190875                                   
2    396 182322  1    8552.9 18.577 2.062e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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ANCOVA 
> fit2 = lm(chol ~ as.factor(rs174548) * age) 
> summary(fit2) 
Call: 
lm(formula = chol ~ as.factor(rs174548) * age) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-57.5425 -14.3002   0.7131  14.2138  55.7089  
 
Coefficients: 
                          Estimate Std. Error t value Pr(>|t|)     
(Intercept)              164.14677    5.79545  28.323  < 2e-16 *** 
as.factor(rs174548)1       3.42799    8.79946   0.390  0.69707     
as.factor(rs174548)2      16.53004   18.28067   0.904  0.36642     
age                        0.30576    0.10154   3.011  0.00277 **  
as.factor(rs174548)1:age   0.07159    0.15617   0.458  0.64692     
as.factor(rs174548)2:age  -0.20255    0.31488  -0.643  0.52043     
 
Residual standard error: 21.49 on 394 degrees of freedom 
Multiple R-squared: 0.06777,    Adjusted R-squared: 0.05594  
F-statistic: 5.729 on 5 and 394 DF,  p-value: 4.065e-05  
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ANCOVA 
> fit0 = lm(chol ~ as.factor(rs174548)) 
> summary(fit0) 
Call: 
lm(formula = chol ~ as.factor(rs174548)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-64.062 -15.913  -0.062  14.938  59.136  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)           181.062      1.455 124.411  < 2e-16 *** 
as.factor(rs174548)1    6.802      2.321   2.930  0.00358 **  
as.factor(rs174548)2    5.438      4.540   1.198  0.23167     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 21.93 on 397 degrees of freedom 
Multiple R-squared:  0.0221,  Adjusted R-squared:  0.01718  
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184  
> anova(fit0,fit2) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(rs174548) 
Model 2: chol ~ as.factor(rs174548) * age 
  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     
1    397 190875                                   
2    394 181961  3      8914 6.4339 0.0002912 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Test of 
coincident 
lines 
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ANCOVA 

 
> anova(fit1,fit2) 
Analysis of Variance Table 
 
Model 1: chol ~ as.factor(rs174548) + age 
Model 2: chol ~ as.factor(rs174548) * age 
  Res.Df    RSS Df Sum of Sq     F Pr(>F) 
1    396 182322                           
2    394 181961  2    361.11 0.391 0.6767 

Test of 
parallel lines 
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ANCOVA 

n  In summary: 
n  If the slopes are not equal, then age is an effect modifier 

n  If the slopes are the same,  
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ANCOVA 

n  If the slopes are the same,  

n  then one can obtain adjusted means for the three genotypes using the 
mean age over all groups 

n  For example, the adjusted means for the three groups would be 
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ANCOVA 

> ## unadjusted mean cholesterol levels for different genotypes 
> predict(fit0, new=data.frame(rs174548=0)) 
       1  
181.0617  
> predict(fit0, new=data.frame(rs174548=1)) 
       1  
187.8639  
> predict(fit0, new=data.frame(rs174548=2)) 
    1  
186.5  
 
> ## mean cholesterol for different genotypes adjusted by age 
> predict(fit1, new=data.frame(age=mean(age),rs174548=0)) 
       1  
180.9013  
> predict(fit1, new=data.frame(age=mean(age),rs174548=1)) 
       1  
188.2026  
> predict(fit1, new=data.frame(age=mean(age),rs174548=2)) 
       1  
185.9856  
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ANCOVA 

Significant  
Interaction? 

(slopes are different?) 

Interpret the difference in means  
of the response for given values  

of the continuous variable 

YES 

Control for potential  
confounder? 

Compute adjusted means  
at the common X mean  

NO 

YES 

Experimental Designs & ANOVA 

q  This section is not intended to be comprehensive 
q  No endorsement for any of the articles cited here 
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Tool Kit 
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n  Controls and Placebos: 
n  Provides a baseline comparison with test groups 

n  Blinding: 
n  When successfully applied, it eliminates the possibility that the end 

comparison measures expectations rather than real treatment 
differences 

n  Blocking: 
n  Arranges units into homogeneous subgroups so that treatments can 

be randomly assigned to units within each block 
n  Improves precision for treatment comparisons 
n  Controls for confounding variables by grouping experimental 

units into blocks with similar values of the variable 
 

Tool Kit 

n  Stratification 
n  Involves partitioning of population units into homogeneous 

subgroups – called strata – and performing random sampling of 
population units in each strata 

n  (stratification pertains to random sampling; blocking pertains to 
random assignment) 

