Lecture 5: Ecological distance
metrics; Principal Coordinates
Analysis

Univariate testing vs. community
analysis

* Univariate testing deals with hypotheses
concerning individual taxa
— Is this taxon differentially present/abundant in
different samples?
— Is this taxon correlated with a given continuous
variable?
* What if we would like to draw conclusions
about the community asa whole?




Useful ideas from modern statistics

* Distances between anything (abundances,
presence-absence, graphs, trees)

* Direct hypotheses based on distances.

* Decompositions through iterative
structuration.

* Projections.

* Randomization tests, probabilistic simulations.

Data = Distances = Statistics

<

s
Visualization (Principal coordinates analysis)
Statistical hypothesis testing (PERMANOVA)




Whatis a distance metric?

Scalar function d(.,.) of two arguments
d(x, y) >=0, always nonnegative;

d(x, x) = 0, distance to self is 0;

d(x, y) =d(y, x), distance is symmetric;

d(x, y) <d(x, z) + d(z, y), triangle inequality.

Using distances to capture multidimensional
heterogeneous information

A “good” distance will enable us to analyze any type of
data usefully

We can build specialized distancesthat incorporate
different types of information (abundance, trees,
geographical locations, etc.)

We canvisualize complex data aslong as we know the
distances between objects (observations, variables)
We can compute distances (correlations) between
distancestocompare them

We can decompose the sources of variability
contributing to distancesin ANOVA-like fashion




Distance and similarity

* Sometimes it is conceptually easier to talk
about similarities rather than distances

— E.g. sequence similarity
* Any similarity measure can be converted into
a distance metric, e.g.
-S
—IfSis (0, 1), D=1-S
—1fS$>0, D = 1/S or D = exp(-S)

A few useful distances and similarity
indices

* Distances:
— Euclidean: (remember Pythagoras theorem) 2 (x-y;)?
— Weighted Euclidean: x2 = 2(e;- 0,)%/e;
— Hamming/L1, Bray Curtis = I 15-y;;
— Unifrac (later)
— Jensen-Shannon: (D(X| M) + D(Y|M))/2, where
s M=(X+Y)/2

* Kullback-Leibler divergence: D(X|Y) = £ In[x;/y;Ix; nm
* Simila rlty 1 fu fio
— Correlation coefficient 0 fu foo

— Matching coefficient: (f11+fo0)/(f11+ 10+ for + foo)
— Jaccard Similarity Index: f11/(f11 + f10 + fo1)




Unifracdistance (Lozupone and Knight,
2005)

* |sa distance between groups of organisms related by a tree

* Definition: Ratio of the sum of the length of the branches
leading to sample X or Y, but not both, to the sum of all
branch lengths of the tree.
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Weighted Unifrac(Lozuponeetal,,
2007)

e n = number of branches in the
b; = length of the ith branch

Ai = number of descendants of
ith branch in group A 3

O
o

At = total number of sequences
in group A
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A note of warning!

* “Garbagein, garbage out”

* Wrong normalization => wrong distance =>
wrong answer

* However, given the many choices there isn’t
much beyond prior knowledge, experience
and intuition to guide in selection of the
distance.

Distance matrix

* |tis convenient to organize distances as a matrix,
A=(aij)

* Distance matrices are:

- Symmetric: aj; = ;i
— Diagonals are 0: a;; = 0.

* Adistance matrix is Euclidean if it is possible to
generate these distances from a set of n points in
Euclidean space.

* Distance matrix is commonly represented by just
lower (or upper) diagonal entries.




Some uses of distances

Suppose D is a distance matrix forn objects. The
objects are of several kinds indicated by a factor
variable F;

Intra-group distances are the distances between
objects of the same kind,;

Inter-group distances are the distances between
objects of different kinds;

Mean distance between an object and a group of

other objects is equal to the distance between
the object and the center of the group.

PRINCIPAL COORDINATE ANALYSIS




Vector

A vector, v, of dimension n 1s an n X 1
rectangular array of elements

v
V)

v

n

vectors will be column vectors.

They may also be row vectors, when transposed
T—
vi=[v, vy ..., V]

A vector, v, of dimension n

can be thought a point in n dimensional space




Every multivariate sample can be represented as a vector in some vector space
V3

V2

Vi

Vector Basis

* A basis is a set of linearly independent (dot
product is zero) vectors that span the vector
space.

* Spanning the vector space: Any vector in this
vector space may be represented as a linear
combination of the basis vectors.

e The vectors forming a basis are orthogonal to
each other. If all the vectors are of length 1,
then the basis is called orthonormal.




