Section Il: developing a marker-based treatment rule

> Treatment decision rule
» Optimal Treatment Rule
» Estimating optimal treatment decision rule

» Q-learning (Regression modeling)

» Direct optimization



Treatment Decision Rule



Treatment Decision Rule

Outcomes are denoted by D,

» Survival time, CD4 count, indicator of no myocardial
infarction within 30 days, ...

» Lower outcomes are better
Intuitively: rules should depend on characteristics (variables,
covariates ), i.e., X, that exhibit a qualitative interaction with

treatment

» Tailoring variables/ treatment selection biomarker
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Statistical Framework

Simplest setting: A single decision with two treatment options
Observed data: (D;, X;, A;), i =1,...,n, independently and
identically distributed (iid)

» D; outcome, X; baseline covariates, A; = 0,1 treatment
received

Treatment decision rule: A treatment rule
» A function d : X — {0, 1}



Simple example

Which treatment to give patients who present with nonpsychotic
Chronic Major Depressive Disorder?

» Options: Nefazodone (Drug) or Drug + Cognitive Behavioral
Therapy (CBT)

» Data: 681 patients in the Nefazodone-CBASP clinical trial
(Keller et al., 2000)

> Available information: 50 prognostic variables, e.g., age,
baseline depression score

» Qutcome: Hamilton Rating Scale for Depression

Keller et al. (NEJM 2000)
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Simple example

A decision rule example:

MOOD > 22
No Yes
SLEEPD2 > 5 Drug + CBT (36%)
No Yes
HAMD > 26 Drug + CBT (30%)

No Yes

Drug (18%) Drug + CBT (16%)



Simple example

» Even simpler example: If MOOD > 22 = Drug + CBT;
otherwise = Drug

> Mathematically: The formal rule is

d(MOOD) = /(MOOD > 22)



Optimal Treatment Decision Rule



Considerations

v

Identify the subset that are good tailoring variables

v

Rule d(X): a function of X

v

There are many possible rules d:

D: class of all possible treatment decision rules

v

Can we find the optimal treatment decision rule in D?

v

Optimal treatment decision rule: If followed by all patients in
the population, would lead to smallest expected outcome
among all rules in D



Potential Outcomes

Single decision: Possible treatment options a € {0, 1}

» For a randomly chosen patient from the population, define the
random variable D(a) = the outcome the patient would
experience if s/he were to receive treatment option a

» “Potential outcome”

» E.g., D(1)= the outcome a patient would have if s/he were
given treatment 1, and similarly for D(0)



Expected outcomes under treatment rules

» Potential outcome for a rule: D(d) = the outcome a patient
would have if s/he received treatment according to a rule
deD

» E.g., if the patient has information X

D(d) = D(1)I{d(X) = 1} + D(0)I{d(X) = 0}}

» E{D(d)|X = x} is the expected outcome for a patient with
information x if s/he were to receive treatment according to
rule d € D.

» E{D(d)} = E[E{D(d)|X = x}] is the expected outcome for
the population if all patients were to receive treatment
according to rule d € D.



Optimal decision rule

v

The optimal treatment decision rule d* € D minimizes the
expected outcome

d* = argmin E{D(d)}
deD

v

That is, E{D(d*)} < E{D(d)} for all d € D

v

Also, E{D(d*)|X = x} < E{D(d)|X = x} for all d € D and
for all patient subgroups defined by x.

v

d*(X) = I[E{D(1)|X} < +E{D(0)|X}].



|dentifying the optimal treatment decision rule

» We need to discover optimal rules based on data.

