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Bayesian Estimation of Disease P and the Par of
Diagnostic Tests in the Absence of a Gold Standard
Lawrence Joseph,' Theresa W. Gyorkos,"?* and Louis Coupal®®
Itis common in { surveys or in the i ion of new di ic tests to have results
from one or more tests investigating the same condition or disease, none of which can be considered a gold
standard. For example, two methods often used in -based surveys for esti the of
a parasitic or other infection are stool examinations and serologic testing. However, it is known that results
from stool ions generally . the while serology generally results in overesti-
mation. Using a Bayesian approach, about the and the

sensitivity, specificity, and positive and negative predictive values of each diagnostic test are possible. The

methods presented here can be applied to each test separately or to two or more tests combined. Marginal

pustavior dsnsmes of all parameters are estimated using the Gibbs samplev The techniques ars applled to the
the ides infection and to the of the pel

of stool examinations and serologic testing, using data from a survey of all Cambodian raiugees wno arrived

in Montreal, Canada, during an 8-month period. Am J Epidemiol 1995;141:263-72.

Bayes theorem; tests, routine; epi methods; models, statistical; Monte Carlo method;
prevalence; sensitivity and specificity




Applications of the Bayesian approach in biomedical
research

Medical Decisin Making

Practice of Epidemiology

" A Bayosian Approach to Ald in Formulary Decision Making: Incorporating Institution-Specifil
‘CostEtfectivensss Data with Clinical Trs esults
Using a Bayesian Approach Sy 0. R, Pl . D S oL Ve ana
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Then, we adopled a Bavesian, hierarchical, random-effects
iy ‘model to integrate site-specific and clinical trial data. We ap-

AL PATER

Comparing Child Health, Access to Care, and Utilization
of Health Services Between Ohio Appalachia’s River ‘The Effect of Risk Context on the Value of a Statistical
and Non-River Bordering Counties Life: a Bayesian Meta-model

Curope Hmae “Thijs Dekker - Roy Brouer - Marjan Hofkes -
Klaus Mocltner

ACADEMIC EMERGENCY MEDICINE 2008; 15:466-475 ® 2008 by the Society for Academic Emergen
Medicine

Bayesian Logistic Injury Severity Score:
A Method for Predicting Mortality Using
International Classification of Disease-9 Codes

Causal Agent
[ . filleborni, (CASE) sruor

o
wwhich infeets chimpanzees and baboons and may produce limited infections in humans.

= Goals:
= Estimate disease prevalence
= Estimate sensitivity and
specificity of each individual
test
Estimate sensitivity and
specificity of the combined
tests

= Challenge:
= No GOLD STANDARD

TABLE 1. Results of seralogic and stool testing for > ,
gyloidos Infection on 162 Cambodian refugees arriving In evaluated in the study!
Montreal, Canada, between July 1882 and February 1883

Stool examination
+ -

+ 38 87 125
Serology
2 35 37
40 122 162 5

Additional Information

lack of a gold standard for the detection of most
parasitic infections means that the properties of these
tests are not known with high accuracy. In consulta-
tion with a panel of experts from the McGill Centre for
Tropical Diseases, we determined equally tailed 95
percent probability intervals (i.e., 2.5 percent in each
tail) for the sensitivity and specificity of each test (see
table 5). These were derived from a review of the
relevant literature and clinical opinion (21-28).




Bayesian Methods

“the explicit quantitative use of external evidence
in the design, monitoring, analysis, interpretation

and reporting of a health-care evaluation”
(Spiegelhalter, Abrams, Myles, 2004)
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St Science
1990, Vol. 5, No. 3, 269-298

Biostatistics and Bayes

Norman Breslow

Abstract. Attitudes of biostatisticians toward implementation of the Bayes-
ian paradigm have changed during the past decade due to the increased
availability of computational tools for realistic problems. Empirical Bayes’
methods, already widely used in the analysis of longitudinal data, promise
to imp: cancer incid maps by ing for i ion and
spatial correlation. Hierarchical Bayes’ methods offer a natural framework
in which to demonstrate the bioequivalence of pharmacologic compounds.
Their use for quantitative risk and i is bi is
more controversial, however, due to uncertainty regarding specification of
informative priors. Bayesian methods simplify the analysis of data from
sequential clinical trials and avoid certain paradoxes of frequentist infer-
" ence. They offer a natural setting for the synthesis of expert opinion in
deciding policy matters. Both fi ist and Bayes’ hods have a place
in biostatistical practice.
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Adding Art to the

Rigor of Statistical Science

(Arts & Ideas Section)

Application Areas include
+ Medicine

+ Genetics

« Pharmacology

« Epidemiology

+ Health services

+ Environmental sciences

And increasing due to modeling flexibility, computational resources, etc...




Bayesian Software

(Disclaimer: Not intended to provide a complete list of available Bayesian software)

0 IGS/Winbugs/Openbugs/JAGS/Nimble (complex models using MCMC methods)
= INLA (latent Gaussian models; uses Laplace methods)

= BOA/CODA (convergence diagnostics and output analysis)

= BRCAPRO (genetic counseling of women at high risk for breast and ovarian cancer)

R-Packages:
= http://cran.r-project.org/web/views/Bayesian.html

= Download Rstudio: https://www.rstudio.com/products/Rstudio/
= Download and install R in your computer: http://cran.fhcrc.org/
Within R session:
= Install packages with

= install.packages(“mypackage”)
= Load library with

= library(mypackage)

Primary packages we will use

= LearnBayes
= arm
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Diagnostic Testing

= In the presence of a “gold standard”
= Consider a new diagnostic test

Disease No Disease
Positive (true positives) | (false positives)
Test
Negative | (false negatives) | (true negatives)
= Events:

= A: {test positive}
= B: {disease} —P(B): disease prevalence

Disease No Disease

Positive a b

Diagnostic Testing Test

Negative c d

= Sensitivity: the ability of the test to identify correctly those
who have the disease among all individuals with the disease

Sensitivity : P(A| B) = 4
a+c

= Specificity: the ability of the test to identify correctly those
who do not have the disease among those free from the disease

Specificity : P(A° | B) = _d

b+d
= These are test characteristics.
14
Disease  No Disease
. . . Positi a b
Diagnostic Testing Test e
Negative c d

= Positive predictive value (PPV): The proportion of patients
have the disease among those who tested positive

PPV :P(BIA)=—2

a+b

= Negative predictive value (NPV): The proportion of patients
are actually free of the disease among those who tested
negative

NPV : P(B°1A) =
Cc+




Interpretations of Probability

= Classical: If an event can occur in N mutually exclusive and equally likely ways,
and if m of these possess a characteristic of interest, E, the probability of the
occurrence of E is P(E) = m/N.
Example: Flip a coin. 2
What is the probability of getting a head? fa%

Frequentist: If some experiment is repeated a large number of times n and if
some resulting event with the characteristic E occurs m times, the relative
frequency of occurrence of E is approximately equal to the probability of E, that
is, P(E) = m/n

Example: Around 1900, Karl - L
Pearson tossed a coin 24,000
times and recorded 12,012
heads, giving a proportion

of 0.5005.

probability of heads

o

o 560 1000

Interpretations of Probability: Subjective

= Your degree of uncertainty.

Example: Will you pass a class?

You will take the class (hopefully!) only once;
even if you retake the class next year, you won't be
taking it under the same conditions! You'll have a different
instructor, a different set of courses, and possibly different
working conditions!