Matrix

An n x m matrix, 4, 1s a rectangular array of

elements
al 1 a12 alm
a a Y a
_ _ 21 22 2m
A - (aij) - . . . .
anl anZ anm

n =# of rows
m = # of columns

dimensions =n X m

Note: Let 4 and B be two matrices whose
mverse exists. Let C = AB. Then the inverse of
the matrix C exists and C-! =B-14"1,

Proof

C[B A= [AB][B'4']=A[B B']4"' = A[4"!
= AA=]
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Diagonalization

Thereom If the matrix A i1s symmetric with
distinct eigenvalues, A, ..., A,, with

—

corresponding eigenvectors X,...,X
Assume XX, =1
- =/ - =
then A=AXX +...+ A X X,
I U
— — . . . !
[F.5] P = PDP
=/
0 A, ;

Basicidea for analysis of
multidimensional data

Compute distances

Reduce dimensions

Embed in Euclidean space

The general framework behind this process is
called Duality diagram: (X s, Quxps Dnxn)

— X,y (centered) data matrix

—Q,,, column weights (weights on variables)
—D,,,, row weights (weights on observations)




Duality diagram defines the geometry
of multivariate analysis

* V=XDX
° W = XQXT
RP* R * Duality:
X — The eigen
QT lv DJ IW decomposition of VQ
leads to eigen-
RP T R™ decomposition of WD

* Inertiais equal to trace
(sum of the diagonal
elements) of VQ or WD.

Principal ComponentAnalysis (PCA)

Let Q=1and D=1/n1and let X be centered.
VQ=XTDXQ=1/n XTX.
The inertia Tr(VQ) = sum of the variances.

PCA decomposes the variance of X into
independent components.

To decompose the inertia means to find the
eigen-system of VQ or equivalently WD matrices.

Eigenvalues give the amount of inertia explained
in corresponding dimension.

Eigenvectors give the dimensions of variability.




Example PCA

Murder Assault UrbanPop Rape -5 o 5
Alabama 13.2 236 58 21.2 ' ' '
Alaska 10.0 263 48 44.5 Mississippi .
Arizona 8.1 294 80 31.0, | North Caroiina Biplot
Arkansas 8.8 190 50 19.5° South Garolina
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7
84 West Virginiayermont e
Georgia
Alaska Alabama Arkansas
Kentucky
Murder Louisiarennessee South Dakota
. ° S~ Montana North Dakota
cé Assaut Maryland~_  wyoming Maine
. S New Moxico Virginia Idaho
g {Florida New Hampshire ko
E D Michigan Indiana b raska lowa
Rape < Missouri /| Oighomgansas
|:| Texas
E— — — :l _ Oregon  pennsylvania VinneWgonsin
. - T vowsa g onio
Screeplot: plot of inertia o Washington
Connecticut
Loadings: o
Comp.1l Comp.2 Comp.3 Comp.4 < | . New Jersssdgmbumitiiand Low
Murder -0.536 0.418 -0.341 0.649 Calfornia Hawal
Assault -0.583 0.188 -0.268 -0.743 UrbanPop
UrbanPop -0.278 -0.873 -0.378 0.134
Rape -0.543 -0.167 0.818 oz o o o e o
Comp.1 2

Centering

* LetY be not centered data matrix with n
observations (rows) and p variables (columns)

e LetH=(1-1/n 1x1’)
e Then X = HY is centered
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From Euclidean distances to PCA to
PCoA

* Note that if D is a Euclidean distance, then
e XX'=1/nHD@H.

* PCoA is a generalization of PCA in that
knowledge of Xis not required, all you need to
represent the points is D, the inter-point
distance matrix.

Representation of (arbitrary) distances
in Euclidean space

* The ideais to use singular value
decomposition (SVD) on the centered
interpoint distance matrix to extract Euclidean
dimensions

 SVD: X=USYV, where S isdiagonal matrix with
diagonal elements s4, 55, ..., S5, and U and V
are unit matrices (i.e. their determinantis 1
and they span their corresponding spaces)




PCoA details

* Algorithm starting from D inter-point distances:

— Center the rows and columns of the matrix of square
(element-by-element) distances: S =-1/2H D(2)H

— Compute SVD by diagonalizing S, S=U AUT
— Extract Euclidean representations: X = U A1/2
* The relative values of diagonal elements of A

gives the proportion of variability explained by
each of the axes.

* The values of A should always be looked at in
deciding how many dimensions to retain.
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Beta-diversity; ordination analysis

Weighted Unifrac Distance e
Weighted UniFrac Distance o

ISME J. 2016 Mar 25. doi: 10.1038/isme;j.2016.37

30




Differentiation of microbiota between diabetic and non-diabetic subjects and across

body sites

(a) Hands C. Hands and Feet

| { Diabetic]
[TAm Diabetic

Weighted Unifrac (PC1 [28.5 %] ~ PC2([12.4 %)) Weighted Unifrac (PCT [54.0 %] — PC2[ 7.9 %)) Weighted Unifrac (PC1 [37.8 %] - PC2] 7.4 %))

Redel etal. J Infect Dis. 2013 207(7):1105-14
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Suggested reading/references

GENE H. GOLUB - CHARLES F. VAN LOAN

MATRIX

COMPUTATIONS

THIRD EDITION

APPLIED
NUMERICAL
LINEAR

ALGEBRA

James W. Demmel

+ any proof-based linear algebra text book.
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Suggested reading

e Susan Holmes
“Multivariate Data
Analysis: The French
Way”, IMS Lecture

Notes—Monograph
‘ Series, 2006.

Developments in
Environmental
Modelling 20
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