» The optimal rule is defined in terms of potential outcomes,
not the observed data

> It is possible to discover optimal rule based on the observed
data under certain assumptions
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Potential Outcomes
Positivity: P(A = a|X = x) strictly positive for all x, i.e.,
0 < P(A =1|X) < 1 almost surely, usually satisfied in a

randomized trial

Consistency: D(a) = D whenever treatment a is actually
received, usually satisfied in a randomized trial

No unmeasured confounders: Assume that

D(0), D(1) I1 A|X

» X contains all information used to assign treatments in the
data

» Automatically satisfied for data from a randomized trial



Potential Outcomes

» Implies that

E{D(1)} = E[E{D(1)|X}]
= E[E{D(1)|A=1,X}]
= E{E(DIA=1,X)}

and similarly for E{D(0)}

2.17



Optimal Rule in Terms of Observed Outcomes

» Under positivity, consistency and no unmeasured confounders
assumptions:

E{D(d)} = E[E{D(d)|X}]
= E[E(D(1)|A=1,X)I{d(X) = 1}
+E(D(0)|A = 0,X)I{d(X) = 0}]
= E[E(D|A=1,X)I{d(X) =1}
+E(DJA = 0, X)I{d(X) = 0}].

» Therefore, under these assumptions, the optimal treatment
decision rule can be written as a function of observed
outcomes, i.e.

d*(X) = argmin E{D(d)}
deD
=I{E(D|A=1,X) < E(DIA=0,X)}
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Example

» X ~Uniform[—1,1], A is binary {-1, 1} with probability
1/2,D ~ N(1 — (X — 1/3)%A,1)

» Consider the rule d(x) = I(x —1/3 > 0). What is the
expected outcome of this rule?

E{D(d)} = E[E(D|A=1,X)I(X—1/3>0)

+E(DIA = 0, X)I(X — 1/3 < 0)]
A O V) S U oS S
_ /1/3{ . }d +/1 Sdx =73/81

» What is the optimal treatment rule?



Example

» d¥(x) =1

» What is the expected outcome of the optimal rule?
E{D(d)} = EIE(DIA=1,X){d(X) =1}

Y e C et Vi) S
= /_1 5 dx = 45/81



Optimal Rule

» Optimal Rule:
E(DIX,A=1)<E(DIX,A=0)=d"(X)=1
E(DIX,A=1)> E(D|X,A=0)=d"(X)=0

» d* provides a treatment recommendation to every individual

given their X

v

If E(D|X,A) were known, we could find d*.

v

Problem: E(D|X, A) is unknown.



Estimating optimal treatment decision rule



» Q-learning (Regression modeling)

» Direct optimization



Q-learning (Regression modeling)

» If we had a sample of data (X;, A;,D;),i =1,...,n, we can
posit a regression model

E(DIA, X) = u(A, X; B)

and estimate (3 using e.g. least squares/logistic regression/cox
regression.

» The estimator for the optimal treatment decision rule

dn(x) = 1{(L, x; Bn) < (0, %; Bn)}4



Regression modeling (Q-learning)

» For a particular rule d, we can estimate E{D(d)} by
averaging over samples

E(D(d)) = E[E(DIA=1,X,d(X)=1)I(d(X)=1)
+E(DIA = 0,X, d(X) = 0)I(d(X) = 0)]

With the posited regression model,

n_l Z[,u(l,X,',Bn)/{d(Xi) = ]-} + M(()?XiaBn)l{d(Xi) = 0}]
i=1



Regression modeling (Q-learning)

> d, is the minimizer of the estimate of E{D(d*)},

S (L X5, Ba) {da(X5) = 1(0, X, Ba)1{a(Xi) = O},
i=1

» u(A, X; B) may be misspecified.
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Example Revisited

v

X ~Uniform[—1, 1], A is binary {-1, 1} with probability
1/2,D ~ N(1 — (X — 1/3)%A,1)

v

What if we use a linear model for the outcome, i.e.,
E(D|A, X) = Bo + p1X + B2 + B3X7?

v

The decision rules considered d(x) = /(2 + f3x > 0)

v

Does the optimal rule belong to the this class of rules?



Example Revisited

» The optimal linear rule is dj(x) = I(x —2/3 < 0).