Diagnostic Testing

= A new HIV test is known to have 95% sensitivity and
98% specificity. In a population with HIV prevalence of
1/1000, what is the probability that someone testing
positive (event A) actually has HIV (event B)?
Prevalence = 1/1000
Sensitivity = P(A|B) = 0.95
Specificity = P(Ac|B<) = 0.98 = 1-P(A|BC) = 1-False Positive




i Diagnostic Testing

P(A|B)=0.95

0.00095

0.00005

0.01998

0.97902

P(B)=0.001
P(A<|B)=0.05

P(A|B)=0.02
P(B)=0.999
P(A°|B)=0.98
Conditional on positive test result:

PPV= 0.00095/(0.0095+0.01998)=0.045 19

Diagnostic Testing

= A new HIV test is known to have 95% sensitivity and
98% specificity. In a population with HIV prevalence of
1/1000, what is the probability that someone testing
positive (event A) actually has HIV (event B)?
Prevalence = 1/1000
Sensitivity = P(A|B) = 0.95
Specificity = P(A°|B) = 0.98 = 1-P(A|Bc) = 1-False Positive

P(AIB)P(B Bayes
P(B1A)= O = R
P(AIB)P(B)+P(A|B°)P(B°)
0.95x0.001 _ 000095 _ 45

h 0.95x0.001+0.02x0.999  0.02093

Positive Predictive Value 20

Diagnostic Testing

= A new HIV test is known to have 95% sensitivity and
98% specificity. In a population with HIV prevalence of
1/100, what is the probability that someone testing
positive (event A) actually has HIV (event B)?
Prevalence = 1/100
Sensitivity = P(A|B) = 0.95
Specificity = P(A°|B<) = 0.98 = 1-P(A|BF)

P(BIA)= P(A|IB)P(B) » 23}'55
P(AIB)P(B)+P(A|B)P(B)
0.95%0.01

T 0.95x0.01+0.02x0.99

=0.324

Positive Predictive Value 21




Diagnostic Testing

= Question: How should the test result change our belief about
the probability of disease?

Our intuition is poor when processing probabilistic evidence, i.e., when
updating our probability in the presence of new evidence. Bayes rule
shows exactly how to do this!

The disease prevalence (0.001) can be thought of as our prior
probability that the individual has the disease.

Observing a positive result (i.e. data) changes this probability to 0.045
for the tested individual. This is our updated or posterior probability
that the individual has the disease.

The posterior probability depends on the test’s operating characteristics
(e.g. sensitivity/specificity, test results and prevalence).
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Diagnostic Testing

= Questions:

= Having observed a positive test result for a subject, what is
the probability that the next subject also has a positive test
result?

= How would the new test result change the current belief
about the probability of disease?

Guiding principle: Today’s posterior is tomorrow’s prior!

~ P(A|B)P(B)

" P(AIB)P(B)+ P(AI B )P(B")

~ 0.95%0.045 004275
©0.95x0.045+0.02x(1-0.045) 0.06185

P(BIA)

=0.691
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What is a probability model?

= Random variable:

= “Rule” that assigns a “value” to each point of the sample
space

Example Xz { 1, if subject has disease

0, otherwise

S

= Probability model (of a random variable):

= Defines what values the variable can take and how to assign
probabilities to those values.
Example: X ~ Bernoulli(p); p is the probability of disease

24
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What is a likelihood function?

= A likelihood function (or simply the likelihood) is a
function of the parameters of a probability model given
the outcomes.

= The likelihood of 8, given outcome y, is equal to the
probability of that observed outcome given 6.

26

hat is a likelihood function?

= Bernoulli model:
= Random variable Y takes on two possible values: 0 or 1
= P(Y=1]6) = 6,
= P(Y=0|6) = 1-8, where 6 is a number in [0,1]
= Likelihood function based on a Bernoulli observation:

= Given that y=1, the likelihood function of 6 is:
L(B]y=1) = P(Y=1]6)=6

= Given that y=0, the likelihood function of 6 is:

L(8]y=0) = P(Y=1|6)=1-6




What is a likelihood function?

= Binomial Model
= Test results in a random sample of 10 disease subjects: (0,
1,0,0,0,1,0,0,0,1)
= Probability model for number of positive tests:
= Y ~ Binomial(10, 6)

’ 6=0.5

03

o

28

What is a likelihood function?

= Likelihood function: L(GIY)=( 10 )g3(1_9)7
3

025
L

What is the value of
6 that maximizes the
likelihood?

020

Likelihood

005
L

0.00
L
H
m

iTraditional Approach to Inference

Under certain regularity conditions and for large samples:

2
By~ N(0.17(®)), where 10)=E,, [—%}

¢,

30




Traditional Approach to Inference

Sampling Distribution 5 _|

005 010 015 020 025

000

(Binomial and 2 4 & 8 10 o 2 4 8 8 10
Normal Approximation)
n=1006=0.1 g =1006-05
“
o 2 4 w0 s 10 o w4 & s 10
> binom.test(3,10,p=0.5) Uses Exact
Exact binomial test Method
data: 3 and 10
number of successes = 3, number of trials = 10, p-value = 0.3438
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.06673951 0.65245285
H:8=0. sample estimates:
b: € = 0.5 probability of success
03
H;: 8 # 0.5
Uses Normal
> prop.test(3,10,p=0.5) Approximation
1-sample proportions test with continuity correction
data: 3 out of 10, null probability 0.5
X-squared = 0.9, df = 1, p-value = 0.3428
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.08094782 0.64632928
sample estimates:
)
03
32

Traditional Approach to Inference

= P-value interpretation?

= Under the null hypothesis, the probability of observing an
equal or more extreme number of test results is 34%.

= It is not the probability of the null hypothesis!

= Confidence interval interpretation?

= The confidence interval gives values of the population
parameter for which the observed sample proportion is not

statistically significant at the 5% level

= It does not give us the probability that the true parameter

lies between the boundaries of the interval!

33




Traditional Approach to Inference

= Often inferences rely on asymptotic results
= Valid inferences only with large samples

> prop.test(0,10,p=0.5)
1-sample proportions test with continuity correction

data: 0 out of 10, null probability 0.5
X-squared = 10, df = 1, p-value = 0.001565
Truncated at zero alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
1, 0.0000000 0.2775328
sample estimates:

P
0

34
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Overview of the Bayesian approach

= Began with the work by
Thomas Bayes who, in
1763, formalized what is
now called Bayes Theorem.

P(A1B)x P(B)
P(A)
where: P(A)=P(A|B)P(B)+ P(A|B°)P(B)

P(BI1A)=

36




Example: Diagnostic testing

= Data 2 Result of test
Parameter = True disease status

Prevalence = PRIOR PROB. OF DISEASE

Model |= Sensitivity = LIKELIHOOD of disease given positive test
Specificity = LIKELIHOOD pf no disease given negative test

Bayes Theorem |  p(p| A)=w

P(A)

Positive Predictive Value =» POSTERIOR PROB. OF DISEASE
GIVEN POSITIVE TEST

Negative Predictive Value »POSTERIOR PROB. OF NO DISEASE
GIVEN NEGATIVE TEST

37

Overview of the Bayesian approach

= Moving towards a generic formulation:
= Goal: learning about an unknown parameter 6 (possibly a vector)
= 0 = true disease status
= 6 = hazard ratio
= 6 = probability that experimental treatment is better
= 0 = vector of regression coefficients

= 6 = missing data

= etc...
= Data: y (e.g. test result)
= Input of analysis:

= Prior distribution: P(6)

« Probability Model: P(y|6)

« Likelihood Function: L(6]y) = P(y|6)
= Output of analysis:

= Posterior distribution:

Overview of the Bayesian approach

= Inferences based on summaries of the posterior
distribution
= Point estimates:
= Mean/Median/Mode
= Interval estimates:
= One-sided credible intervals
= Two-sided credible intervals
Equi-tail area
Narrowest interval
[HPD: highest posterior density intervals]
Choices of summary measures justified with loss functions
[decision theory].

