Introduction: Metagenomics in Biology and Medicine

What is a microbiome?

- The totality of microbes in a defined environment, especially their genomes and interactions with each other and surrounding environment.
 - A population of a single species/strain is a culture, extremely rare outside of lab, some infections
 - A microbiome is a mixed population of different microbial species (microbial ecosystem)
- Joshua Lederberg (1925 2008): "the ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space" (Lederberg and McCray Scientist. 2001;15:8).

We are more microbes than we are humans? • Human shelter 10 trillion microbes (10¹³) in THE HUMAN **MICROBIOME** their gut alone, (we are made of 10 trillion 600 cells). • Only 1 in 10 cells in your body carries 'your' DNA. Recent evidence suggests as many bacterial cells as human. • It is estimated that there are 1000 species of bacteria living in the human gut. • Compare also the number of human genes (~25,000) to the number of genes and variants that bacterial communities may carry (~4,000,000, see e.g. doi:10.1038/ncomms3151). 6

11

Discovery of *Culture Independent* Techniques

- 1980 rRNA as evolutionary explained C.Woese Science
- 1985 Polymerase Chain Reaction (PCR) K. Mullis Science
- 1985 "Universal" Primers for rRNA sequencing N. Pace PNAS
- 1989 PCR amplification of 16S rRNA gene Böttger FEMS Microbiol.
- 1996 Large, curated rRNA database (RDP) Maidak Nuc. Acids Res
- 2001 term "microbiome" coined by Joshua Lederberg

Functional identification • Sequencing based • Whole metagenome sequencing • Whole meta-transcriptome sequencing • Custom: e.g. IgA-Seq • Mass spectrometry based • Metaproteomics • Metabolomics: • Small molecule • Glycomics

- Lipidomics
- Microbial gene expression
 - NanoString codesets

Some highlights of human microbiome research

- Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection, *Genome Medicine*, **8**:49 (2016);
- Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease, *Nature Immunology* 17, 505–513 (2016);
- Cigarette smoking and the oral microbiome in a large study of American adults, ISME J. 2016;
- The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring, Science 2016, 351(6276):933-9;
- The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes, Cell Host Microbe 2015.

A Summary of Meta'omics

Piles of short DNA/RNA reads from >1 organism

You can...

Ecologically profile them Taxonomically or phylogenetically profile them Functionally profile them – gene/pathway catalogs Assemble them

Prior knowledge is helpful Caution: Correlation ≠ Causation Most 'omics results require lab confirmation

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

Sequence Processing (OTUs)

- •Denoising
- Chimera detection
- Construction of sequence clusters (OTUs)
- Comparing microbiomes
 - •Distances, Diversity
 - Exploratory Data Analysis
 - Ordination Methods
 - •hierarchical dendrogram
 - extract patterns from a plot
 - clusters gap statistic
 - •gradient regression, modeling, etc.

Identifying important microbes/taxa

- projected points, coinertia (plots)
- •inferential testing
- modeling

OTUs - Operational Taxonomic Unit

Motivation: Lingering problem with "OTUs"

Some lingering major problems with OTU approaches:

• False Positives - e.g. 1000s of OTUs when only 10s of strains present

9

- Low Resolution defined by arbitrary similarity radius
- Scaling to large datasets, comparisons
 - scales ~ N^2 unique sequences in dataset (all libraries)
- Unstable OTU seq and count depends on input
 - must re-run clustering if any data added/removed, or
 - if you want to compare against an external dataset

DADA2 algorithm assumptions

DADA2 Abundance Model

DADA2 algorithm assumptions

17

DADA2 Abundance Model

- Errors are independent across reads
- Abundance of reads w/ sequence i produced from more-abundant sequence j is poisson distributed
- Expectation of abundance equals error rate, $\lambda j \rightarrow i$, multiplied by the expected reads of sample sequence j
- i has count greater than or equal to one
- "Abundance p-value" for sequence i is thus:

$$p_A(j \to i) = \sum_{a=a_i}^{\infty} \rho_{pois}(n_j \lambda_{j \to i}, a) / (1 - \rho_{pois}(n_j \lambda_{j \to i}, 0))$$

- "Probability of seeing an abundance of sequence i that is equal to or greater than observed value, by chance, given sequence j."
- A low p_A indicates that there are more reads of sequence i than can be explained by errors introduced during the amplification and sequencing of n_j copies

Reject unlikely error under model. Recruit errors.