» The expected outcome of the optimal linear rule is

E{D(d})} = E[E(D|A=1,X)I(X—2/3<0)
+E(DIA=0,X)I(X —2/3 > 0)]

_ /2/3{1_(X_1/3)2}dx+/1 !
-1 2 2/32

= 07/162
> E{D(d")}



Alternatives

» Use flexible models for the outcome.

» Other methods, e.g., modeling contrast

» A more robust method for estimating the optimal treatment
decision rule

» One does not need to know the entire function E(D|A, X).

» It suffices to only consider the contrast function

A(X) = E(D|A=0,X) — E(D|A=1,X)

> d*(x) = I{A(x) > 0}.

Murphy (JRSSB, 2003); Tian et al (JASA, 2014)



Direct Optimization: Classification Perspective

Intuition: Classification

Given a new observation XN&W

, predict the class label d*MeW,

» No direct information on the true class labels, d*.

» Can we assign the right treatment based on the observed
information?

The

X" Similar to X
Small Outcomes >--------- T same
- treatment
Patients, i
X ~
- X" Similar to X Th?
Large Outcomes D>-----=-------"> opposite

treatment
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Directly estimating the Optimal Rule
Thoughts: Minimize a “good” estimator for E{D(d)}

» 7(X) = P(A = 1|X) is the propensity score for treatment

» 7(X) known for randomized study; Can also be estimated
using the data (A;, X;),i =1,...,n, e.g., logistic regression
m(X;v) and estimate «y by 4.

» The propensity of receiving treatment consistent with d(X)
P{d(X)[X} = P(A=d(X)|X)
= E[Ad(X)+ (1 - A){1-d(X)}X]
= a(X)d(X)+ {1 —=(X)H{1-d(X)}.



Directly estimating the Optimal Rule

Identify estimators for E{D(d)}:

> Inverse probability weighted estimator

1y~ A= d(X0)}D;
IPWE(d) = ZP{d X)X.31 (1)

» Consistent for E{D(d)} if 7(X;~), and hence P{d(X;)|X,%}
is correctly specified

2.32



Outcome Weighted Learning (OWL)

v

Minimize IPWE(d) (1)

v

For any rule d, 2d(X) — 1 = sign{f(X)} for some function f.

» Hence, minimize:

n Z P{d ’X A1 I{(2A; — 1) # sign(f(Xi)}.

v

Can be treated as recoding A = {—1,1}

Zhao et al. (JASA 2012)
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Convex Surrogate Losses for Computation Relaxation

Computation challenges: non-convexity and discontinuity of 0-1
loss.

Replace 0-1 loss by convex surrogate loss

v

Hinge loss, ¢(t) = max(1 — t,0).

—t

v

Exponential loss, ¢(t) = e

v

Logistic loss, ¢(t) = log(1 +e™*).

v

Squared hinge loss, ¢(t) = {max(1 — t,0)}2.
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Convex Surrogate Losses
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» Hinge loss: directly provide the sign of the rule.

» Other losses are smooth. Will use logistic loss for iillustration.
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Outcome Weighted Learning: Add Penalties

Objective Function: Regularization Framework

D

min -3 sy A = DO} + A @)
i=1 B

» ||f]| is some norm for f, and A, controls the severity of the
penalty on the functions.

» A linear decision rule: f(X) = XT3 + Bo, with | f]| as the
Euclidean norm of .
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Outcome Weighted Learning: Add Penalties

» Estimated treatment rule:
dn(X) = sign(fa(X)),

where f, is the solution to (2).

» Variable selection is possible, e.g., change ||| to ||f].
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Generalization of Outcome Weighted Learning

» Residual weighted learning: use residuals (after subtracting
main effects) instead of the original outcomes as the weights.

» Efficient augmentation and relaxation learning

» Doubly robust augmented inverse probability weighted
estimator: model both the propensity score and the outcome

AIPWE(d) = IPWE(d) — an augmentation term.