39




Posteror Densty

25

—— HPD Interval
Equi-tail Posterior Credible Interval

« Vean
* Median/ "\
£ Mode /

f

/ \

Parameter

Posterior Density

+ Megn
* Meflen
I\

—— HPD Interval

Equi-ail Posterior Credible Interval

Parameter
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Prior Distributions

= Quantifiable (prior) beliefs exist in medicine

effects...”

“... it is generally unrealistic to hope for large treatment

“... it might be reasonable to hope that a new treatment for
acute stroke or acute myocardial infarction could reduce

recurrent stroke or death rates in hospital from 10% to 9%
or 8%, but not to hope that it could halve in-hospital

mortality”

(Peto and Baigent, 1998, BMJ)

41

Prior Distributions

= Key role in Bayesian analysis

= Choice of priors is based on judgments and a degree of

subjectivity cannot be avoided

= Prior is not unique!

= Sensitivity analysis is crucial in assessing the impact of
particular distributions on the conclusions.

= Can we turn informal prior knowledge into a
mathematical prior distribution? How?




ICASE) sTuov
q Childhood Polyarteritis nodosa

PLoS One. 2015 Mar 30;10(3):¢0120981. doi: 10.1371/journal.pone.0120981. eCollection 2015.

Elicitation of expert prior opinion: application to the MYPAN trial in childhood polyarteritis
nodosa.

Hampson LV, Whitehead J', Eleftheriou D2, Tudur-Smith C3, Jones R*, Jayne D®, Hickey H®, Beresford MW7, Bracaglia C®,
Caldas A®, Cimaz R'°, Dehoome J™, Dolezalova P2, Friswell M™3, Jelusic M, Marks SD'S, Martin N'6, McMahon AM', Peitz
J'8, van Royen-Kerkhof A'9, Soylemezoglu 02°, Brogan PA2,

® Author information

Abstract
OBJECTIVES: Definitive sample sizes for clinical trials in rare diseases are usually infeasible. Bayesian methodology
can be used to maximise what is learnt from clinical trials in these circumstances. We elicited expert prior opinion for a
future Bayesian randomised controlled trial for a rare inflammatory paediatric disease, polyarteritis nodosa (MYPAN,
Mycophenolate mofetil for polyarteritis nodosa).

METHODS: A Bayesian prior elicitation meeting was convened. Opinion was sought on the probability that a patient in
the MYPAN trial treated with cyclophosphamide would achieve disease remission within 6-months, and on the relative

flicacies of mofetil and ide. Expert opinion was combined with previously unseen data
from a recently completed randomised controlled trial in ANCA associated vasculitis.

RESULTS: A pan-European group of fifteen experts participated in the elicitation meeting. Consensus expert prior
opinion was that the most likely rates of disease remission within 6 months on cyclophosphamide or mycophenolate
mofetil were 74% and 71%, respectively. This prior opinion will now be taken forward and will be modified to formulate a
Bayesian posterior opinion once the MYPAN trial data from 40 patients randomised 1:1 to either CYC or MMF become
available.

CCONCLUSIONS: We suggest that the methodological template we propose could be applied to trial design for other rare
diseases.

Fig 2. Flow diagram illustrating the sequence of activities undertaken during the MYPAN prior
ICASE) sruor elicitation meeting and the time allocated to each activity.
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Hampson LV, Whitehead J, Eleftheriou D, Tudur-Smith C, Jones R, et al. (2015) Elicitation of Expert Prior Opinion: Applicatiagft éheYBAN Jgal
in Childhood Polyarteritis Nodosa. PLoS ONE 10(3): e0120981. doi:10.1371/journal.pone.0120981 s | ONE
I 10,1371 /journal.pone. 0120981

= 3

S1 File: Structured questionnaire designed to systematically ascertain prior opinion regarding
outcomes for treatment with CYC and MMF

NAME: |

Before any data are observed, please answer the following questions to specify your
prior distributions.

Mark on the scales below your answers to the following questions (to the nearest 0.05).




Questionnaire

= Q1% What do you think the 6-month remission rate for children with PAN treated
with cyclophosphamide (CYC) in combination with corticosteroids (steroids) is?

= Q2: Provide a proportion such that you are 75% sure that the true 6-month
remission rate on CYC/steroids exceeds this value.

Because of the unpleasant side-effects of CYC, mycophenolate mofetil (MMF) might be

considered the preferable treatment even if it is associated with a somewhat lower 6-

month remission rate:

= Q3: What is the chance that the 6-month remission rate on MMF/steroids is higher
than that on CYC/steroids?

= Q4: What is the chance that the 6-month remission rate on CYC/steroids exceeds
that on MMF/steroids by more than 10%?

Please answer the following questions which will allow us to check the adequacy of your

fitted prior distributions.

= Q5: What do you think the 6-month remission rate on MMF/steroids is?

= Q6: Provide a proportion such that you are 75% sure that the true 6-month
remission rate on MMF/steroids exceeds this value.

46
) ST Table: Individual experts’ final answers o Q1-Q4 and consensus answers agreed by the
ASE)suor  group before results from the MYCYC trial were revealed
Expert Q1 Q2 Q3 Q4
* 1 065 045 063 005
2 0.85 0.60 0.35 0.20
3 080 055 010 050
4 085 065 020 040
5 0.70 0.60 0.20 0.20
6 080 080 015 010
7 075 050 010 015
8 0.75 0.55 0.30 0.20
9 070 060 020 010
10 070 060 025 025
11 0.75 0.55 0.30 0.20
12 070 050 010 030
13 075 040 020 015
14 0.80 0.55 0.20 035
15 080 060 020 030
Mean 0.76 0.57 0.23 0.23
Median 0.75 0.55 0.20 0.20
Consensus values™ 070 0.50 030 030
Q1: What do you think the 6-month remission rate for children with PAN treated with
(CYC)in with (steroids) is?
Q2: Provide a proportion such that you are 75% sure that the true 6-month remission rate on
CYClsteroids exceeds this value.
Q3: What s the chance that the 6-month remission rate on MMEF/steroids is higher than that
on CYC/steroids?
Q4: What is the chance that the 6-month remission rate on CYC/steroids exceeds that on .

MMF/steroids by more than 10%?

2

= Consensus to questions determined by vote.
= Experts voted for the pair of answers to (Q1, Q2) which they thought best
reflected their prior opinion for pc.
= Votes cast between pairs of answers (0.7, 0.5) and (0.75, 0.55), received 10
(67%) and 4 (27%) votes, respectively; one expert abstained.
= Consensus answers were those voted for by the majority as reflecting their
opinion.

Consensus Prior

= Consensus to (Q3, Q4) determined similarly
= Experts votes between the following pairs of answers: (0.3, 0.3) and (0.3,
0.35) received 12 (80%) and 3 (20%) votes, respectively.

