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Outline 

n  Introduction 
n  Basic concepts of Bayesian inference 
n  Introduction to Bayesian computing 
n  Bayesian GLM 
n  Comparison of approaches to inference 
n  Interim monitoring of clinical trials 
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Applications of the Bayesian approach in biomedical 
research  
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n  Goals: 
n  Estimate disease prevalence 
n  Estimate sensitivity and 

specificity of each individual 
test 

n  Estimate sensitivity and 
specificity of the combined 
tests 

n  Challenge: 
n  No GOLD STANDARD 

evaluated in the study! 

Additional Information 
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Bayesian Methods 

“the	explicit	quan/ta/ve	use	of	external	evidence	
in	the	design,	monitoring,	analysis,	interpreta/on	

and	repor/ng	of	a	health-care	evalua/on”		
(Spiegelhalter,	Abrams,	Myles,	2004)	
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- Science   

Bayesianism is a controversial but increasingly popular approach to  
statistics that offers many benefits-although not everyone is persuaded of 
its validity 
IT is not often that a man born 300 years ago suddenly springs back to life.  
But that is what has happened to the Reverend Thomas Bayes, an 
18th-century Presbyterian minister and mathematician-in spirit, at least, if not 
in body. Over the past decade the value of a statistical method outlined by  
Bayes in a paper first published in 1763 has become increasingly apparent  
and has resulted in a blossoming of "Bayesian" methods in scientific fields 
ranging from archaeology to computing. Bayes’s fans have restored his tomb  
and posted pictures of it on the Internet, and a celebratory bash is planned for  
next year to mark the 300th anniversary of his birth. There is even a Bayes  
songbook-though, since Bayesians are an academic bunch, it is available only 
in the obscure file formats that are used for scientific papers  

- The Economist   
- The New York Times 
  Adding Art to the  
  Rigor of Statistical Science 

  (Arts & Ideas Section)  

Message is out! 
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Application Areas include 
•  Medicine 
•  Genetics 
•  Pharmacology 
•  Epidemiology 
•  Health services 
•  Environmental sciences 
… 
 
And increasing due to modeling flexibility, computational resources, etc… 



Bayesian Software 
(Disclaimer: Not intended to provide a complete list of available Bayesian software) 

n  BUGS/Winbugs/Openbugs/JAGS/Nimble  (complex models using MCMC methods) 

n  INLA (latent Gaussian models; uses Laplace methods) 

n  BOA/CODA (convergence diagnostics and output analysis) 

n  BRCAPRO (genetic counseling of women at high risk for breast and ovarian cancer) 
… 
 
R-Packages: 
n  http://cran.r-project.org/web/views/Bayesian.html 

n  Download Rstudio: https://www.rstudio.com/products/Rstudio/ 
n  Download and install R in your computer: http://cran.fhcrc.org/ 
Within R session: 
n  Install packages with 

n  install.packages(“mypackage”) 
n  Load library with 

n  library(mypackage) 
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Primary packages we will use 

n  LearnBayes 

n  arm 
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Basic Concepts/Review 

u  Probability & Interpretation 
u  Random Variables 
u  Likelihood Function 
u  Traditional Approach to Inference 
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Diagnostic Testing 

n  In the presence of a “gold standard”  
n  Consider a new diagnostic test 

n  Events: 
n  A: {test positive} 
n  B: {disease}           P(B): disease prevalence  
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a 
(true positives) 

b 
(false positives) 

c 
(false negatives) 

d 
(true negatives) 

Disease No Disease 

Test 
Positive 

Negative 

Diagnostic Testing 

n  Sensitivity: the ability of the test to identify correctly those 
who have the disease among all individuals with the disease 

 

n  Specificity: the ability of the test to identify correctly those 
who do not have the disease among those free from the disease  

n  These are test characteristics. 
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Sensitivity :P(A | B) = a
a+ c

Specificity :P(Ac | Bc ) = d
b+ d

a b 

c d 

Disease No Disease 

Test 
Positive 

Negative 

Diagnostic Testing 

n  Positive predictive value (PPV): The proportion of patients 
have the disease among those who tested positive 

 

n  Negative predictive value (NPV): The proportion of patients 
are actually free of the disease among those who tested 
negative 
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PPV :P(B | A) = a
a+ b

NPV :P(Bc | Ac ) = d
c+ d

a b 

c d 

Disease No Disease 

Test 
Positive 

Negative 



Interpretations of Probability 

n  Classical: If an event can occur in N mutually exclusive and equally likely ways, 
and if m of these possess a characteristic of interest, E, the probability of the 
occurrence of E is P(E) =  m/N. 

