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Motivating	example:	Longitudinal	study	of	
microbiome in	type	1	diabetes	(T1D)	conversion

microbial exposures at birth (Dominguez-Bello et al., 2010). The
initial seeding and development of this community may have
long-term physiological consequences. Low-resolution longi-
tudinal studies in 14 infants (Palmer et al., 2007) and higher-
resolution studies in a single infant (Koenig et al., 2011) have
documented the gradual increase in phylogenetic diversity,
nonrandom community assembly, the effects of introducing
table foods, and the large taxonomic shifts that can occur during
infancy. High-resolution multi’omic studies that examine the
dynamics of infant gut microbiome development in a large, lon-
gitudinal cohort have been lacking, though one recent study has
shown that children with severe acute malnutrition exhibit
decreased ‘‘microbiota maturity’’ using such a cohort (Subrama-
nian et al., 2014). Events in early microbiome development may
have a role in promoting susceptibility to or protection from dis-
ease later in life; this has been demonstrated in mice (Cho et al.,
2012; Cox et al., 2014), and it may also be true for type 1 diabetes
(T1D) (Brown et al., 2011; Giongo et al., 2011; de Goffau et al.,
2013).
T1D is an autoimmune disorder that results from T cell-

mediated destruction of the insulin-producing b cells of the
pancreatic islets. Although approximately 70% of T1D cases
carry predisposing HLA risk alleles, only 3%–7% of children
with those alleles develop T1D (Achenbach et al., 2005), sug-
gesting a significant nongenetic component to the disease.
The incidence of T1D has been increasing rapidly over the past
few decades, particularly in the youngest age groups (0–4 years)
(Harjutsalo et al., 2008), suggesting a significant nongenetic
component to the disease. The incidence of T1D is particularly
high in Finland, where 1 in 120 children develop T1D before 15
years of age (Knip et al., 2005).
Although there have been limited human studies of the micro-

biome in T1D to date, the notion that T1D pathogenesis may be
influenced by microbial exposures has been well established in
murine models. The knockout of MyD88, an adaptor down-

Figure 1. A Cohort to Assess the Dynamics
of the Developing Human Gut Microbiota in
Infancy
Individuals are represented in rows, and each

point is a stool sample. The size of the points

represents the number of serum autoantibodies

(0–5) that were positive at the time of the sample

collection. See also Figure S1.

stream of multiple Toll-like receptors
involved in microbial sensing, in the
NOD mouse results in complete protec-
tion from diabetes (Wen et al., 2008).
Further, heterozygous MyD88KO/+ NOD
mice, which normally develop robust dis-
ease, are protected from diabetes when
exposed from birth to the gut microbiota
of a MyD88-KO NOD donor (Wen et al.,
2008). Therefore, disease progression in
the NOD mouse is driven in part by an
exaggerated innate immune response to
symbiotic microbiota, and altering the
composition of the microbiota can curtail

this response and prevent disease. Prospective studies are
required to assess whether the microbiota is similarly involved
in human T1D progression; however, such cohorts are exceed-
ingly difficult to build (Brown et al., 2011; Giongo et al., 2011).
Here, we assess the composition of the gut microbiota in a

densely sampled, prospective, longitudinal cohort of 33 HLA-
matched infants followed from birth until 3 years of age. We
use this unprecedented sample resolution to describe the dy-
namics and stability of the developing microbiome in the infant
gut of an at-risk T1D cohort. We show that although there are
significant shifts in taxonomic composition over time, the relative
abundance of metabolic pathways within individuals remains
remarkably constant throughout infancy. We identify a 25%
drop in alpha-diversity in children who progress to T1D com-
pared to controls, which occurs after seroconversion but before
disease diagnosis, and identify alterations to both the phyloge-
netic and metabolic pathway composition of the microbiome
during this time that is characteristic of a proinflammatory envi-
ronment. Our results demonstrate significant alterations to the
gut microbiome in T1D progressors prior to disease onset.