48




Fig 3. Expert prior opinion before introduction
of the MYCYC data regarding 6-month

remission rates using treatment with CYC or
MMF for children with PAN.
# Fig 1. Range of prior opinions
ci

elicited before introduction of the MYCYC data.
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Hampson LV, Whitehead J, Eleftheriou D, Tudur-Smith C, Jones R, et al. (2015) Elicitation of Expert Prior Opinion: Application to the MYPAN Trial
in Childhood Polyarteritis Nodosa. PLoS ONE 10(3): e0120981. doi:10.1371/journal.pone.0120981
I 10.1371 I.pone.0120981

@PLOS | ONE

Prior elicitation

Elicitation of prior distributions can be made from a
number of people (for example, clinicians and patients)
= Combined group (hierarchical) prior distribution

= Consensus

= Multiple prior distributions

= Clinical prior: averages prior distributions elicited from experts

= Vague prior: leads to a posterior distribution proportional to the likelihood
= Skeptical prior: represents no treatment effect

= Enthusiastic prior: represents large treatment effect

50

Prior elicitation

= General recommendations:

= Interactive feedback: helps formulate probabilistic ideas and
to reconcile inconsistencies

= Scripted interview: uniformity in the elicitation process across
experts

= Review: the expert should have access to literature review

= Percentile: Useful to consider 2.5t and 97.5t percentiles
(95% probability intervals)

51




Prior elicitation

’
= Problem: how to turn informal opinions into a mathen ¢
prior distribution? L}
= Summarizing historical evidence !?
>

= Previous similar studies/trials can be used as the basis of a prior
distribution

= Several modeling approaches
Degrees of “similarity” between studies/trials
Possibility of bias

Note: These approaches are also used when considering historical
controls in randomized trials, modeling for potential biases in
observational studies and in pooling data for evidence synthesis (meta-
analysis)

52

Historical Current Study

° Irelevance

Exchangeable

Potential bias

Equal with discounting

Functional dependence

More about this later in Module 6! Spiegelhalter et al, 200453

Prior elicitation

= Problem: how to turn informal opinions into a
mathematical prior distribution?
= Elicitation of subjective opinion

= ‘Histogram’ approach

° Assessment of
H probabilities in
Discrete cage Continuous cast “intervals” &
: smoothed

| | -

Yo : f [
= Assume @ parametric model (e.g. conjugate priors) and
elicit quantities of interest

54




Prior Distributions

Conjugate priors
Non-informative

= Hierarchical priors
= Mixture priors

55

Prior Distributions

= Conjugate priors:
= Let F denote a class of sampling distributions p(y|6) and P a class of prior
distributions for 6. Then P is conjugate for F
p(6ly) € P for all p(.|6) € F and p(.) € P
[prior and the posterior distribution are of the same family].
= Interpreted as “prior data”
= Computational convenience

Likelihood Prior Posterior
X6~ N(B,0%) 6~ N(u,7%) 01X ~ N (=% iy 5e)
X0 ~ B(n,0) 0 ~ Be(a,3) 0|1X ~ Be(a+z,n—x+ )
(1o, X0~ P(0) 0 ~ Gala, ) 01X1..... Xy ~ Ga(X, Xi +a,n+ B).
(0|0 ~ NB(m,0) | 0~ Be(a,3) 0]X1,. (n ~ Be(a +mn, 3+ 30, z;)
7(1/2,20) 0 ~IG(a,3) 01X ~IG(n/2 + a, (¢/2+ 717"
X1y Kol ~U0,0) | 0~ Pa(bo,a) | 0]X1,...,. X, ~ Pa(max{fo,z1,...,zn}a + 1)
X0 ~ N (e, 0) 0 ~1IG(a,f3) 01X ~IG(a+1/2, 8+ (u—X)?/2)
X0 ~ Ga(r,0) 0 ~ Gala,3) 01X ~ Gala +v,3+7) w

Prior Distributions
= Non-informative:

(reference prior, vague prior or flat prior)

= Intended to provide “objective” analysis
= Connections to Frequentist Inference!

= Prior is “flat” relative to the likelihood function
= Minimal impact on the posterior distribution of 6.

= May be improper (does not “sum up” to 1)
= DANGER: may lead to improper posteriors!!
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Prior Distributions

= Discrete parameter:
= Discrete uniform prior
= Example:
Parameter = true hypothesis (null or alternative)
Prior: P(H,)=P(H,)=0.5
= Continuous parameter:
= Jeffreys’ prior

P(a>=\1(e)%,where1(e)=5 3 log P(Y 10)

—-——=___"7| (Fisher information)
40,00,

« Idea: Fisher information measures the curvature of the log-likelihood. High curvature occurs
whenever small changes in the parameter values are associated with large changes in the
likelihood. Jeffreys’ prior gives more weight to those parameter values, ensuring that the
influence of the data and the prior essentially coincide

= Invariant to transformations of 6
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Prior Distributions

= Hierarchical priors:
= Prior specification in phases
= Structural division into stages
= Quantitative (subjective) specification at each stage
= Borrowing strength:
= improves precision for each parameter

= Nothing prevent us from going further into the hierarchy
and adding stages.

= Harder to interpret parameters in higher levels of the
hierarchy

= Common practice: non-informative priors at the higher levels
(of course, “caveats” to such choices)
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Prior Distributions
Hierarchical Prior:
P(6,...0,) = [ P(B,....6, | YP(R)d
= f [TL,P(6, | M)IP(A)d A

P(Y;|6,
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Prior Distributions

= Mixture Prior:
= Example:

Test results among 10 disease subjects:
= (0,1,0,0,0,1,0,0,0,1) : ‘successes'=3, ‘failures'=7

Hy: 6 = 0.5 versus H;: 6 # 0.5 Prior density

Priors for hypotheses:
* P(Hy)=P(H;)=0.5 :
* Under alternative:

0 ~ Beta(1,1) 2

= Prior can be re-written as a mixture:

P(0)=0.5% 1,5, +0.5xUO,1)
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Bayesian Estimation of Disease Pi and the Par of . Y

Diagnostic Tests in the Absence of a Gold Standard
lack of a gold standard for the detection of most
parasitic infections means that the properties of these
tests are not known with high accuracy. In consulta-
tion with a panel of experts from the McGill Centre for
Tropical Diseases, we determined equally tailed 95
percent probability intervals (i.e., 2.5 percent in each
tail) for the sensitivity and specificity of each test (see
table 5). These were derived from a review of the

relevant li and clinical opinion (21-2R)

TABLE 5. Equally talled 85% probability ranges and
coefficlents of the beta prior densities for the test parameters
In the diagnosls of Strongyfoides Infection®

Stool examination Serology
Beta Beta
Range  coefficients  Range coefficients
%) o —
3 B
Sens! 545 444 1331 | 6595 21.96 549

Specifictty 80-100 71.25 3.75 35-100 4.1 1.76
* A uniform density over the range [0,1] {a=1, B=1) was used for
lordi for the of In the

the pri
refugee population.
Beta(1,1) Beta(1,3) Beta(3,1)
I -] ya
- o] \\ . //
S t——— 7 St St
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Beta(2,2) Beta(.2,.2) Beta(.2,4)
- /\ 7 ||
w J/ i\\ | - 1
/ \ e -
\ o _
e T — T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Beta(2,5) Beta(5,3) Beta(100,90)
G r = 1 o 7
N\ 2 /N | 2] I
\ / = “\
\ ]
\ < / ° [
\ = / < |
\ / | [\
o _ o] o J \
S s — T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
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Translating the information into a prior
distribution