	А	С	G	Т
A	0.97	10-2	10-2	10-2
С	10-2	0.97	10-2	10-2
G	10-2	10-2	0.97	10-2
Т	10-2	10-2	10-2	0.97

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

21

DADA2 algorithm cartoon

Update the model.

	A	С	G	Т				
Α	0.997	10-3	10-3	10-3				
С	10-3	0.997	10-3	10-3				
G	10-3	10-3	0.997	10-3				
Т	10-3	10-3	10-3	0.997				

DADA2 algorithm cartoon

Convergence: all errors are plausible

	A	С	G	Т
A	0.998 1	x10-4 2x1	0-3 2x10-	4
С	6x10-5 (.999 3x1	0-6 1x10-3	
G	1x10-3	x10-6 0.9	99 6x10	5
Т	2x10-4	2x10-3 1x	10-4 0.99	8

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

25

- selfConsist mode for DADA2 includes joint inference of error rates as function of quality score.
- red line is expected error rate if Q-scores were exactly correct
- black line is DADA2's empirical model (smooth)
- Notice especially overestimate of errors at high values, Q >30
- For illumina these differences are specific to sequencing run and read direction
 - for small lib sizes, can aggregate estimate across libraries from the same run/direction

RESEARCH ARTICLE Ecological and Evolutionary Science

Open-Source Sequence Clustering Methods Improve the State Of the Art

Evguenia Kopylova,^a Jose A. Navas-Molina,^{a,b} Céline Mercier,^c Zhenjiang Zech Xu,^a Frédéric Mahé,^d Yan He,^e Hong-Wei Zhou,^e Torbjørn Rognes,^{f,g} J. Gregory Caporaso,^h Rob Knight^{a,b}

February2016

Four new open-source amplicon-clustering methods in last two years (since UPARSE):

33

- Swarm very fast single-linkage clustering unsupervised
- SUMACLUST abundance-rank greedy clustering unsupervised
- OTUCLUST abundance-rank greedy clustering unsupervised
- SortMeRNA clustering after reference alignment supervised

compared mainly against UPARSE (not open-source)

Kopylova, et al (2016). Open-source sequence clustering methods improve the state of the art. *mSystems* <u>http://doi.org/10.1186/s12915-014-0069-1</u>

