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Background

(1) Longitudinal measurements: Mixed effects models, GEE

(2) Event data (survival outcomes): Cox model

For settings where interest is in using longitudinal measurements to
predict onset of adverse outcome, methods for linking (1) and (2) have
been developed:

• Joint Models

• Partly Conditional Models
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Motivating Example

• End Stage Renal Disease (ESRD) Data

• Cohort: n = 689 subjects with severe non-dialysis requiring
chronic kidney disease

• Longitudinal Marker: estimated glomular filtration rate
(eGFR) obtained approximately every 6 months

• Survival Outcome: transition to ESRD or death (composite)

• Goal: risk prediction to choose aggressive prevention strategies
High-risk patients targeted for intervention
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Objective: Given survival and covariate information up to now (time s),
predict risk of adverse outcome in a given time frame, i.e. by time t.
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Notation

For individual i , i = 1, ...n,

• Ti : event time; Ci : censoring time

• Observe (Xi ,∆i ) = (min(Ti ,Ci ), I (Ti ≤ Ci ))

• si = {si1, . . . , simi ; simi < Xi}: vector of measurement times

• Yi (sij): j th marker measurement, j = 1, . . . ,mi

: marker measurement at time sij

• Yi (u) = {Yi (sij) : 0 ≤ sij ≤ u, j = 1, . . . ,mi , u < Xi}: vector of
marker measurements up to time u

• Zi : a vector of baseline covariates

• s: time at which the prediction is made

• t: time for which the prediction is made

• τ0 = t − s: time of prediction since the conditioning time
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The key quantity in dynamic prediction

Goal: Conditional risk prediction
The probability of developing an adverse outcome in the τ0 time interval
from s, given survival up to time s, and covariate information available
up to time s

Ri{τ0|s,H(s)} = P{Ti ≤ s + τ0|Ti > s,Hi (s)}

where Hi (u) = {Zi , Yi (u), si (u)} is the observed history of the covariate
process at time u ≥ 0
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Modeling approaches

1. Joint models

2. Partly conditional survival models

Q: Why not use a standard Cox model with time-dependent covariate?
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Standard Cox Model

Baseline Measurements

λ{t|Y } = λ0(t) exp{ηY }

• exp(η) is the instantaneous hazard ratio or multiplicative increase in
the hazard of an event for a one-unit increase in marker Y

• ∫ t

0
λ{u|Y }du = Λ(t)

→ S(t) = exp{−Λ(t)}
• Can get survival function, therefore can get predictions
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Cox Model with Time-Dependent Covariates

Longitudinal Measurements: Our interest is in using longitudinally

measured biomarker to predict onset of adverse outcome

λ{t|Y(t)} = λ0(t) exp{ηY (t)}

• ∫ t

0
λ{u|Y(u)}du?

• Integration with unknown future marker path
→ Cannot get survival function or predictions

• Need to stop marker somehow to make prediction at time t

• Furthermore, this approach does not handle:

• Measurement error in biomarker measurements
- using observed values can lead to attenuated effects

• Intermittent measurement times
- missing measurement at time of prediction t
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Joint Models

* = observed longitudinal measurements; − = underlying longitudinal process

General Idea: Hazard function at time point t (vertical dashed line) is
associated with value of underlying longitudinal process at the same time point

(Rizopoulos 2014, R-bloggers)
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Joint Models

Assumption: Association between the observed biomarker process and
event-time process induced by shared underlying latent process Y∗i , i.e.
shared random effects between the two processes
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Joint Models

• Tsiatis et al. (1995); Faucett and Thomas (1996);
Wulfsohn and Tsiatis (1997); Rizopoulos et al. (2011)

• Two linked sub-models:

1. Survival model linking event time to underlying “true”
biomarker process

2. Model for recovering underlying biomarker process from
observed data
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Joint Models