n  Covariates 
n  Inclusion may control for potentially confounding factors 
n  Inclusion may improve precision in treatment comparisons 

n  Randomization 
n  Allows for controlling for factors not explictly controlled for in the 

design (by blocking) or in the analysis (by covariates) 
n  Enables causal inferences 
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Tool Kit 
n  Random Sampling 

n  Means employing a random procedure to select units 
from a population 

n  To ensure that sample is representative of the population 
n  To permit an inference that patterns observed in the sample are 

characteristic of patterns in the population as a whole 

n  Replication 
n  It refers to assigning one treatment to multiple units 

within each block. 
n  Increases precision for treatment effects (increased sample size) 
n  Allows for model assessment 

n  Balance 
n  Same number of units to each treatment 

n  Optimizes precision for treatment comparisons 256 

Terminology 

n  Treatments 
n  A factor level in a single-factor study or a combination of 

factor levels in a multi-factor study 
n  How many factors should be examined? 
n  How many levels should each factor have? 

n  Experimental units 
n  Smallest unit of the experiment such that any two 

different experimental units may receive different 
treatments 

257 
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One-Way Data Patterns 

YYYY YYYY YYYY 
Factor 

Equal number of replicates per treatment 

YY YYYYY YYY 
Factor 

Unequal number of replicates per treatment 

“Dictionary”: 
      Factor: categorical predictor 
      Levels: categories of the predictor variable 
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Two-Way Data Patterns 

Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 

Factor 1 

Fa
ct

or
 2

 

Single observation per cell 

YYY YYY YYY 
YYY YYY YYY 
YYY YYY YYY 
YYY YYY YYY 

Factor 1 

Fa
ct

or
 2

 

Equal replication per cell 

YY YYY YYYYYY 
YYY YYYY YY 
Y YYY YYYY 

YYYYY YY Y 

Factor 1 

Fa
ct

or
 2

 

Non-systematic replications 



Completely Randomized Design 

n  Treatments are allocated to the experimental units 
completely at random 
n  Every experimental unit has an equal chance of receiving 

any of the treatments 

n  Simple & flexible 
n  Allows for any number of treatments  
n  Sample sizes can vary from treatment to treatment 

n  Inefficient when the experimental units are 
heterogeneous 
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Completely Randomized Design 
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A 

B 

C 

Treatments 

Experimental  
Unit 

Statistical model? One-way ANOVA model 



Completely Randomized Design: an 
Example 

n  Title: “Hepatocyte growth factor incorporated chitosan nanoparticles augment 
the differentiation of stem cell into hepatocytes for the recovery of liver 
cirrhosis in mice.”  

n  Authors: Pulavendran S, Rose C, Mandal AB. J Nanobiotechnology. 2011 Apr 28;9:15. 

n  Abstract [partial]: 
n  BACKGROUND:  Short half-life and low levels of growth factors in the niche of injured 

microenvironment necessitates the exogenous and sustainable delivery of growth 
factors along with stem cells to augment the regeneration of injured tissues. 

n  METHODS: Recombinant human hepatocyte growth factor (HGF) was incorporated into 
chitosan nanoparticles (CNP) by ionic gelation method and studied for its 
morphological and physiological characteristics. Cirrhotic mice received either 
hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without 
HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. 
Biochemical, histological, immunostaining and gene expression assays were carried 
out using serum and liver tissue samples […].  

n  RESULTS:  Serum levels of selected liver protein and enzymes were significantly 
increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. 

n  CONCLUSION: […] Transplantation of bone marrow MSC in combination with HGF-CNP 
could be an ideal approach for the treatment of liver cirrhosis. 
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Completely Randomized Design: 
Exercise 

n  What is the goal of the experiment? 

n  What is(are) the response variables?  

n  What are the factors?  

n  How many levels?  
 
n  Statistical model?  
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Factorial Design 

n  A factorial design is used to evaluate two or more 
factors simultaneously.  

n  Factorial designs are more efficient than one-
factor-at-a-time designs 

n  Factorial designs allow for investigations of 
interactions. 
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Factorial Design: an example 

n  Title: “Fermentable fiber ameliorates fermentable protein-induced changes in 
microbial ecology, but not the mucosal response, in the colon of piglets”. 

n  Pieper R, Kröger S, Richter JF, Wang J, Martin L, Bindelle J, Htoo JK, von Smolinski D, Vahjen W, Zentek J, 
Van Kessel AG. J Nutr. 2012 Apr;142(4):661-7. Epub 2012 Feb 22. 