					Simulato	d					Mosk	Data s	set							lonuino			
	Software		sim OTUs	even (V PD	4) F_1 OT	n_stagge 'Us PD	red (V4) F_1	Bok OTUs	ulich_2 (PD	V4) B F_1 OTU	okulich_3	(V4) <i>F</i> ₁	Bok OTUs	ulich_6 (PD	V4) F1	body OTUs	sites (M^2	V2) ρ	canadia OTUs	an_soil M^2	(V4) ρ	global_s OTUs	oil (V9,
	swarm sumaclust uparse_q3		1,042 1,031 1,013	101.50 104.06 104.02	0.84 1,0 0.83 1,0 0.84 997	35 104. 22 109. 7 110.	00 0.83 02 0.83 57 0.84	7,084 9,575	[4-50] [4-157]	0.48 6,34 0.38 13,9	9 [4-35] 82 [4-190]	0.50	1,223 3,317 199	39.41 90.80 9.22	0.54 0.52 0.59	$14,184 \\ 7,103 \\ 156$	0.19 0.18 0.38	0.96 0.99 0.29	59,688 74,284 11,259	0.16 0.14 0.03	0.94 0.87 0.85	80,321 60,781	0.87 0
	uparse.q16 uclust		972 1,045	100.74 105.37	0.84 800 0.83 1,0	93.2 35 110.	8 0.78 42 0.83	20,084	[5-234]	57 0.40 21,9 0.50 2.60	[2-3] 29 [5-236]	0.79	31 4,397	3.53 105.37	0.45	108 11,204	0.36	0.26	6,275 91,143	0.06	0.75	82,642	0.00 1
de_novo	usearch52 usearch61 otuclust_q3		1,035 1,049 996	106.09 104.85 111.03	0.83 1,0 0.84 1,0 0.84 953	34 110. 106.	0.81 58 0.83 58 0.81	1,522 22,987	[3-22] [7-313]	0.30 2,60 0.39 24,7 438	2 [4-28] 04 [7-292] [2-8]	0.55 0.41 0.61	798 4,635 228	123.04 10.36	0.55 0.51 0.61	3,903 14,483 2,753	0.17 0.18 0.18	0.94 0.99 0.85	47,679 102,435 18,373	0.05	0.94 0.99 0.82	41,668 102,211	0.48 0
	otuclust_q20 mothur_near		996 957	111.03 110.09	0.84 953 0.82 949	106. 110.	88 0.81 45 0.81			314 1,60	[2-6] [2-51]	0.65	113 447	7.20 23.63	0.58	2,654 806	0.16	0.85	18,373 31,546	0.07	0.81 0.76	11,440	0.53 0
	mothur_avg	E dan	978 963	109.22 109.99	0.82 970	0 109. 0 110.	36 0.81 98 0.82	1.007	[E 0.0]	28,8	08 [5-263 55 [4-176]	0.40	5,159 2,314	75.05 55.90	0.51	3,358 2,491	0.22	0.23	92,887 83,664	0.03	0.86	32,378 20,809	0.56 0
	usearch61	F_1 tax F_1 OTUs F_1 tax	1,275	129.19	0.83 1,2 0.68 0.83 1,2	25 126	0.69 02 0.84	1,027	[5-26]	0.53 557	[4-18]	0.59	547	25.02	0.60	5,446	0.00	1.00	13,659	0.00	1.00	3,784 305	0.00 1
closed_ref	sortmerna	$F_1 OTUs$ $F_1 tax$ $F_2 OTUs$	1,072	122.75	0.69 0.82 1,0	67 121.	0.70 89 0.81	396	[4-15]	0.53 290	[4-13]	0.61	382	19.47	0.57	6,174	0.06	0.99	13,281	0.06	0.98	255	0.34 0
	usearch52	F_1 $OTUs$ F_1 tax F_1 OTUs	1,001	115.38	0.80 980 0.70	113.	0.80 39 0.78 0.68	571	[5-30]	0.54 331	[5-22]	0.64	315	18.24	0.59	3,355	0.08	0.97	4,121	0.04	0.79	5,763	0.48 0
open_ref	uclust sortmerna_ sumaclust usearch61		1,262 1,072 1,304	106.12 104.77 106.04	0.83 1,2 0.82 1,0 0.83 1,2	45 111. 85 111. 93 112.	29 0.83 80 0.81 86 0.83	10,169 9,272 9,414	[3-97] [3-132] [3-108]	0.40 4,17 0.39 2,64 0.40 3,96) [3-104) [3-140] [3-126	0.42 0.41 0.41	4,109 2,727 3,421	93.67 88.56 80.89	0.48 0.51 0.53	12,442 10,242 12,807	0.00 0.06 0.06	1.00 0.98 0.97	87,936 79,363 87,300	0.00 0.03 0.06	1.00 0.82 0.80	37,380 35,345 43,175	0.00 1 0.12 0 0.10 0
				Ko OF <i>mS</i> htt	(O pylov pen-so ystem p://do	TU a, et ource s oi.or	COU al (2 e seq z/10.		do	usterii	incl	ude	e si ds in	ngl	etc	the) stat	ce c	f the	e ar	t.		
				nu	p://do	DI.OF	<u>, 10.</u>	1100	0/512	.715-0	14-00	107-	1										
										35													