Step 1: Time-varying covariate Cox model for event time process

λi{t|Y ∗i (t)} = λ0(t) exp{ηY ∗i (t) + γ′Zi (t)},

where

• Y∗i : true unobserved marker value

• Zi : time-constant covariates

η characterizes the association between the marker and risk of event

Note: The functional form of the time-dependent covariate may be made more
flexible by replacing ηY ∗i (t) with f {Y ∗i (t), η, bi}, which specifies components of the
longitudinal outcomes process (slope, area under the longitudinal trajectory) that are
included in the linear predictor of the survival model (Brown 2009; Rizopoulos &
Ghosh 2011, Rizopoulos 2012; Taylor et al. 2013; Rizopoulos et al. 2014; Rizopoulos
et al. 2016)
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Joint Models

Step 2: Linear mixed effects model for biomarker process

Letting Yi represent the observed marker values and Y∗i (sij) represent the
history of the hypothetical true longitudinal process (without
measurement error) up to time sij for subject i ,

Yi (sij) = Y ∗i (sij) + εi (sij)

= Ui(sij)β + Wi(sij)bi + εi (sij)

where
• β: Fixed effects vector

• bi: Random effects vector

• Ui and Wi: Covariate matrices

Fixed effects: average longitudinal trajectory in time
Random effects: how each individual deviates from average trajectory

Standard assumptions: bi ∼ N , εi (t) ∼ N
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Joint Models

Linked Models: [vec(Yi ), Ti ]

longitudinal Yi(t)|Y ∗i (t) = Y ∗i (t) + εi (t)

survival λi{t|Y ∗i (t)} = λ0(t) exp{ηY ∗i (t) + γ′Zi}

Y∗i ∼ N εi ∼ N

Estimation of model based on joint distribution of the two outcomes.
Since both model specifications involve unknown quantities, fitting
involves iteration between longitudinal and survival submodels.

• Goal: Estimation of η, conditional risk prediction

• Estimation: (i) likelihood; (ii) Bayesian approach (Rizopoulos 2011)

• Issues addressed: measurement error; intermittent observation
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Joint Models

Risk Prediction: For a future individual with Ho(s) = {Zo ,Yo(s), so(s)}
and event-free at time s,

RJM(τ0 | s,Ho(s)) = P(To ≤ s + τ0 | To > s,H(s) = Ho(s),Dn, θ)

= conditional risk (recall: slide 75)

where

• Dn = Xi ,∆i ,Hi , i = 1, ..., n represents the full data used to fit JM

• θ = parameter vector of the joint model

Rizopoulos (2011):

RJM(τ0 | s,Ho(s)) = 1− P(To > s + τ0 | To > s,H(s) = Ho(s),Dn, θ)

= 1− conditional survival

= 1−
∫

S{s + τ0|Y∗o (s + τ0),Zo , θ}
S{s|Y∗o (s),Zo , θ}

p(b|To > s,Ho(s), θ)db

where

• S(t) = exp
{∫ t

0
λ(u|Y∗o (u),Zo ,θ)du

}
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Joint Models

Risk Prediction: Joint model fitted to available data. Then, for a future
individual, first-order estimate:

R̂JM
i (τ0 | s) = 1− Ŝi (s+τ0|Y∗i (s+τ0,b̂i , Zi ,θ̂JM ),θ̂JM )

Ŝi (s|Y∗i (s,b̂i ,Zi , θ̂JM ),θ̂JM )
+ O

(
1
mi

)
where

• b̂i : empirical Bayes estimate of bi

• θ̂JM : vector of the maximum likelihood estimates of the joint model

• Ŝ(t) = exp
{∫ t

0
λ̂(u|Y∗o (u),Zo , θ̂JM)du

}
(Rizopoulos, 2011)
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Joint Models

Risk Prediction:

• Baseline hazard function must be specified parametrically - use
splines for flexible models

• Point and interval estimates obtained using Monte Carlo
simulations (Proust-Lima & Taylor 2009; Rizopoulos 2011)

• For some large number of simulations S (e.g. S=500),

• Point estimate R̂JM
i (τ0 | s): Median over S Monte Carlo

samples
• 95% CI: (2.5th percentile, 97.5th percentile)

• Prediction for an individual requires complex computation
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Joint Models

Software: Rizopoulos (2010)

• R package JM

• Examples at http://jmr.r-forge.r-project.org
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Joint Models

Potential Issues:

• Highly parametric

• Predictions can be sensitive to assumption of latent process
model, which cannot be easily checked

• Prediction for an individual using Monte Carlo simulations is
computationally intensive
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Partly Conditional (PC) Models

Zheng & Heagerty (2005); Maziarz et al. (2017)

General Idea:

• Related to landmark approach (van Houwelingen & Putter (2012))

• Condition on survival up to some time s

• Treat time s as new baseline

• Predict residual life time from s: Ts = T − s|Ts > 0, using observed
covariate history up to s, H(s)
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Joint Models vs Partly Conditional Models
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Partly Conditional Models

Estimation:

• Semi-parametric

• PC model specifies relationship between Tij = Ti − sij and Hi (sij)
without having to specify full marker process

• Two estimation approaches for survival outcomes:

(a) Partly conditional Cox-type model (PCCox)
(Zheng & Heagerty, 2005)

(b) Novel two-stage PC model (PCCox BLUP)
(Maziarz et al, 2017)
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(a) PCCox

PC models relate the covariate history up to time s to the residual
survival time, or time since measurement, τ .

λ(τ |Hi (sij)) = λ0(τ)exp
(
α′B(sij) + γ′Zi + η′B(τ)h(Yi (sij))

)
= λ0(τ)exp(θ′CoxHB

i (sij , τ))

where

• λ0(·) is an unknown baseline hazard

• h(Yi (sij)) is a functional of Yi (sij) - e.g. last observed value Yi (sij)

• θCox = [α′,γ′, η′]′P×1

• HB
i (sij , τ) = [B(sij)

′,Z′i ,B(τ)h(Yi (sij))′]′

• B(·) is a spline basis function of measurement time
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(a) PCCox

Risk Prediction: For a future individual with covariate history up to time s,
H◦(s) = {s◦(s),Z◦,Y◦(s)} and survival up to time s, the probability of an
event within time τ0 from s can be estimated as

R̂PC
Cox(τ0 | s,H◦(s), θ̂Cox) = P̂(To ≤ s + τ0 | H(s) = Ho(s),To > s, θ̂Cox)

= 1− exp(−Λ̂(τ0 | s,H◦(s), θ̂Cox))

where

Λ̂(τ0|H◦(s), θ̂Cox) =
∑n

i=1

∑mi
j=1

∫ τ0

0

exp(θ̂
′
CoxHB

◦ (sij ,u))∑n
k=1

∑mk
l=1

I (Xkl≥Xij ) exp(θ̂
′
CoxHB

k
(skl ,u))

dNij(u)

94 Biomarkers



(b) PCCox BLUP

• PCCox does not account for measurement error

• Maziarz et al. (2017) extended PCCox and proposed a two-stage
estimator that:

(1) Models the longitudinal process and calculates a

fitted/smoothed Ŷi (sij) based on the best linear unbiased
predictor (BLUP) estimator

(2) Obtains BLUP-based estimators of risk model parameters
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(b) PCCox BLUP

Step 1: Best linear unbiased predictor (BLUP) smoothing of longitudinal
process

Model for Yi :
Yi = Xiβ + Zibi + εi , i = 1, ..., n

where

• εi ∼ N (0, σ2I), bi ∼ N (0,D(φ)),Yi ∼ N
(
Xiβ,Σi

)
• Ui and Wi : Covariate matrices

• φ = (φ1, ..., φq)T is the parameter vector of the variance components of
the random effects

• Σi = σ2I + WiD(φ)WT
i

Then the BLUP estimator is:

Ŷi = Ui β̂ + WiD(φ̂)WT
i (Σi )

−1(Yi −Ui β̂)

96 Biomarkers



(b) PCCox BLUP

eG
FR

• BLUP fit: Uses only past information to obtain BLUP values at a given
observation time, provides smoothing to individual marker data by shrinking
individual marker trajectory toward population-averaged trajectory

• Näıve fit: Linear mixed effects (LME) model uses past and future information
of new individual to obtain fitted marker trajectory
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(b) PCCox BLUP

Step 2: Cox model for event time process (same as PCCox)