n  Abstract (partial): Dietary inclusion of fermentable carbohydrates (fCHO) is reported to 
reduce large intestinal formation of putatively toxic metabolites derived from fermentable 
proteins (fCP). However, the influence of diets high in fCP concentration on epithelial 
response and interaction with fCHO is still unclear. Thirty-two weaned piglets were fed 4 
diets in a 2 × 2 factorial design with low fCP/low fCHO [14.5% crude protein (CP)/
14.5% total dietary fiber (TDF)]; low fCP/high fCHO (14.8% CP/16.6% TDF); high fCP 
low fCHO (19.8% CP/14.5% TDF); and high fCP/high fCHO (20.1% CP/18.0% TDF) as 
dietary treatments. After 21-23 d, pigs were killed and colon digesta and tissue samples 
analyzed for indices of microbial ecology, tissue expression of genes for cell turnover, 
cytokines, mucus genes (MUC), and oxidative stress indices. Pig performance was 
unaffected by diet. […] High dietary fCP increased (P < 0.05) expression of PCNA, IL1β, 
IL10, TGFβ, MUC1, MUC2, and MUC20, irrespective of fCHO concentration. 
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Factorial Design: Exercise 

n  What is the goal of the experiment? 

n  What is(are) the response variables?  

n  What are the factors?  

n  For each factor, how many levels?  

n  How many treatments? 

n  Statistical model?  266 

Factorial Design: an example 

267 

Are these results unexpected?  
Any concerns? 



Randomized Complete Block Designs 

n  Experimental units are assigned to homogeneous 
groups (aka “blocks”). 
n  Reduces the variation and increases the precision of 

treatment comparisons 

n  Members of each block are randomly assigned to 
different treatments. 
n  Randomized complete block design: each block contains 

all treatment combinations 
n  Randomized incomplete block design: number of 

treatments exceeds the number of units in each block 
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Randomized Complete Block Designs 
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C A B D 

D B A C 

A B D C 

Within each block, a separate randomization  
allocates treatments to experimental units 

Block 1 

Block 2 

Block 3 

Large N-S variability 
 
Small E-W variability 



Randomized Complete Block Designs 

n  Factors:  
n  Block (control factor) 
n  Treatment (factor of interest) 

 

n  Statistical Model 
n  Two-way ANOVA model   

n  (additive model with single replication) 
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Randomized Complete Block 
Designs: An example 

A researcher studied the effects of three 
experimental diets with varying fat contents on the 
total lipid (fat) level in plasma. Total lipid level is a 
widely used predictor of coronary heart disease. 
Fifteen male subjects who were within 20% of their 
ideal body weight were grouped into five blocks 
according to age. Within each block, the three 
experimental diets were randomly assigned to three 
subjects. Data on reduction in lipid level (in grams 
per liter) after the subjects were on the diet for a 
fixed period of time were recorded.   
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Randomized Complete Block 
Designs: An example 

272 

	  	   	  Fat	  Content	  of	  Diet	  

Age	  Group	   Extremely	  Low	   Fairly	  Low	   Moderately	  Low	  

Ages	  15-‐24	   	  0.73	   0.67	  	   0.15	  	  

Ages	  25-‐34	   	  0.86	   0.75	   0.21	  

Ages	  35-‐44	   	  0.94	   0.81	   0.26	  

Ages	  45-‐54	   	  1.4	   1.32	   0.75	  

Ages	  55-‐64	   	  1.62	   	  1.41	   	  0.78	  

Randomized Complete Block 
Designs: Exercise 

n  What is the goal of the experiment? 

n  What is (are) the response variables?  

n  What is the factor of interest? What is the blocking 
factor? For each factor, how many levels?  

n  How many treatments? 

n  Statistical model?  
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Randomized Complete Block 
Designs: Another example 