RESULTS

Extensive Characterization of the Infant Gut Microbiota
in a Longitudinal Cohort
To characterize the development of the infant gut microbiome
and the relationship between the gut microbiota and islet auto-
immunity and progression to T1D, we assembled a prospective,
longitudinal collection of stool samples from infants at risk for
disease (Figure 1). Infants from Finland and Estonia were re-
cruited at birth based on HLA risk genotyping (Table 1 and see
Table S1 available online). Parents collected their infants’ stool
at approximately monthly intervals. The cohort was comprised
of 33 infants, 11 of whom seroconverted to serum autoantibody
positivity (referred to hereafter as ‘‘seroconverters’’; defined as
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Inferring	interactions	between	the	
bacteria

Correlations between the Gut Microbiome and Diet and
Environmental Factors
Extensive metadata relating to both clinical and nonclinical fac-
tors were collected for each participant in the study (Table S1),
allowing us to assess the association between the gut micro-
biome and environmental factors in our cohort. To avoid the po-
tential confounding effects of age, multiple sampling from the
same individual, and each of the other metadata, all analyses
were performed on a reduced set of samples in a limited time
frame, using age and other metadata as fixed effects and subject
identity as a random effect. This analysis was performed using
multivariate association with linear models (MaAsLin) (Morgan
et al., 2012), an additive general linear model with boosting
that can capture the effects of a parameter of interest while de-
confounding the effects of other metadata. This is particularly

important in the current study, as age, diet, and other factors
are expected to have strong influences on community composi-
tion (Table S1; see Experimental Procedures for the metadata
included in the MaAsLin analysis). With MaAsLin, we focused
our analysis on a single variable of interest, and systematically
‘‘subtracted out’’ the effect of each of the other potentially con-
founding metadata variables. A series of five samples from each
breastfed subject taken during and after cessation of breast-
feeding revealed an increase in Bifidobacterium and Lactoba-
cillus species during breastfeeding; however, we found that the
reduction in Lachnospiraceae was an even stronger effect (Fig-
ure S3A).We observed substantial differences between Estonian
and Finnish infants, including significantly higher levels of
Bacteroides and Streptococcus species, which contain a num-
ber of potential pathobionts, in the Estonians (Figure S3B).

methionine metabolism; I, fatty acid metabolism; J, glycosaminoglycan metabolism; K, histidine metabolism; L, lipid metabolism; M, lipopolysaccharide

metabolism; N, lysine metabolism; O, methane metabolism; P, nitrogen metabolism; Q, nucleotide sugar; R, other amino acid metabolism; S, other carbohydrate

metabolism; T, polyamine biosynthesis; U, purine metabolism; V, pyrimidine metabolism; W, serine and threonine metabolism; X, sulfur metabolism; and Y,

terpenoid backbone biosynthesis.

(F) A measure of evenness of KEGG metabolic modules.
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Figure 3. Temporal Dynamics of Microbial Taxonomies in Infant Gut Development
Family-level network diagram of the correlation between clades in their trajectories across time, excluding individuals with T1D. Positive correlations are in blue,

negative correlations are in red, and the line thickness is proportional to the strength of the correlation (cumulative CCREPE Z statistic). The plots show the

abundance of the indicated family as a smoothing spline across all healthy individuals with a 95% confidence interval (shaded region). See also Figure S2.
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What	is	the	significance	of	these	
interactions?

• How	does	conversion	to	T1D	change	the	
interactions	between	the	bacteria?

• Are	there	unique	early	interaction	patterns	
that	can	be	related	to	T1D	conversion?

• What	do	the	inferred	interaction	tell	us	about	
the	underlying	generative	processes	governing	
T1D	conversion?

• Are	there	any	actionable	points	of	
intervention	to	prevent	conversion?