—
The particular beta prior density for each test pa-

rameter was selected by matching the center of the Beta

range with the mean of the beta distribution, given by Range cosfficients

a/(a+B), and matching the standard deviation of the %)

beta distribution, given by a B

5 Sensitivity 545  4.44 13.31
aj

Via+pHa+p+1) Beta distribution obtained by
solving these equations:

with one quarter of the total range. These two condi- c

tions uniquely define a and B. An alternative approach a (45+.05)
is to match the end points of the given ranges to beta H=T =
distributions with similar 95 percent probability inter-
vals. The coefficients obtained from these two ap- 1(45 05)= 10,
proaches usually give very similar prior distributions. Ty T
One way to consider a beta(a,B) distribution is to (a+ﬁ) (@+psl) 4
equate it with the information contained in a prior
sample of (a + B) subjects, @ of whom were positive.
The sum (a + B) is often referred to as the “sample @sw
size equivalent” of the prior information (18). =7
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* Comparison of approaches to inference
|

Comparison of approaches to inference

MLE
Intervals based on values of 8 with large likelihood
Evidence against null hypothesis via p-values

Estimation/Testing satisfying long-run properties (repeated sampling)

Traditional Approach + Unbiased estimation
Confidence intervals +  Minimax
Type I/II error rates «  Admissibility...

[TABLE 4 A taxonom} of six possible ‘philosophical’ approaches to health fechnology assessment, depending bn their objective and their
use of priqr
Objectivfe
is testing Decision (loss function)
No prior Fisherian Neyman—Pearson 'Classical decision theory ]
Prior Proper Bayesian “Bayes's factors’ Full decision-theoretic Bayesian
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Comparison of approaches to inference

= Sequential Analysis
= Data periodically analyzed and study stops if there are
sufficiently convincing results
= Traditional Approach:
= Identifies “stopping boundaries” with fixed overall Type I error and
chooses designs with minimum type II error for particular alternative
hypotheses
= At the end of the study, p-values and confidence intervals are adjusted
for the sequential nature of the design
= Bayesian Approach:
= Posterior distribution following each observation becomes the prior for
the next
= Posterior distribution does not depend on the stated stopping
procedure (data influence the posterior only through the likelihood)
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Comparison of approaches to inference

= Sequential use of Bayes Theorem:

L.p@1y) = p@)p(y,10)

2.p(01y,,y,) % p(@)p(y,,y,10)
x p(0)p(y,16)p(y,16)

xp@1y)p(y,16)

= Posterior distribution using initial prior p(8) given all the data is the same
as that obtained sequentially where posterior for the current observation
becomes the prior for the next observation.
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Comparison of approaches to inference

= P-values and Bayes factors (BF)
= Example:
= Model
Y ~ Binomial(n, 8)  __|P(Y = y16) :( " ]9«"(1 —g)"
= Parameter Y
B6=True unknown population proportion of preference for A
= Hypotheses
Hy: 6 = 0.5 versus H;: 6 # 0.5
Under alternative 8 ~ U(0,1)=Beta(1,1)

Recall:

P(H, | Data) |P(Data|H,) L P(H,)
P(H, | Data) |P(Data|H,)| P(H,)

Bayes Factor
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Comparison of approaches to inference
. s Factor (BF):

no (1Y (1) noaon
P(DataIH0)=P(Y=y|(9=045)=( . )(5) (5) =( . ]2

P(Datal| H)=P(Y = y10%0.5)= [ P(Y =y1)p(©)dO = .=

P(Data|H)) y )2
= Alternative: Likelihood-based Bayes Factor (Minimum BF)

P(Data|H,)=P(Y=y|[9=éw£)=[ n ](2) (1_2) h

F=P(DataIH“)=( n ]n+l

Yy N\n n
1
BF _PDatalH,) 5 - ) *
min 7P(Data|H|) s Ly <
n n 7

i Comparison of approaches to inference

Sample | Preference | Estimate P-value Min. BF BF
Size for A (One-sided)

20 15 0.750 0.02 0.07 0.31

200 115 0.575 0.02 0.10 1.20

2000 1046 0.523 0.02 0.12 4.30

2000000 1001445 0.500 0.02 0.12 139.8

= Interpretation of p-values is dependent on sample size!
= Minimum BFs obey the Likelihood Principle, but have similar qualitative behavior
to P-values
= Proper BFs can, for large samples relative to the prior precision, support the null
hypothesis when a classical analysis would lead to its rejection.
= This is known as Lindley’s paradox
» Explanation: For large sample sizes, a p-value can be small even if the data support
parameter values very close to the null hypothesis. Such data may be unlikely under the null,

but even more unlikely under the alternative that spreads the prior over a wide range of
values. Thus, the BF can support the null when the significance test would reject it.
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Large Sample Properties

n

¥=0oey,) where y, ~ p(y;16) and pylO)=] [ p(3;16)

i=1

0> log P(Y 16)

Let: 1(6)=E|-
96,00,

(Fisher information)
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Large Sample Properties

= Likelihood-based Inference (MLE)
6~ N(a,r‘(é))

= Bayesian Inference
0~ N(é,r‘(é))

= Thus, the posterior distribution will give essentially the same
asymptotic estimates and intervals as the maximum
likelihood estimator. However, note that the posterior
distribution is a distribution of 6 given § whereas the
previous result gives the sampling distribution of § given 6.

= This is a nice result as it connects Bayesian and Frequentist
analyses. But it is important to note that Bayesian inference
does not need to rely on asymptotic result! You get ‘exact’

inference. 73

Large Sample Properties

To convince you of the previous result, suppose the parameter is uni-dimensional.
Note that we get the same density functions:

6~ N(B,I‘l(é))

p@16)=

1 A 2
—eXp|-—— = (8—0)]
N ) [ 21 (6)
0~ N(é,r1 (é))
1 1 -~
— . (0-0
ol @ exp[ 2076) )] ,
@ ¥
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Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)

Bayesian inference can be achieved by approximating the
continuous 6 with a (dense) grid of discrete values.

A disadvantage of this approach is that the approximation is
only as good as the grid is.

An advantage of this approach is that it provides flexibility in the
choice of prior distributions.

We will illustrate this approach using
= “brute-force” method (simple application of Bayes rule) or,
= R package (LearnBayes)
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Introduction to Bayesian Computation

= Test results of 10 disease subjects:
=(0,1,0001,000,1)
(‘successes'=3, ‘failures'=7)

= Parameter of interest:
= Probability of disease
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Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)

, size=sum(data), probtheta)*prior

#-- posterior is th

e normalized likelihood times prior
product/ t)

000 005 000 005 0020 0025 0030

o

s 0

]
A

HH\HHHM
o

theta[max (which (cunulative.post <=0.50))] "
o

= (1] 03333333
; Y PO)P(Y16),  medanpest
i I (17031
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Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)

g
= %
[1]0.342133 g
i m\\” HH“\HH\M
Introduction to Bayesian Computation: Grid approach
(discrete prior for a continuous valued parameter)
Suppose a prior which places probability
zero for 8 < 0.5 and uniform otherwise
§g S |
p
s B ‘ HHWHMMM
S ( Sample Drcpontn was around here,
but posterior places prob. zero for
values < .5!
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Prior distributions

= Be careful!
= Cromwell’s rule:
= “If a coherent Bayesian attaches a prior probability of zero to the
hypothesis that the Moon is made of green cheese, then even whole

armies of astronauts coming back bearing green cheese cannot
convince him otherwise” (Lindley, 1985)

= In other words, by placing a prior probability of zero,
then there is no learning with data!