TITLE: “UV REPAIR AND RESISTANCE TO SOLAR UV-B IN AMPHIBIAN EGGS - A LINK TO 
POPULATION DECLINES”  
n Author(s): BLAUSTEIN, AR (BLAUSTEIN, AR); HOFFMAN, PD (HOFFMAN, PD); HOKIT, DG 
(HOKIT, DG); KIESECKER, JM (KIESECKER, JM); WALLS, SC (WALLS, SC); HAYS, JB (HAYS, JB) 
Source: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES 
OF AMERICA  Volume: 91   Issue: 5   Pages: 1791-1795 
n Abstract [partial]: The populations of many amphibian species, in widely scattered habitats, 
appear to be in severe decline; other amphibians show no such declines. There is no known 
single cause for the declines, but their widespread distribution suggests involvement of global 
agents-increased UV-B radiation, for example. We addressed the hypothesis that differential 
sensitivity among species to UV radiation contributes to these population declines. We focused 
on species-specific differences in the abilities of eggs to repair UV radiation damage to DNA 
and differential hatching success of embryos exposed to solar radiation at natural oviposition 
sites. Quantitative comparisons of activities of a key UV-damage-specific repair enzyme, 
photolyase, among oocytes and eggs from 10 amphibian species were reproducibly 
characteristic for a given species but varied > 80-fold among the species. Levels of photolyase 
generally correlated with expected exposure of eggs to sunlight. Among the frog and toad 
species studied, the highest activity was shown by the Pacific treefrog (Hyla regilla), whose 
populations are not known to be in decline. The Western toad (Bufo boreas) and the Cascades 
frog (Rana cascadae), whose populations have declined markedly, showed significantly lower 
photolyase levels. […] These observations are thus consistent with the UV-sensitivity 
hypothesis.  274 

Randomized Complete Block 
Designs: Another example 

n  Goal: Is the failure rate different for species with 
different levels of activity of photolyase?  

n  Factors:  
n  UV-B Filter:  

n  UV-B blocking filter 
n  UV-B transmitting filter 
n  No Filter 

n  Species:  
n  Toad (Bufo boreas) 
n  Tree frog (Hyla regilla)  
n  Cascade frog (Rana cascadae) 

n  Randomization:  
n  Filtering treatments and egg species randomly assigned 

to enclosures constructed to contain clusters of 150 eggs 275 



Randomized Complete Block 
Designs: Another example 

n  Four sites: [three with single species] 
n  Sparks Lake (tree frog) 
n  Small Lake (Cascade frog) 
n  Lost Lake (toad) 
n  Three Creeks (all three species) 

n  Only eggs of naturally occurring species were 
assigned to enclosures at each site 

n  Blocking factor: Amphibian species/sites 
n  At Three Creeks: experiment is a 3 by 3 factorial design 
n  At other sites: single factor experiment 
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Randomized Complete Block Designs 
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C A B D 

D B A C 

A B D C 

Within each block, a separate randomization  
allocates treatments to experimental units 

Block 1 

Block 2 

Block 3 

Large N-S variability 
 
Small E-W variability 

What if need to control (large) variability in both N-S and E-S directions??? 



Latin Square Designs 

n  Employs two blocking variables (“row” and 
“column”) 
n  Allows for better control of experimental variation 

n  Features: 
n  There are r treatments 
n  There are two blocking variables; each with r categories 
n  Each row and each column in the design contains all 

treatments 
n  Only one treatment per combination block 
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Latin Square Designs 
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A  B  C  

C  A  B  

B  C  A  

A  B  D  C  

D  C  A  B  

B  D  C  A  

C  A  B  D  

Latin square for 3 treatments 

Latin square for 4 treatments 

Each treatment appears exactly once in each 
column and in each row. 



Latin Square Designs: An example 

n  In a study of chemotherapy treatments for breast 
cancer, researchers wanted to control for the 
effects of age and BMI.  
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Latin Square Designs: randomization 

n  Randomization is a bit complex because there are 
multiple possible Latin squares.  
n  Example: 

n  For r = 4, there are 576 possible Latin squares (4 are of 
standard form). 

n  A Latin square is said to be in standard form (also, normalized or 
reduced) if both its first row and its first column are in their 
natural order. For example, for r=4, 
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A  B  C  D  

B  C D A 

C  D A B 

D  A B C 



Latin Square Designs: randomization 

n  One chooses one Latin square randomly in a 
particular experiment.  
n  This may be done by writing down any legitimate Latin 

square and then randomly permuting rows and columns. 
n  “Algorithm”: 

n  Choose a standard Latin square (may or not be at random). 
n  Randomly permute all rows. 
n  Randomly permute all columns. 
n  Randomly assign treatments to the letters A, B, C, etc. 
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A  B  C  D  

B  C D A 

C  D A B 

D  A B C 

B  C D A 

D  A B C 

A  B  C  D  

C  D A B 

D A C B  
B C A D  
C  D  B  A  
A B D C  

Rows:  
(2,4,1,3) 

Columns:  
(3,4,2,1) 

Latin Square Designs 

n  Factors:  
n  Row (blocking factor 1) 
n  Column (blocking factor 2) 
n  Treatment (factor of interest) 

 

n  Statistical Model 
n  Three-way ANOVA model   

n  (additive model with single replication) 
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Everything is regression! 
(Professor Scott Emerson) 