    Example:  Flip a coin.   
What is the probability of getting a head? 

n  Frequentist: If some experiment is repeated a large number of times n and if 
some resulting event with the characteristic E occurs m times, the relative 
frequency of occurrence of E is approximately equal to the probability of E, that 
is, P(E) = m/n 

 
Example: Around 1900, Karl  
Pearson tossed a coin 24,000 
times and recorded 12,012  
heads, giving a proportion  
of 0.5005. 

 
 

16 

pr
ob

ab
ili

ty 
of

 he
ad

s

n
0 500 1000

0

.5

1

Interpretations of Probability: Subjective 

n  Your degree of uncertainty. 

Example: Will you pass a class? 
 

You will take the class (hopefully!) only once;  
even if you retake the class next year, you won't be  

taking it under the same conditions!  You'll have a different  
instructor, a different set of courses, and possibly different  

working conditions! 
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n  A new HIV test is known to have 95% sensitivity and 
98% specificity. In a population with HIV prevalence of 
1/1000, what is the probability that someone testing 
positive (event A) actually has HIV (event B)? 

Prevalence = 1/1000 
Sensitivity  = P(A|B)   = 0.95 
Specificity  = P(Ac|Bc) = 0.98 = 1-P(A|Bc) = 1-False Positive 
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Diagnostic Testing 



Diagnostic Testing 

19 

P(B)=0.001 

P(Bc)=0.999 

P(A|B)=0.95 

P(Ac|B)=0.05 

P(A|Bc)=0.02 

P(Ac|B)=0.98 

0.00095 

0.00005 

0.01998 

0.97902 

Conditional on positive test result: 
 
PPV= 0.00095/(0.0095+0.01998)=0.045 

n  A new HIV test is known to have 95% sensitivity and 
98% specificity. In a population with HIV prevalence of 
1/1000, what is the probability that someone testing 
positive (event A) actually has HIV (event B)? 

Prevalence = 1/1000 
Sensitivity  = P(A|B)   = 0.95 
Specificity  = P(Ac|Bc) = 0.98 = 1-P(A|Bc) = 1-False Positive 

 
   

P(B | A) = P(A | B)P(B)
P(A | B)P(B)+P(A | Bc )P(Bc )

=
0.95×0.001

0.95×0.001+ 0.02×0.999
=
0.00095
0.02093

= 0.045

Positive Predictive Value 20 

Diagnostic Testing 

Bayes 
Rule! 

n  A new HIV test is known to have 95% sensitivity and 
98% specificity. In a population with HIV prevalence of 
1/100, what is the probability that someone testing 
positive (event A) actually has HIV (event B)? 

Prevalence = 1/100 
Sensitivity  = P(A|B)   = 0.95 
Specificity  = P(Ac|Bc) = 0.98 = 1-P(A|Bc) 

 
   

P(B | A) = P(A | B)P(B)
P(A | B)P(B)+P(A | Bc )P(Bc )

=
0.95×0.01

0.95×0.01+ 0.02×0.99
= 0.324

Positive Predictive Value 21 

Diagnostic Testing 

Bayes 
Rule! 



n  Question: How should the test result change our belief about 
the probability of disease? 

n  Our intuition is poor when processing probabilistic evidence, i.e., when 
updating our probability in the presence of new evidence. Bayes rule 
shows exactly how to do this! 

n  The disease prevalence (0.001) can be thought of as our prior 
probability that the individual has the disease. 

n  Observing a positive result (i.e. data) changes this probability to 0.045 
for the tested individual. This is our updated or posterior probability 
that the individual has the disease. 

n  The posterior probability depends on the test’s operating characteristics 
(e.g. sensitivity/specificity, test results and prevalence). 

Diagnostic Testing 
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Diagnostic Testing 

n  Questions: 
n  Having observed a positive test result for a subject, what is 

the probability that the next subject also has a positive test 
result?  

n  How would the new test result change the current belief 
about the probability of disease? 

 
Guiding principle: Today’s posterior is tomorrow’s prior! 
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P(B | A) = P(A | B)P(B)
P(A | B)P(B)+P(A | Bc )P(Bc )

=
0.95×0.045

0.95×0.045+ 0.02× (1− 0.045)
=
0.04275
0.06185

= 0.691

What is a probability model? 

n  Random variable:  
n  “Rule” that assigns a “value” to each point of the sample 

space  
 
Example 

 

 
n  Probability model (of a random variable): 

n  Defines what values the variable can take and how to assign 
probabilities to those values. 