Overview of the Bayesian approach

= Likelihood function:  L@1v)=| " |9*(-0y~
where y: number of successes y
n: sample size

= Prior?
= Let's consider a prior with a functional form that resembles
that of the likelihood function
= Prior should be of the form 62(1 — 6)*'
= It turns out that such a prior for 6 is a Beta

Cool fact: multiply likelihood and the prior and you'll again get
a function of the same form as the prior...
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Overview of the Bayesian approach

= Likelihood function: L@O1Y) =( n ]9"(1 -9y~
y
= Prior: . Bera(a,b) and P(6) = ['(a+b) 0"1(1- )"
« a: “prior” successes T'(a)I'(b)
= b: “prior” failures
= Posterior (via Bayes Theorem):
POIY)x 6 (1-0)70"1-6)""
o« 0a+yfl(1 _ g)lnufyfl
(01Y) ~ Beta(a+y,b+n-y) *
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Introduction to Bayesian Computation: conjugate models

Bayesian Inference for a Proportion Using R: = Point estimation:
= Mean =0.333

library(LearnBayes) "
triplot(prior=c(1,1),data=c(3,7)) = Median = 0.324
= Mode =0.300

Bayes Triplot, beta( 1, 1) prior, s= 3, f=7

= Interval estimation:
= Equal tail 95% credible interval:
[0.109, 0.610]

= 95% HPD: [0.101,0.581]

Interpretation: there is a 95%
robability that the test sensitivity
ies between [0.101, 0.581]
[Note: we obtain probability
statements about 0]
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Introduction to Bayesian Computation: conjugate models

Bayes Triplot, beta( 1, 1) prior, s=3, =7 Bayes Triplot, beta( 2, 2) prior, 5= 3 ,f=7

M
15 20 25 30

00 05 10

00 05 10 15 20 25 30

08 10 00 02 04 05 08 10
Bayes Triplot, beta( 1, 2) prior, s= 3, f=7

00 02 04 05

Bayes Triplot, beta( 0.5, 0.5) prior, s=3 , f=7

——  Likelhood
— —  Posterior

Overview of the Bayesian approach

= Hypothesis testing:
= Hypotheses: H, vs. H; [simple vs. simple]

Prior probabilities: Pr(Ho) & P(H,)
Likelihood: P(Data|H,) & P(Data|H,)

Posterior probabilities:
P(Hy|Data) = P(H,) P(Data|H,) / P(Data)
where P(Data) = P(Data|H,) P(H,) + P(Data|H,) P(H,)

Odds:

P(H, | Data) _ P(Data| Hy) P(H,)
P(H,|Data) P(Data|H,) P(H,)

Posterior Odds = Likelihood Ratio x Prior Odds
(a.k.a. Bayes Factor)
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Overview of the Bayesian approach

= Strength of evidence provided by Bayes Factor

BF will partially Bayes Factor Evidence in favor of
eliminate the HO versus Hl
influence of the
prior and 1t03.2 Not worth more than
emphasizes the a bare mention
role of data

3.2to 10 Substantial

10 to 32 Strong

32 to 100 Very strong

>100 Decisive
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Overview of the Bayesian approach

Back to example:

= Test results among 10 disease subjects:
=(0,100010001)

(‘successes’=3, ‘failures’=7)
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Introduction to Bayesian Computation: conjugate models

Back to example:

= Test results among 10 disease subjects:
=(0,10,0,0,10,0,0,1)
(‘successes'=3, ‘failures'=7)

Hy: © = 0.5 versus H;: 6 # 0.5 || > pbetat(p0=0.5, prob=0.5, ab=c(1,1), data=c(3,7))
$bf

Priors for hypotheses: [1] 1.289063
* P(Ho)=P(H,)=0.5
« Under alternative: $post

6 ~ Beta(1,1) [1] 0.5631399

= The posterior probability of the null hypothesis is 0.56
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Overview of the Bayesian approach

= Prediction:
= Prior predictive distribution:
P(Y)=fP(YI9)P(6)d6

= Posterior Predictive Distribution of Yygy

P(Yyzy | Data) = [ P(Vy, | Data,0)P(8 | Data)d6
- Uses: = [ P(Vyey 10)P(81 Data)d6
Design and (predictive) power calculations
Sequential monitoring
Model checking
Decision making
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Introduction to Bayesian Computation: conjugate models

Prior Predictive Distribution

> pbetap(ab=c(1,1), n=10, s=0:10)

[1] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909
7] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909

> predplot(prior=c(1,1), n=10, yobs=3) Predictive Dist., beta( 1, 1) prior, n= 10 , yobs= 3

Posterior Predictive Distribution

> pbetap(ab=c(4,8), n=1, s=0:1)
[1] 0.6666667 0.3333333

ER| [
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* Bayesian GLM
I
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s
/"6.

Generalized Linear Regression Models

= Mean: E[Y, [ X0 X Xpp 1= 14 =g"'(n,) where g is a link function

= Regression Model: 8(t) =1, =By + B X, + B, X, +...+ B, X,
= Linear regression model
8(u;) = ;= By + B X, + BrXoy +"'+ﬁ[qu7
= Logistic regression model

g(u)= IOE(I L )= By +BXiy + B X, +-“+ﬂper

= Probit regression model

() =7 () = By + BXy + B Xy +..+ B,X,
= Poisson regression model

g(u) =log(u;) = Py + B Xy + B Xip +...+ B, X,




Bayesian GLM

= Mean: E[YIX,,....X, 1=y =g"'(n,) where g is a link function

= Regression Model: g(u) =1, =B+ B Xy + B X +...+ ﬁ])xlp
= Priors:
« Regression parameters: (358,555 B,)

= “Nuisance” parameters (e.g. in linear regression 0°)

= Note:

= Regression coefficients have the same interpretation (e.g. difference in
means; log-odds ratio; etc)

Interpretation of inferential results are different (e.g. posterior mean;
probability that the regression parameter lies in some interval; etc)
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Bayesian GLM in R

We will use the arm package

Different approaches to estimation of GLMs

= Approximate posterior inference (Bayesian CLT)
Advantages:

= Syntax very similar to traditional GLMs

= No need for heavy programming (e.g. MCMC methods)
Disadvantages:

= Approximate method under small samples

= Constrained by model formulations handled by the packages
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Bayesian GLM in R: arm package

= Builds on a modification of gim()
= Uses priors on an augmented regression

= Uses an approximate EM algorithm to update regression
coefficients

« Gelman, Jakulin, Grazia, Pittau, Su, 2008. A Weakly Informative Default Prior Distribution
for Logistic and Other Regression Models. The Annals of Applied Statistics, 2,1360-1383.
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Bayesian GLM in R: arm package

= Augmentation Idea (context linear models):

Matrix Formulation:

Y LX, - X, B &
Yz _ 1 X2| Xz;- ﬁl + &
Y, X, - an /3,, &

Inshort:Y =Xf+¢

Prior: ﬁ/. ~N(mj,vf), j=0,...,p

Augmented Data: Y" = ¥

%
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Bayesian GLM in R: arm package

bayesglm {arm} R Documentation

Bayesian generalized linear models.