λ(τ |Hi (sij)) = λ0(τ)exp
(
α′B(sij) + γ′Zi + η′B(τ)h(Yi (sij))

)
= λ0(τ)exp(θ′CoxHB

i (sij , τ)),

where

• λ0(·) is an unknown baseline hazard

• h(Yi (sij)) is a functional of Yi (sij) - BLUP estimator Ŷi (sij)

• θCox = [α′,γ′, η′]′P×1

• HB
i (sij , τ) = [B(sij)

′,Z′i ,B(τ)h(Yi (sij))′]′

• B(·) is a spline basis function of measurement time

Obtain BLUP-based estimators of risk model parameters θ̂
BLUP
Cox

Note: The two-stage approach described here uses a partly conditional model,
different from JM two-stage approach which uses a time-varying covariate
survival model.
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(b) PCCox BLUP

Prediction: For a future individual with Ho(s) = {Zo ,Yo(s), so(s)} and
event-free at time s,
1. The predicted random effect is

b̂o |soj = D(φ̂)W′o(soj)(σ̂2I + Wo(soj)D(φ̂)W′o(soj))−1(Yo(soj)−Uo(soj)β̂),

2. The fitted marker value based on covariate data only up to time soj is

Ŷo(soj) = Uo(soj)β̂ + Wo(soj)(b̂o |soj).
Iterating through each marker measurement of each subject, one can
obtain vectors of BLUP fitted marker values for each subject, Ŷo

Note: Ŷo is not the same as Y∗o , obtained for a joint model.

Then, the predicted risk for a new subject using PCCox BLUP:

R̂BLUP
Cox (τ0 | s,Ho(s), θ̂

BLUP
Cox , β̂, Φ̂) = 1− exp(−Λ̂(τ0 | s, Ĥo(s, β̂, Φ̂), θ̂

BLUP
Cox ))

where

• Ĥo(s, β̂, Φ̂) = {so(s),Zo , Ŷ
BLUP
o (s)}

• β̂ and Φ̂ are vectors of parameter estimates of the fixed effects and the
variance components, respectively
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Partly Conditional Model

Software: Available as supplementary web-based material for:

Maziarz M, Heagerty PJ, Cai T, Zheng Y (2017). On Longitudinal
Prediction with Time-to-Event Outcomes: Comparison of Modeling
Options. Biometrics, 73(1): 83-93.
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JM vs PC: Simulation of Individual Risk Prediction
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Simulation

Goal: To compare the calibration and discrimination performance of the
different modeling approaches: PCCox, PCCox BLUP, JM

• Calibration / Overall performance: Prediction error (PE) or Brier Score
(Brier, 1950) extended to survival outcomes (Schoop et al., 2008)

PE = E{I(s < Ti ≤ s + τ0)− R(τ0|s,H(s))2}
→ Distance between observed and predicted outcomes

• Discrimination accuracy: AUCC/D based on TPC
t and FPD

t estimated
over full range of risk thresholds c ∈ (0, 1):

TPC
s,τ0

(c) = P{Ri (τ0 | s) ≥ c | s < Ti ≤ s + τ0}
FPD

s,τ0
(c) = P{Ri (τ0 | s) ≥ c | Ti > s + τ0}

→ As covered in Part 1
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Simulation

Setup

• Measurement error: σε = 0.1 and 1.0

• (s, t) = (24, 36), (48, 60), (24, 48), (48, 72) in months

• Further details of simulation setup in manuscript (Maziarz et al.,
2017)
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Simulation Results (500 replications, n = 500)

σe = 0.1
τ0 = 12 τ0 = 24

s = 24 s = 48 s = 24 s = 48
EST (ESD) EST (ESD) EST (ESD) EST (ESD)

PCCox

PE 0.113 (0.014) 0.101 (0.018) 0.165 (0.013) 0.155 (0.015)
AUC 0.761 (0.032) 0.740 (0.051) 0.774 (0.031) 0.759 (0.038)
PCCoxBLUP
PE 0.113 (0.014) 0.101 (0.018) 0.164 (0.013) 0.154 (0.015)
AUC 0.763 (0.032) 0.742 (0.048) 0.775 (0.032) 0.762 (0.038)
JM
PE 0.111 (0.012) 0.097 (0.015) 0.162 (0.012) 0.156 (0.016)
AUC 0.773 (0.036) 0.754 (0.051) 0.786 (0.028) 0.761 (0.037)