denovo	Software swarm sumaclust uparse.q3 uclust usearch61 otuclust.q3 otuclust.q3 otuclust.q3 otuclust.q3 usearch61 usearch61 uclust	F_1 tax F_1 OTUs F_1 tax F_1 OTUs F_1 tax	sim OTUs 1,042 1,031 1,013 1,045 1,045 1,049 996 996 996 957 978 963 1,275 1,238 1,072	even (V PD 101.50 104.02 100.74 105.37 106.09 104.85 111.03 111.03 110.09 109.22 109.99 129.19 127.59 122.75	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d n.stagge 'Us PD 35 104. 22 109 7 110. 5 93.2 35 110. 15 110. 13 110. 34 110. 3 106. 1 106. 1 106. 1 106. 1 107. 1 10. 1 10.	$\begin{array}{c} {\rm ed} \ ({\rm V4}) \\ F_1 \\ 00 \ 0.83 \\ 02 \ 0.83 \\ 02 \ 0.83 \\ 02 \ 0.83 \\ 02 \ 0.83 \\ 02 \ 0.83 \\ 0.81 \\ 0.$	Bok OTUs 7,084 9,575 20,084 1,522 22,987 1,027 1,053 396	ulich 2 (PD [4-50] [4-157] [5-234] [3-22] [7-313] [5-26] [5-27] [4-15]	V4) B <i>F</i> ₁ OTT 0.48 6,34 0.38 13,9 57 0.40 21,9 0.50 2,60 0.39 24,7 438 314 1,60 28,8 13,2 0.53 614 0.53 557 0.53 290	Mock pkulich.3 js PD 0 [4-35] 22 [4-190] 29 [5-236] 29 [5-236] 29 [5-236] 21 [4-28] 24 [2-8] 25 [2-6] 0 [2-51] 38 [5-263] 5 [4-176] [4-18] [5-18] [4-13] [4-13]	$\begin{array}{c} \hline V4 \\ F_1 \\ 0.50 \\ 0.41 \\ \hline 0.79 \\ 0.40 \\ 0.55 \\ 0.41 \\ 0.61 \\ 0.65 \\ 0.44 \\ 0.40 \\ 0.41 \\ \hline 0.59 \\ 0.57 \\ \hline 0.61 \\ \hline \end{array}$	Bok OTUs 1,223 3,317 199 31 4,397 798 4,635 228 113 447 5,159 2,314 631 547 382	ulich.6 (PD 39.41 90.80 9.22 3.53 105.37 22.86 123.04 10.36 7.20 23.63 75.05 55.90 26.02 25.03 19.47	$\begin{array}{c} V4)\\ F_1\\ 0.54\\ 0.52\\ 0.59\\ 0.45\\ 0.55\\ 0.51\\ 0.61\\ 0.58\\ 0.54\\ 0.51\\ 0.51\\ 0.61\\ 0.60\\ 0.57\\ \end{array}$	body OTUs 14,184 7,103 156 108 11,204 3,903 14,483 2,753 2,654 806 3,358 2,491 5,982 5,446 6,174	sites ('M2') 0.19 0.18 0.38 0.36 0.10 0.17 0.18 0.16 0.45 0.22 0.26 0.06 0.00 0.06	$\begin{array}{c} V2)\\ \rho\\ 0.96\\ 0.99\\ 0.29\\ 0.26\\ 1.00\\ 0.99\\ 0.85\\ 0.85\\ 0.85\\ 0.12\\ 0.23\\ 0.11\\ 0.96\\ 1.00\\ 0.99\\ \end{array}$	Canadii OTUs 59,688 74,284 6,275 91,143 47,679 102,435 18,373 18,373 31,546 92,887 83,664 13,808 13,659 13,281	$\begin{array}{c} \textbf{Senuine} \\ \textbf{an_soil} \\ \textbf{M}^2 \\ 0.16 \\ 0.14 \\ 0.03 \\ 0.06 \\ 0.00 \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.03 \\ 0.05 \\ 0.06 \\ 0.00 \\ 0.00 \\ 0.06 \\ 0.00 \\ 0.06 \\ \end{array}$		global.s OTUs 80,321 60,781 82,642 41,668 102,211 11,440 32,378 20,809 3,784 305 255	oil (V9, M^2 μ 0.87 (0) 0.50 (0) 0.93 (0) 0.93 (0) 0.93 (0) 0.48 (0) 0.53 (0) 0.56 (0) 0.50 (0) 0.50 (0) 0.00 (1) 0.34 (0)
closed_ref	sortmerna usearch52 uclust sortmerna. sumaclust usearch61	F ₁ OTUs F ₁ tax F ₁ OTUs	1,001 1,262 1,072 1,304	115.38 106.12 104.77 106.04	0.80 0.80 0.70 0.83 1,2 0.82 1,0 0.83 1,2	0 113. 45 111. 85 111. 93 112.	0.80 0.78 0.68 29 0.83 80 0.81 36 0.83	571 10,169 9,272 9,414	[5-30] [3-97] [3-132] [3-108]	0.54 331 0.40 4,17 0.39 2,64 0.40 3,96	[5-22] 0 [3-104 9 [3-140 5 [3-126]	0.64 0.42 0.41 0.41	315 4,109 2,727 3,421	18.24 93.67 88.56 80.89	0.59 0.48 0.51 0.53	3,355 12,442 10,242 12,807	0.08 0.00 0.06 0.06	0.97 1.00 0.98 0.97	4,121 87,936 79,363 87,300	0.04 0.00 0.03 0.06	0.79 1.00 0.82 0.80	5,763 37,380 35,345 43,175	0.48 0 0.00 1 0.12 0 0.10 0