5

Properties	of	longitudinal	microbiome
datasets

• Asynchronous	and	
uneven	sampling

• Temporally	sparse
• n	<<	p	(~1,000s	of	

taxonomical	
groups/OTUs)

• Not	Normally	distributed
• Typically	compositionally	

constrained	data

6microbial exposures at birth (Dominguez-Bello et al., 2010). The
initial seeding and development of this community may have
long-term physiological consequences. Low-resolution longi-
tudinal studies in 14 infants (Palmer et al., 2007) and higher-
resolution studies in a single infant (Koenig et al., 2011) have
documented the gradual increase in phylogenetic diversity,
nonrandom community assembly, the effects of introducing
table foods, and the large taxonomic shifts that can occur during
infancy. High-resolution multi’omic studies that examine the
dynamics of infant gut microbiome development in a large, lon-
gitudinal cohort have been lacking, though one recent study has
shown that children with severe acute malnutrition exhibit
decreased ‘‘microbiota maturity’’ using such a cohort (Subrama-
nian et al., 2014). Events in early microbiome development may
have a role in promoting susceptibility to or protection from dis-
ease later in life; this has been demonstrated in mice (Cho et al.,
2012; Cox et al., 2014), and it may also be true for type 1 diabetes
(T1D) (Brown et al., 2011; Giongo et al., 2011; de Goffau et al.,
2013).
T1D is an autoimmune disorder that results from T cell-

mediated destruction of the insulin-producing b cells of the
pancreatic islets. Although approximately 70% of T1D cases
carry predisposing HLA risk alleles, only 3%–7% of children
with those alleles develop T1D (Achenbach et al., 2005), sug-
gesting a significant nongenetic component to the disease.
The incidence of T1D has been increasing rapidly over the past
few decades, particularly in the youngest age groups (0–4 years)
(Harjutsalo et al., 2008), suggesting a significant nongenetic
component to the disease. The incidence of T1D is particularly
high in Finland, where 1 in 120 children develop T1D before 15
years of age (Knip et al., 2005).
Although there have been limited human studies of the micro-

biome in T1D to date, the notion that T1D pathogenesis may be
influenced by microbial exposures has been well established in
murine models. The knockout of MyD88, an adaptor down-
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stream of multiple Toll-like receptors
involved in microbial sensing, in the
NOD mouse results in complete protec-
tion from diabetes (Wen et al., 2008).
Further, heterozygous MyD88KO/+ NOD
mice, which normally develop robust dis-
ease, are protected from diabetes when
exposed from birth to the gut microbiota
of a MyD88-KO NOD donor (Wen et al.,
2008). Therefore, disease progression in
the NOD mouse is driven in part by an
exaggerated innate immune response to
symbiotic microbiota, and altering the
composition of the microbiota can curtail

this response and prevent disease. Prospective studies are
required to assess whether the microbiota is similarly involved
in human T1D progression; however, such cohorts are exceed-
ingly difficult to build (Brown et al., 2011; Giongo et al., 2011).
Here, we assess the composition of the gut microbiota in a

densely sampled, prospective, longitudinal cohort of 33 HLA-
matched infants followed from birth until 3 years of age. We
use this unprecedented sample resolution to describe the dy-
namics and stability of the developing microbiome in the infant
gut of an at-risk T1D cohort. We show that although there are
significant shifts in taxonomic composition over time, the relative
abundance of metabolic pathways within individuals remains
remarkably constant throughout infancy. We identify a 25%
drop in alpha-diversity in children who progress to T1D com-
pared to controls, which occurs after seroconversion but before
disease diagnosis, and identify alterations to both the phyloge-
netic and metabolic pathway composition of the microbiome
during this time that is characteristic of a proinflammatory envi-
ronment. Our results demonstrate significant alterations to the
gut microbiome in T1D progressors prior to disease onset.