» Consistent if either 7(X;~) (for the propensity score) or
(A, X; B) (for the outcome) is correct

» Qutcome weighted learning is a special case.

» More efficient in estimating E{D(d)}

Zhou et al. (JASA 2015)



Direct optimization: Optimal Restricted Rule

» Optimize the objective within a class of rules

d(X,B) = {u(1,X; B) < u(0,X; B)},

indexed by S,
» Eg.,

E(D|A,X) = exp{l + X1 +2X5 +3X1.X + A(l —2X1 + Xz)}
= d*"(X)=1(X <2X; —1)

Zhang et al. (Biometrics 2012)
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Direct optimization: Optimal Restricted Rule

» Posit

(A, X; B) = Bo + B1X1 + BaXo + A(B3 + aX1 + BsX2)

» The rules I{u(1,X; 3) < (0, X; B)} define a class D,, with
elements

1(Xo > mXi+mg) or [(Xo < mXi+mo), mo = —53/Bs, m = —Pa/Ps

depending on the sign of G5

» The optimal rule in this case is contained in D,



Optimal Restricted Rule

Consider directly rules of the form D,, = {d(X,n)} indexed by n
> Write d,,(X) = d(X,n), eg., d(X,n) = 1(Xo < mX1 + no)

v

Defined based on clinical practice, cost, and interpretability,
without reference to a regression model.

» d* may or may not be in D, but still of interest

v

Optimal restricted rule d;(X) = d(X,n"),

n* = argmin E{D(d,)}
1

*

v

Estimate the optimal restricted rule by estimating 7



Estimating the Optimal Restricted Rule
» Minimize a “good” estimator for E{D(d,)} in n:

» Estimators 7} for n* obtained by minimizing IPWE(d,)) or
AIPWE (dy) in n

» Non-smooth functions of 1; must use suitable optimization
techniques (RGENOUD package in R)

» Estimators for E{D(dy)}

IPWE (dp, ) or AIPWE(d;

ipwe ) aipwe )

Can calculate standard errors

» Performs well when the covariate dimension is not high.



Summary on Direct Optimization Approach

» Direct optimization: conceptual appeal

» How to implement, eg surrogate loss function, form of
penalties for variable selection, depends on the context and
deserves future research.



Depression Data

» Compare drug therapy (A = 0) with drug + behavioral
therapy (A=1)

» Five covariates: Age, Gender, HAMABase (pre-treatment
total Hamilton Anxiety Rating Scale score), Sleep (sleep
disturbance score), Mood (mood cognition score)

» Response: 24-item Hamilton Rating Scale for Depression

> Number of patients: 436



Analyzing Depression Data

» Q-learning: model the depression score using the covariate,
the treatment and their interactions

D~14+X+A+XA

» Efficient Augmentation and Relaxation Learning: will model
both the outcome and the propensity score
» Logistic loss: ¢(t) = log(1l+ e~ ")
» Outcome model: D~ 1+ X+ A+ XA
» Propensity model: A~ X



Results

> Q-learning: d(X) = /(—0.83 + 0.01Age — 0.55Gender +
0.06HAMABase + 0.01Sleep — 0.04Mood < 0).

» Efficient Augmentation and Relaxation Learning:
d(X) = 1(—0.94 4+ 0.00Age — 0.33Gender +
0.05HAMABase + 0.02Sleep — 0.01Mood < 0).