DADA2

Divisive Amplicon Denoising Algorithm - ver.2

DADA2: High resolution sample inference from amplicon data

Benjamin J Callahan^{1,*}, Paul J McMurdie², Michael J Rosen³, Andrew W Han², Amy Jo Johnson² and Susan P Holmes¹

¹Department of Statistics, Stanford University ²Second Genome, South San Francisco, CA ³Department of Applied Physics, Stanford University *Corresponding Author: benjamin.j.callahan@gmail.com

http://dx.doi.org/10.1101/024034

Manuscript draft on bioRxiv (*Nature Methods*, in press)

http://benjjneb.github.io/dada2/

R package available on BioConductor

DADA1: Rosen MJ, Callahan BJ, Fisher DS, Holmes SP (2012) Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.

37

Diversity

Diversity of diversity (diversity of greek letters used in ecology)

- α diversity within a community, # of species
- β diversity between communities (differentiation), species identity is taken into account
- γ (global) diversity of the site, $\gamma = \alpha \times \beta$, but only this simple if α and β are independent
- Probably others, but α and β are most common

Anderson, M. J., et al. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14(1), 19–28.

Beta-Diversity

 Microbial ecologists typically use beta diversity as a broad umbrella term that can refer to any of several indices related to compositional differences

(Differences in species content between samples)

- For some reason this is contentious, and there appears to be ongoing (and pointless?) argument over the possible definitions
- For our purposes, and microbiome research, when you hear "beta-diversity", you can probably think:
 "Diversity of species composition"

http://en.wikipedia.org/wiki/Beta_diversity

41

Distances between microbiomes

Community Distance Properties

- Range from 0 to 1
- · Distance to self is 0
- If no shared taxa, distance is 1
- Triangle inequality (metric)
- · Joint absences do not affect distance (biology)
- Independent of absolute counts (metagenomics)

- · Are there clusters? How many?
- Are there gradients?
- Are the patterns consistent with covariates
- (e.g. sample observations)
- How might we test this?