RESULTS

Extensive Characterization of the Infant Gut Microbiota
in a Longitudinal Cohort
To characterize the development of the infant gut microbiome
and the relationship between the gut microbiota and islet auto-
immunity and progression to T1D, we assembled a prospective,
longitudinal collection of stool samples from infants at risk for
disease (Figure 1). Infants from Finland and Estonia were re-
cruited at birth based on HLA risk genotyping (Table 1 and see
Table S1 available online). Parents collected their infants’ stool
at approximately monthly intervals. The cohort was comprised
of 33 infants, 11 of whom seroconverted to serum autoantibody
positivity (referred to hereafter as ‘‘seroconverters’’; defined as
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• 33	subjects
• 11	seropositive	 for	T1D
• 4	(out	of	11)	converted
• Sampling	over	3	years
• ~20	samples
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stream of multiple Toll-like receptors
involved in microbial sensing, in the
NOD mouse results in complete protec-
tion from diabetes (Wen et al., 2008).
Further, heterozygous MyD88KO/+ NOD
mice, which normally develop robust dis-
ease, are protected from diabetes when
exposed from birth to the gut microbiota
of a MyD88-KO NOD donor (Wen et al.,
2008). Therefore, disease progression in
the NOD mouse is driven in part by an
exaggerated innate immune response to
symbiotic microbiota, and altering the
composition of the microbiota can curtail

this response and prevent disease. Prospective studies are
required to assess whether the microbiota is similarly involved
in human T1D progression; however, such cohorts are exceed-
ingly difficult to build (Brown et al., 2011; Giongo et al., 2011).
Here, we assess the composition of the gut microbiota in a

densely sampled, prospective, longitudinal cohort of 33 HLA-
matched infants followed from birth until 3 years of age. We
use this unprecedented sample resolution to describe the dy-
namics and stability of the developing microbiome in the infant
gut of an at-risk T1D cohort. We show that although there are
significant shifts in taxonomic composition over time, the relative
abundance of metabolic pathways within individuals remains
remarkably constant throughout infancy. We identify a 25%
drop in alpha-diversity in children who progress to T1D com-
pared to controls, which occurs after seroconversion but before
disease diagnosis, and identify alterations to both the phyloge-
netic and metabolic pathway composition of the microbiome
during this time that is characteristic of a proinflammatory envi-
ronment. Our results demonstrate significant alterations to the
gut microbiome in T1D progressors prior to disease onset.

RESULTS

Extensive Characterization of the Infant Gut Microbiota
in a Longitudinal Cohort
To characterize the development of the infant gut microbiome
and the relationship between the gut microbiota and islet auto-
immunity and progression to T1D, we assembled a prospective,
longitudinal collection of stool samples from infants at risk for
disease (Figure 1). Infants from Finland and Estonia were re-
cruited at birth based on HLA risk genotyping (Table 1 and see
Table S1 available online). Parents collected their infants’ stool
at approximately monthly intervals. The cohort was comprised
of 33 infants, 11 of whom seroconverted to serum autoantibody
positivity (referred to hereafter as ‘‘seroconverters’’; defined as
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• 85	adults
• Weekly	 samples	over	3	
months	 (~36	per	
subject)

• Multiple	body	 sites:	
forhead,	gut,	palm,	
tongue
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David	et	al.	2014

Extended Data Figure 1 | Study design. a, b, The plant-based (a) and
animal-based (b) diets were fed to subjects for five consecutive days. All dates
are defined relative to the start of these diet arms (day 0). Study volunteers were
observed for 4 days before each diet (the baseline period, days 24 to 21) and
for 6 days after each diet arm (the washout period, days 5 to 10) in order to
measure subjects’ eating habits and assess their recovery from each diet arm.
Subjects were instructed to eat normally during both the baseline and washout
periods. Stool samples were collected daily on both diet arms and 16S rRNA
and fungal ITS sequencing was performed on all available samples. Subjects

also kept daily diet logs. Several analyses (RNA-seq, SCFAs and bile acids) were
performed primarily using only two samples per person per diet (that is, a
baseline and diet arm comparison). Comparative sampling did not always
occur using exactly the same study days owing to limited sample availability for
some subjects. Because we expected the animal-based diet to promote
ketogenesis, we only measured urinary ketones on the animal-based diet.
To test the hypothesis that microbes from fermented foods on the animal-based
diet survived transit through the gastrointestinal tract, we cultured bacteria and
fungi before and after the animal-based diet.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