Simulation Example

» X1,...,X5 ~ Uniform(—1,1)

v

A~ {0,1} w.p. 0.5

v

D ~3+ X2+ X2+ (2X1 + X3 — 1)A+ N(0,1)

v

The optimal rule: d*(x) = 1(2x1 + x3 < 1)



Simulation Example

» X1,...,X5 ~ Uniform(—1,1)

v

A~ {0,1} w.p. 0.5

v

D ~3+ X2+ X2+ (2X1 + X3 — 1)A+ N(0,1)

v

The optimal rule: d*(x) = 1(2x1 + x3 < 1)



Simulation Example

set.seed(1111)

n = 300

p =5

X = matrix(runif(n*p,-1,1),n,p)
A = rbinom(n,1,0.5)

mX = 3 + X[,1]1°2 + X[,2]"2

cX = 2xX[,1]1+ X[,3] -1

D = mX + AxcX + rnorm(n,1)

## optimal rule
dstar = (cX<0)
> table(dstar)

dstar
FALSE TRUE
85 215



Simulation Example: Q learning

> Q learning

## Q learning (regression modeling)

bReg = 1m(D"X*A)
bCoef = bReg$coef
QTrtRec = as.numeric(cbind(1,X) %*J bCoef [7:12]<0)

> bCoef

(Intercept) X1 X2 X3 X4 X5 A

4.59108114 0.19191209 -0.43920444 -0.03709295 0.10806789 -0.03144234 -0.89900907
X1:A X2:A X3:A X4:A X5:A

1.70576380 0.53473878 0.94800628 0.20574692 -0.13128873

> table(QTrtRec)
QTrtRec

0 1
76 224
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Simulation Example: Restricted Rule

» R package: DynTxRegime, methods for Estimating Optimal
Dynamic Treatment Regimes, including single decision setup

» For restricted regime:

## A doubly robust Augmented Inverse Propensity Weighted Estimator (AIPWE) or Inverse
Propensity Weighted Estimator (IPWE) for population mean outcome is optimized over a
restricted class of regimes. Methods are available for both single-decision-point and multiple-
decision-point regimes. This method requires the rgenoud package.

Usage

optimalSeq(..., moPropen, moMain, moCont, data, response, txName, regimes,
fSet = NULL, refit = FALSE, iter = 0, verbose = TRUE)
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Simulation Example: OWL/EARL

» For OWL/EARL:

##Estimation of optimal treatment regime using efficient augmentation and relaxation
learning (EARL). The method is limited to single-decision-point scenarios with binary
treatment options.

## by setting moMain and moCont to NULL, the function is to estimate the optimal
treatment regime using outcome weighted learning (OWL).

Usage

earl(..., moPropen, moMain, moCont, data, response, txName, regime,

iter = OL, lambdas = 0.5, cvFolds = OL, surrogate = "hinge",
guess = NULL, verbose = TRUE)

» There is also a function on OWL implementation with more
features (R function: owl). See help for details.
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Simulation Example: Restricted Rule

library(DynTxRegime)

# implementation to estimate the optimal restricted rule
# Data Preparation

data <- data.frame(X, A, D)

colnames(data) <- c("x1", "x2", "x3", "x4", "x5","a","D")

# Define the propensity for treatment model and methods.

moPropen<- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,
solver.method = ’glm’,
solver.args = list(’family’=’binomial’),
predict.method = ’predict.glm’,
predict.args = list(type=’response’))

# Create modelObj object for main effect component
moMain <- buildModelDbj(model =" x1 + x2 + x3 + x4 + x5,
solver.method = ’1m’)

# Create modelObj object for contrast component

moCont <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,
solver.method = ’1m’)

2.53



Simulation Example: Restricted Rule

# treatment regime rules at each decision point.
regimes <- function(a,b,c,d, e, f, data){
as.numeric( a + b*data$xl + cxdata$x2 + d*data$x3 + exdata$x4 + fxdata$x5 > 0)

}

*

genoud requires some additional information
cl <= c(-1,-1,-1,-1,-1,-1)
c2<-c(1,1,1,1,1, 1)

Domains <- cbind(c1,c2)

starts <- ¢(0,0,0,0,0,0)