Example: X ~ Bernoulli(p); p is the probability of disease 
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disease 

S 

X =
1, if subject has disease
0, otherwise
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Number of times that 
a particular event will 
occur in a sequence of 
n independent 
observations with  
the same probability  
of occurrence 

What is a likelihood function? 

n  A likelihood function (or simply the likelihood) is a 
function of the parameters of a probability model given 
the outcomes.  

n  The likelihood of θ, given outcome y, is equal to the 
probability of that observed outcome given θ. 
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What is a likelihood function? 

n  Bernoulli model:  
n  Random variable Y takes on two possible values: 0 or 1 

n  P(Y=1|θ) = θ,    
n  P(Y=0|θ) = 1-θ,  where θ is a number in [0,1] 

n  Likelihood function based on a Bernoulli observation: 
n  Given that y=1, the likelihood function of θ is: 

n  L(θ|y=1) = P(Y=1|θ)=θ 

n  Given that y=0, the likelihood function of θ is: 
n  L(θ|y=0) = P(Y=1|θ)=1-θ 
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What is a likelihood function? 

n  Binomial Model 
n  Test results in a random sample of 10 disease subjects:  (0, 

1, 0, 0, 0, 1, 0, 0, 0, 1) 
n  Probability model for number of positive tests: 

n  Y ~ Binomial(10, θ) 
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What is a likelihood function? 

n  Likelihood function: 
  
  

 
 
 

What is the value of  
θ that maximizes the  
likelihood?  
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Traditional Approach to Inference 

30 

θ̂MLE !~ N θ, I −1(θ )( ), where I(θ ) = EY |θ −
∂2 logL(θ | y)

∂θ 2
#

$
%

&

'
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Under certain regularity conditions and for large samples: 



Traditional Approach to Inference 
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(Binomial and  
Normal Approximation) 

Traditional Approach to Inference 
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> binom.test(3,10,p=0.5) 
 Exact binomial test 

data:  3 and 10 
number of successes = 3, number of trials = 10, p-value = 0.3438 
alternative hypothesis: true probability of success is not equal to 0.5 
95 percent confidence interval: 
 0.06673951 0.65245285 
sample estimates: 
probability of success  
                   0.3  
 
 
 
> prop.test(3,10,p=0.5) 

 1-sample proportions test with continuity correction 
data:  3 out of 10, null probability 0.5 
X-squared = 0.9, df = 1, p-value = 0.3428 
alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval: 
 0.08094782 0.64632928 
sample estimates: 
  p  
0.3  

H0: θ = 0.5 
 
H1: θ ≠ 0.5 

Uses Exact 
Method 

Uses Normal 
Approximation 

Traditional Approach to Inference 

n  P-value interpretation? 
n  Under the null hypothesis, the probability of observing an 

equal or more extreme number of test results is 34%. 
n  It is not the probability of the null hypothesis! 

n  Confidence interval interpretation? 
n  The confidence interval gives values of the population 

parameter for which the observed sample proportion is not 
statistically significant at the 5% level 

n  It does not give us the probability that the true parameter 
lies between the boundaries of the interval! 
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Traditional Approach to Inference 

n  Often inferences rely on asymptotic results 
n  Valid inferences only with large samples 
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> prop.test(0,10,p=0.5) 
 1-sample proportions test with continuity correction 

data:  0 out of 10, null probability 0.5 
X-squared = 10, df = 1, p-value = 0.001565 
alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval: 
  0.0000000 0.2775328 
sample estimates: 
  p  
0 

Truncated at zero 

Bayesian Approach to Inference 
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u  Overview 
u  Prior Elicitation 
u  Prior Distributions 
u  Introduction to Bayesian Computation  

Overview of the Bayesian approach 

n  Began with the work by 
Thomas Bayes who, in 
1763, formalized what is 
now called Bayes Theorem. 

 
P(B | A) = P(A | B)×P(B)

P(A)
where:  P(A) = P(A | B)P(B)+P(A | Bc )P(Bc )

36 



Example: Diagnostic testing 

n  Data    è Result of test 
n  Parameter è True disease status 

n  Prevalence è PRIOR PROB. OF DISEASE 

n  Sensitivity  è LIKELIHOOD of disease given positive test 
n  Specificity  è LIKELIHOOD of no disease given negative test 

n  Positive Predictive Value  è POSTERIOR PROB. OF DISEASE  
    GIVEN POSITIVE TEST  

n  Negative Predictive Value èPOSTERIOR PROB. OF NO DISEASE  
    GIVEN NEGATIVE TEST  

 
   