Description
Bayesian functions for generalized linear modeling with normal. t, or Cauchy prior distribution for the coefficients.

bayesgim (formula, family = gaussian, data,

offset, control = gim.control(...),

model = TRUE, method = "gIm.fit",
x = FALSE, y = TRUE, contrasts = NULL,

drop.unused.levels = TRUE, a
prior.mean = 0,

prior.scale = NULL,

priordf =1,

prior.mean.for.intercept = 0, - s

prior.scale.for.intercept = NULL,

prior.df for.intercept = 1,
minprior.scale=1e-12,

scaled = TRUE, keep.order=TRUE,
drop.baseline=TRUE, n.ter = 100, 5

print.unnormalized log.posterior=FALSE,

Warning=TRUE....)
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= The Fracture Intervention Trial was an RCT that enrolled women age

Motivating example: Fracture Intervention Trial

55-81 who were at high risk of experiencing a fracture due to low
bone mineral density (BMD)

Women were randomized to receive alendronate or placebo and
followed-up to assess the number of osteoporotic fractures they
experienced in the subsequent 3 years

The scientific question of interest is whether alendronate decreases
the number of osteoporotic fractures a woman experiences and
whether this effect is modified by a woman’s baseline fracture risk
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Motivating example: Fracture Intervention Trial

= Data for this study are available on the course Github page:
https://qgithub.com/rhubb/SISCR2017

= Data are for a subset of 344 women and include the following
variables

id: participant id

age: age at baseline (years, continuous)

numnosp: number of non-spine osteoporotic fractures (continuous)
trt01: treatment group assignment (0 = placebo, 1 = alendronate)
riskcat4: high risk of fracture (1 = high risk, 0 = low risk)

htotbmd: total BMD (continuous)
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FIT: data description and exploration
ps://raw.githubusercontent.com/rhubb/SISCR2017/master/data/FIT.csv", header = T)
101

FIT: data description and exploration

## Summarize number of fractures stratified by treatment group

> by (fit$numnosp, f1tStrt0l, summary)
fitstreol: 0

Min. 1st Qu. Median  Mean 3rd Qu.  Max.
0.0000 0.0000 0.0000 0.1529 0.0000 3.0000

. Qu. Median  Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.1379 0.0000 3.0000
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Bayesian GLM in R: arm package

> ## -- Norm
> fit.am

priors for regression coefficients (with m 1e=10)
bayesglm(numnosp ~ trtOl + htotbmd + riskcatd + age, data=fit,
family=poisson, or.mean=0,  prior.scale=10, prior.

n=0 and

> summary (fit.arm)

mula = numnosp ~ £rt0l *

iskcatd, family
it, prior.mean = 0, prior.scale = 10,

Deviance Residuals:

This can be interpreted as
posterior mean/median &
posterior standard deviations
Pr(>121) of the regression coefficients

<2e-16 ***

Coefficients:

(Intercept)

trt -0.486
riskcatd 0.346
trt0l:riskeat| 0.100| 0.921

Signif. codes: 0 “A** 0,001 “** 0.01 “+* 0.05 ‘.’ 0.1 * ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 222.1 on 341 degrees of freedom

Rnr.id\,al deviance: 221.5 on 338 degrees of freedom ThIS can be interpreted as
(2 observations deleted due to missingness) - l .

2 17 two-sided posterior tail

R ——— probabilties of "no effect”..

Bayesian GLM in R: arm package

= More formally, the posterior probabilities are:

2xmin(P(B; <0ldata),P(B; = 01data))

normtoeta, mean = 0085923, 54 =0.030045)
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Traditional GLM in R

> fit.glm <- glm(numno:
> summary (fit.glm)

~ trt0l*riskcatd, data=fit, family=poisson)

call:
glm(formula = numnosp ~ trt0l * riskcat4, family = poisson, data = fit)

Deviance Residuals:

10 ian 30 Max
-0.6030 -0.5490 =-0.5490 =-0.5075  3.6258

Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.89256  0.21320 -8.877 <2e-16 ***

trto -0.15702 0.32292 -0.486  0.627

riskcatd 0.18782 0.54355  0.346  0.730
0508  0.099  0.921

trt0l:riskcatd 0.07001 0.

Signif. codes: 0 ‘*#**7 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 *’ 1

(Dispersion parameter for poisson family taken to be 1)

1 222.1 on 341 degrees of freedom ican
221.5 on 338 degrees of freedom EXeI’CISe.
(2 observations deleted due to missingness) Compare and contrast the
piC: 319.17 Bayesian and traditional GLM
Number of Fisher Scoring iterations: 6 results
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Bayesian GLM in R: alternative priors

= You can customize choice of prior distribution, mean,
and scale

= In this example, results are similar across a wide range
of choices

= We will take a closer look at the available options for
priors in the lab

, data=fit, family=poisson, prior.mean=0,

, data=fit, family=po:

ficient
, prior.mean=c(log(0.5),0,0),

prior with differ
baye:

1m (numn
/10
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A Bayesian perspective on trials of fracture risk

IBMS BoneKEy. 2009 August;6(8):279-204

http: |

doi: 10.1138/20090391

PERSPECTIVES

Interpretation of Randomized Controlled Trials of Fracture
Prevention

Tuan V. Nguyen

Osteoporosis and Bone Biology Program, Garvan Institute of Medical
Research, Sydney, Australia

Abstract

The question that a reader of a randomized controlled trial (RCT) is interested in is whether therapy is
effective. However, prevailing methodology addresses the opposite question: if the therapy is not effective,
what is the chance of obtaining the present (or more extreme) data? This current methodology has
generated confusion and mit tion in the literature. In this Perspective, an alternative
interpretation of major data from RCTs of fracture prevention is offered in light of Bayesian inference, with
the hope that this approach will be adopted more often in future ciinical research studies of osteoporosis.
IBMS BoneKEy. 2009 August;6(8):279-294.

©2009 International Bone & Mineral Society

107
Bayesian interpretation of trial results
Table 3. Posterior probability of anti-hip fracture efficacy
Study Relative risk Posterior probability of relative risk reduction of hip
reduction and fracture by at least 25%
% Cl Vague prior Skeptical prior i prior
Alendronate, FIT-1
study (32) 51(1-77) 0.873 0.687 0.787
Alendronate (5/10 mg),
FIT-2 study, T-scores < 56 (3-82) 0.893 0.681 0.790
2.5 (33)
Alendronate (5/10 mg),
FIT-2 study, T-scores < | 21 (+44 to -57) 0.433 0.311 0.413
-1.6 (33)
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The utility of Bayesian predictive probabilities for
interim monitoring of clinical trials

enjamin R Saville", fason T Connor®, Gregory D Ayers? and JoAnn Alvarez”

Background Bayesian predictive probabilities can be used for interim monitoring of
clinical trials to estimate the probability of observing a statistically significant treat-
ment effect if the trial were to continue to its predefined maximum sample size.

Purpose We explore settings in which Bayesian predictive probabilities are advanta-
geous for interim monitoring compared to Bayesian posterior probabilities, p-values,
conditional power, or group sequential methods.

Results For interim analyses that address prediction hypotheses, such as futility
monitoring and efficacy monitoring with lagged outcomes, only predictive probabil-

ities properly account for the amount of data remaining to be observed in a clinical

trial and have the flexibility to incorporate additional information via auxiliary
variables.

Limitations Computational burdens limit the feasibility of predictive probabilities

in many clinical trial settings. The specification of prior distributions brings addi-
tional challenges for regulatory approval.