#!! A LARGER VALUE FOR POP.SIZE IS RECOMMENDED

#!! THIS VALUE WAS CHOSEN TO MINIMIZE RUN TIME OF EXAMPLES
pop.size <- 50

2.54



Simulation Example: Restricted Rule

estAIPWE <- optimalSeq(moPropen = moPropen,
moMain = moMain,
moCont = moCont,
data = data,
response = -data$D,
txName = "a",
regimes = regimes,
iter=0L,pop.size = pop.size, starting.values = starts,
Domains = Domains, solution.tolerance = 0.0001)

> regimeCoef (estAIPWE)

a b c d e £
4.506975e-01 -7.614161e-01 -5.267877e-05 -5.334575e-01 3.900155e-03 -1.398331e-01

AIPWTrtRec<- optTx(estAIPWE)
> table (AIPWTrtRec)
AIPWTrtRec

[¢] 1
70 230
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Simulation Example: EARL

library(DynTxRegime)

# Data Preparation
data <- data.frame(X, A, D)
colnames(data) <- c("x1", "x2", "x3", "x4" k "x5" nan wpw)

# Define the propensity for treatment model and methods.

moPropen<- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,
solver.method = ’glm’,
solver.args = list(’family’=’binomial’),
predict.method = ’predict.glm’,
predict.args = list(type=’response’))

# Create modelObj object for main effect component
moMain <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,
solver.method = ’1m’)

# Create modelObj object for contrast component

moCont <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,
solver.method = ’1m’)
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Simulation Example: EARL

earlRes <- earl(moPropen = moPropen, moMain = moMain,
moCont = moCont,
data = data, response = -data$D, txName = "a", surrogate = ’logit’,
regime = ~ x1 + x2 + x3 + x4 + x5, lambdas=2"seq(-5,5,1), cvFolds = 5)

> regimeCoef (earlRes)

[1] 0.39663271 -0.59853084 -0.14985610 -0.34259186 0.00478191 -0.02726041
EARLTrtRec <- optTx(earlRes)$optimalTx

EARLTrtRec <- (EARLTrtRec + 1)/2 ## change coding from (-1,1) to (0,1)

> table(EARLTrtRec)

EARLTrtRec

o 1
64 236
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Simulation Example: OWL

library(DynTxRegime)

# Data Preparation
data <- data.frame(X, A, D)
colnames(data) <- c("x1", "x2", "x3", "x4", "x5",

,"D")

# Define the propensity for treatment model and methods.

moPropen<- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,
solver.method = ’glm’,
solver.args = list(’family’=’binomial’),
predict.method = ’predict.glm’,
predict.args = list(type=’response’))
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Simulation Example: OWL

owlRes <- earl(moPropen = moPropen, moMain = NULL, moCont = NULL,
data = data, response = -data$D, txName = "a", surrogate = ’logit’,
regime = ~ x1 + x2 + x3 + x4 + x5, lambdas=2"seq(-5,5,1), cvFolds = 5)

> regimeCoef (owlRes)
[1] 0.42115454 -0.65789664 -0.25178980 -0.33182440 -0.09571889 -0.03276892
OWLTrtRec <- optTx(owlRes)$optimalTx
OWLTrtRec <- (OWLTrtRec + 1)/2 ## change coding from (-1,1) to (0,1)
> table (OWLTrtRec)
OWLTrtRec

0 1
67 233
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Simulation Example: Performance Comparison

» Compare with the optimal rule

> table(QTrtRec,dstar)
dstar

QTrtRec FALSE TRUE
0 71 5
1 14 210

> table (AIPWTrtRec, dstar)
dstar
AIPWTrtRec FALSE TRUE
0 66 4
1 19 211

> table (EARLTrtRec,dstar)
dstar
EARLTrtRec FALSE TRUE
0 63 1
1 22 214

> table(OWLTrtRec,dstar)
dstar
OWLTrtRec FALSE TRUE
0 61 6
1 24 209

» Can validate the performances on an independent data set.
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Summary

» Active research area.

> Regression modeling: easy to implement; model may be
misspecified.

» Direct optimization: more robust.

» Other methods are also being developed, e.g., tree based
methods.