• 11	Subjects
• Daily	sampling	4	days	
before	prescribed	diet,	
5	days	during	the	diet,	6	
days	afterwards

9

Alternative	analytic	approaches

• Relevance/correlation	networks (e.g.	SPARCC)
• Graphical	models	(e.g.	SPIEC-EASI)
• (Sparse)	Vector	autoregressive	models	(sVAR)
• Dynamical	models	(Generalized	Lotka-
Volterra)

10
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Relevance/Correlation	networks

• Given	variables	X1,	…,	Xp
• Calculate	pairwise	correlations,	rij (or	other	
pairwise	association	statistics)

• Infer	an	edge	if	rij is	greater	than	some	threshold
• E.g.	in	Kostic data	before
• Generally,	unreliable	 when	n	<<	p
• SPARCC	method	designed	with	sparsity
assumptions	(Friedman	&	Alm,	2012)
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Sparse	data	may	result	in	inference	of	
spurious	correlations/connections
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Empirical	correlation	matrices	with	no	
true	dependencies
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April 28, 2015::NYUBiological Networks

Conditional independence and sparsity 

David MacKay’s Gaussian Quiz.  Assume a simple system of springs 
where you observe the position of the masses:

 1               2   3             4

Inverse CovarianceCovariance Matrix OR

14
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Graphical	Models

• Infer	inverse	covariance	C-1 matrix	under	
regularizing	sparsity assumptions

• Cij
-1 are	non-zero	iff Xi and	Xj are	conditionally	

dependent	 given	all	other	variables
• SPIEC-EASI	(arXiv:	1408.4158v3)	optimize:

15

April 28, 2015::NYUBiological Networks

Infer inverse covariance matrix under sparsity 
assumption in the D>>n setting

• Sparsity of the underlying network means that the inverse 
C-1 of the correlation matrix C is sparse: sparse Gaussian 
graphical model. 

• Given: the sample correlation matrix S of the clr-
transformed data

• Goal: Finding a sparse C-1 by convex optimization

Optimization	algorithms	for	inverse	
covariance	inference

• Neighborhood	 selection	(Meinshausen and	
Buehlmann,	2006)

• Graphical	LASSO	(Yuan	et	al.,	2007,	Friedman	
et	al.	2008,	2011)

• Alternating	Linearization	(Scheinberg et	al.,	
2010)

• Quadratic	Inverse	Covariance	(Hsieh	et	al,	
2010)

16
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Sparse	Vector	Autoregressive	Models

• Let	Xij be	abundance	of	microbe	 i at	time	j	(row	
standardized)

• An	order	1	VAR	model	is	X =	Z	b +	e,	where
– b is	(p	x	p)	coefficient	matrix,
– Z =	(X1,	…,	Xn-1)
– X =	(X2,	…, Xn).

• To	infer	b l1 and	l2 regularization	 is	applied.
• For	asynchronously	sampled	data,	smoothing	and	
other	pre-processing	needs	to	be	applied	to	make	
the	data	suitable	for	VAR	models.

17

Dynamical	models
• Models	of	the	generalized	Lotka-Volterra type	can	be	

specified	to	model	the	temporal	changes	in	microbial	
abundance	as	a	dynamical	system	

• !
!"𝑥$ 𝑡 = 𝜇$𝑥$ 𝑡 + 𝑥$ 𝑡 ∑𝑀$+𝑥+ 𝑡 + 𝑥$(𝑡)∑𝜀$/𝑢/(𝑡)

• Stein	&	Bucci et	al.	2013	have	developed	regularized	
estimation	procedure.

• MDSINE:	Microbial	Dynamical	Systems	INference Engine	for	
microbiome	time-series	analyses,	Genome	Biology,	2016.
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