Condusions The use of Bayesian predictive probabilities enables the choice of logi-

cal interim stopping rules that closely align with the clinical decision-making pro- (Goy. .,
cess. Clinical Trials 2014; 11: 485-493. http://ctj.sagepub.com _

Background

= Interim analyses for stopping/continuing trials are one
form of adaptive trials

= Various metrics for decisions of stopping

= Frequentist: Multi-stage, group sequential designs,
conditional power

= Bayesian: Posterior distributions, predictive power, Bayes
factors

= Question: Why and when should we use Bayesian
predictive probabilities for interim monitoring?
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Why interim analyses?

= Questions they can address:
= Is there convincing evidence in favor of the null or alternative
hypotheses?
= Evidence presently shown by data
= Is the trial likely to show convincing evidence in favor of the
alternative hypothesis if additional data are collected?
= Prediction of what evidence will be available later

= Important factors to consider:

= ethical imperative to avoid treating patients with ineffective or
inferior therapies

= inefficient allocation of resources
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Predictive Probability of Success

= Definition:
= The probability of achieving a successful (significant) result
at a future analysis, given the current interim data
= Computation:
= Obtained by integrating the data likelihood over the posterior

distribution (i.e. we integrate over future possible responses)
and predicting the future outcome of the trial

= Decision making:
= Efficacy rules based either on Bayesian posterior distributions

(fully Bayesian) or frequentist p-values (mixed Bayesian-
frequentist)
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Computation via Simulation

1) At an interim analysis, sample the parameter of interest from the
current posterior given current data.

2) Complete the dataset by sampling future samples, observations not
yet observed at the interim analysis, from the predictive
distribution.

3) Use the complete dataset to calculate success criteria (p-value,
posterior probability). If success criteria are met (e.g. p-value <
0.05), the trial is a success.

4) Repeat steps 1-3 a total of B times; the predictive probability
(PPoS) is the proportion of simulated trials that achieve success.
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i Example

= Trial:

= Single arm Phase II study of 100 patients measuring binary
outcome (favorable response to treatment)

= Goal: compare proportion to a gold standard 50% response
rate

= Model: X ~ Bin(p;N = 100) where

= p = probability of response in the study population
= N = total number of patients

= Prior: p ~ Uniform(0,1) = Beta(1,1)
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Example

= Trial Design:
= Trial is a success if the posterior probability that the
proportion exceeds the gold standard is greater than n=0.95,
that is,
Pr(p > 0.5|x) > n

= Success if 59 or more of 100 patients respond
= Pr(p > 0.50|x = 58; n = 100) = 0.944
= Pr(p > 0.50|x = 59; n = 100) = 0.963

= 3 interim analyses monitoring at 20, 50, and 75 patients
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Table 2. Definitions of key measures and methods for illustrative example

[Measure/method Desription Formula
p-value Probability of observing a proportion equal to or o i
greater than x/n given Ho : p=po Zr:x(,‘)Pn“ = po)
Posterior probability Bayesian posterior probability that proportion Pr(p>polx) = [}, f(x|p)m(p) /f(x)dp
exceeds the null value po
Predictive probability Bay ian predictive probability of statistical T ymol{Pr(p=polx, y, Ny>n}f(y|x)]
ificance at N given x/n and m(p)
Conditional power Frequentist probability of statistical significance at e [ {z, ,,Y( )p.,ﬂ P’ '<u}/(y\P‘J}
N given x/n and assumed p,
Repeated testing of Hy Method of monitoring for futility based on p-value p-value = Z,ﬁn( ?)pm -p)"’
for test of alternative hypothesis
Group sequential Frequentist design for interim monitoring that Varies by method
allocates Type I/l errors across interim analyses
Stochastic curtailment Method that estimates the probability of statistical Varies by method

significance at some future sample size

nand N number of patients at interim and final sample sizes, respectively; m = N — n: number of remaining patients yet to be observed in the study; x:
ber

number the int lysis; y: numl in Poand py: proportion of successes
under Ihe null hypothess and altemative hypotheses p': estimated or assumed value of p required for conditional pnwercompu\abon aand y: criteria
required ! for p-value or posterior pi ty, respectively, | 0: 1if expression is true

and 0 if otherwise; 7(p): beta (1, 1) = 1: prior distribution of p, uniform over (0,1); f(x)= [; f(x|p)(p)dp: marginal likelihood or normalizing constant;
o= g 1P iodp=
fxlp)= (;’)p‘[l — p)"*: data likelihood of x given p for n patients observed by interim;

FYIPfp)m(p)/f () dp=beta-binomial(m, 1 +x, 1+ 1~ x) : Bayesian posterior predictive distribution of y given x;

fvip)= ('y")p’(! — p)™7: data likelihood of y given p for remaining m patients.
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Predictive Probability of Success

Posterior Prob: Pr(p>0.5Ix)

Figure 4. Predictive probability of success versus posterior esti-
mate Pr(p>0.50|x) by interim sample size n, with maximum

sample size N = 100 and posterior threshold 7=0.95. w




Table 1. lilustrative example

ny X m; y; p-value Pr(p>0.5) CPy, CPyie 3
20 12 80 47 025 081 0.90 0.64 054
50 28 50 31 0.24 0.80 073 024 030
75 4 25 18 0.24 079 031 0.060 0.086
90 49 10 10 023 0.80 0.013 0.002 0.003
iy and

the number of patients and successes at interim analysis j; MLE: maximum likeihood estimate; my : number of remaining
[patients at interim analysis j; ;: minimum number of successes required to achieve success; CPy, and CPye: conditional power based on original H, or
[MLE; PP: Bayesian predictive probability of success.

Number of responses () =12, n=20

B Prog Prob | (xnN) = 054

3. Prip>0.50xn) =081

8 d

—
00 02 04 08 08 10
Provabilny of response (p)
Number of responses (x) =49, n=90
© Pred Prob | (xnN) = 0,003

3 Prip>0.500n) = 0.8

|- P-value =023

8o

00 02 04 08 08 10 118
Prosabilty of response (p)
o <- furktion(n.total= 100, nullp = 0.5, eta=0.95, data-c(12,8), prior.par-c(1,1), B=1000){
+ posterior
post.par <- data + prior.par
¥ samples from posterior distribution
Post.sample <- rbeta(s, post.par(ll, post.par(2])
X (extending to the maximn sample size)
ze=n.total-sun(data), post.sample)

+ organize data with first column number of * a "non responses
data.new <~ cbind (e.new, n.total-sum(data)-x.

terior parameters given predicted
pred.p wi 1]+

d(data.ne , data.new[,2]+ post.par(2])

# posterior probability that P(p > nullp |data)

post.pred <- pbeta(nullp, post.pred.par(,1], post.pred.parl,2], lower.tail=ea:

ive probability of success
eta

return(PP)

> PP(n.total=100, nullp=

.5, eta=0.95, data=c(12,20-12), priorpar=c(1,1), B=1000)

1]0.55
> PP(n.total=100, nullp=0.5, eta=0.95, data=c(28,50-28), prior.par=c(1,1), B=1000)

[110.307
> PP(n.total=100, nullp=0.5, eta=0.95, data=c(41,75-41), prior.par=c(1,1), B=1000)
[1]0.081
> PP(n.total=100, nullp=0.5, eta=0.95, data=c(49,90-49), prior.par=c(1,1), B=1000)
[1]0.003
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Final Comments
ere is ‘art’ in Bayesian Analysis

= Achieving ‘mastery’ requires practice!

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...
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