EST = Estimate, ESD = empirical standard error

Models are comparable for small measurement error.
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Simulation Results (500 replications, n = 500)

σe = 1.0
τ0 = 12 τ0 = 24

s = 24 s = 48 s = 24 s = 48
EST (ESD) EST (ESD) EST (ESD) EST (ESD)

PCCox

PE 0.126 (0.015) 0.110 (0.019) 0.194 (0.014) 0.178 (0.015)
AUC 0.646 (0.044) 0.632 (0.061) 0.655 (0.034) 0.639 (0.045)
PCCoxBLUP
PE 0.128 (0.015) 0.108 (0.017) 0.196 (0.015) 0.168 (0.015)
AUC 0.696 (0.043) 0.701 (0.054) 0.702 (0.033) 0.719 (0.039)
JM
PE 0.118 (0.012) 0.102 (0.015) 0.177 (0.012) 0.166 (0.015)
AUC 0.730 (0.039) 0.719 (0.055) 0.732 (0.029) 0.723 (0.041)

EST = Estimate, ESD = empirical standard error

PCCox BLUP provides improvement over PCCox when nonsystematic
error is present
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Illustration: ESRD Data

• End Stage Renal Disease (ESRDS) Data

• Cohort: n = 689 subjects with severe non-dialysis requiring
chronic kidney disease

• Longitudinal Marker: estimated glomular filtration rate
(eGFR) obtained approximately every 6 months

• Survival Outcome: transition to ESRD or death (composite)

• Goal: risk prediction to choose aggressive prevention strategies
High-risk patients targeted for intervention
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Illustration: observed biomarker trajectories
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Illustration: modeled biomarker trajectories
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Illustration: individual risk prediction

........ Observed eGFR

−−− BLUP eGFR

−−− PCCox risk

−.− PCCox BLUP risk

−−− JM risk
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Illustration: ESRD Data Analysis Results

τ0 = 1 year τ0 = 3 years
s = 1 years s = 2 years s = 1 years s = 2 years

ne/n=55/574 ne/n=31/519 ne/n=114/574 ne/n=77/519
EST (ESD) EST (ESD) EST (ESD) EST (ESD)

PE 0.075 (0.009) 0.053 (0.011) 0.132 (0.024) 0.130 (0.032)
AUC 0.791 (0.033) 0.861 (0.041) 0.772 (0.024) 0.735 (0.029)
PCCoxBLUP
PE 0.079 (0.007) 0.056 (0.010) 0.139 (0.020) 0.131 (0.027)
AUC 0.782 (0.039) 0.852 (0.047) 0.771 (0.028) 0.738 (0.032)
JM
PE 0.087 (0.008) 0.073 (0.014) 0.154 (0.025) 0.149 (0.027)
AUC 0.714 (0.033) 0.712 (0.038) 0.702 (0.023) 0.671 (0.025)

EST = Estimate, ESD = empirical standard error
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Illustration: ESRD Data Analysis Results
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Summary: Partly Conditional Models vs Joint Models

PC models

• provide a flexible, robust and practical alternative to JM for dynamic
prediction (Simulation computation time: 6 hours for PC versus 20
hours for JM)

• require no modeling assumptions for the longitudinal biomarker trajectory

• are relatively simple to implement, easy to modify and extend. Can easily
be scaled to include multiple biomarkers, by simply including their BLUP
fits in the Cox model. JM would get analytically and computationally
complex for multiple biomarkers.

Based on simulations,

• PCCox BLUP performs comparably to JM

• PCCox BLUP provides improvement over PCCox when nonsystematic
error is present and marker trajectories can be modeled well

• PCCox outperforms PCCox BLUP and JM when marker trajectory is
complex and is difficult to model well with a linear mixed effects model
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Some Future Considerations

• Multiple longitudinal markers

• Competing risks / cause-specific transitions

• Development targeted at performance measures

• C-index
• Population yield
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