Model 

Bayes Theorem P(B | A) = P(A | B)×P(B)
P(A)
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n  Moving towards a generic formulation: 
n  Goal: learning about an unknown parameter θ (possibly a vector) 

n  θ = true disease status 
n  θ = hazard ratio 
n  θ = probability that experimental treatment is better 
n  θ = vector of regression coefficients 
n  θ = missing data 
n  etc... 

n  Data:  y (e.g. test result)  
n  Input of analysis: 

n  Prior distribution: P(θ) 
n  Probability Model: P(y|θ) 
n  Likelihood Function: L(θ|y) ∝ P(y|θ) 

n  Output of analysis: 
n  Posterior distribution:  

Overview of the Bayesian approach 
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P(θ |Y ) = P(θ )L(θ |Y )
P(θ )L(θ |Y )∫ dθ

n  Inferences based on summaries of the posterior 
distribution 
n  Point estimates: 

n  Mean/Median/Mode  

n  Interval estimates: 
n  One-sided credible intervals 
n  Two-sided credible intervals 

n  Equi-tail area 
n  Narrowest interval  
 [HPD: highest posterior density intervals] 

Choices of summary measures justified with loss functions 
[decision theory]. 

Overview of the Bayesian approach 

39 



40 

Prior Distributions 

n  Quantifiable (prior) beliefs exist in medicine 

n  “… it is generally unrealistic to hope for large treatment 
effects…” 

n  “… it might be reasonable to hope that a new treatment for 
acute stroke or acute myocardial infarction could reduce 
recurrent stroke or death rates in hospital from 10% to 9% 
or 8%, but not to hope that it could halve in-hospital 
mortality” 

                                                (Peto and Baigent, 1998, BMJ) 
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Prior Distributions 

n  Key role in Bayesian analysis 

n  Choice of priors is based on judgments and a degree of 
subjectivity cannot be avoided 
n  Prior is not unique! 
n  Sensitivity analysis is crucial in assessing the impact of 

particular distributions on the conclusions. 

n  Can we turn informal prior knowledge into a 
mathematical prior distribution? How? 

42 



Childhood Polyarteritis nodosa  
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Fig 2. Flow diagram illustrating the sequence of activities undertaken during the MYPAN prior 
elicitation meeting and the time allocated to each activity. 

Hampson LV, Whitehead J, Eleftheriou D, Tudur-Smith C, Jones R, et al. (2015) Elicitation of Expert Prior Opinion: Application to the MYPAN Trial 
in Childhood Polyarteritis Nodosa. PLoS ONE 10(3): e0120981. doi:10.1371/journal.pone.0120981 
http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0120981 
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Questionnaire 
n  Q1: What do you think the 6-month remission rate for children with PAN treated 

with cyclophosphamide (CYC) in combination with corticosteroids (steroids) is? 
n  Q2: Provide a proportion such that you are 75% sure that the true 6-month 

remission rate on CYC/steroids exceeds this value. 
Because of the unpleasant side-effects of CYC, mycophenolate mofetil (MMF) might be 
considered the preferable treatment even if it is associated with a somewhat lower 6-
month remission rate: 
n  Q3: What is the chance that the 6-month remission rate on MMF/steroids is higher 

than that on CYC/steroids? 
n  Q4: What is the chance that the 6-month remission rate on CYC/steroids exceeds 

that on MMF/steroids by more than 10%? 
Please answer the following questions which will allow us to check the adequacy of your 
fitted prior distributions. 
n  Q5: What do you think the 6-month remission rate on MMF/steroids is? 
n  Q6: Provide a proportion such that you are 75% sure that the true 6-month 

remission rate on MMF/steroids exceeds this value. 

46 

47 

Consensus Prior 

n  Consensus to questions determined by vote.  
n  Experts voted for the pair of answers to (Q1, Q2) which they thought best 

reflected their prior opinion for pC.  
n  Votes cast between pairs of answers (0.7, 0.5) and (0.75, 0.55), received 10 

(67%) and 4 (27%) votes, respectively; one expert abstained. 
n  Consensus answers were those voted for by the majority as reflecting their 

opinion.  

n  Consensus to (Q3, Q4) determined similarly   
n  Experts votes between the following pairs of answers: (0.3, 0.3) and (0.3, 

0.35) received 12 (80%) and 3 (20%) votes, respectively. 
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Fig 1. Range of prior opinions  
elicited before introduction of the MYCYC data. 

Hampson LV, Whitehead J, Eleftheriou D, Tudur-Smith C, Jones R, et al. (2015) Elicitation of Expert Prior Opinion: Application to the MYPAN Trial 
in Childhood Polyarteritis Nodosa. PLoS ONE 10(3): e0120981. doi:10.1371/journal.pone.0120981 
http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0120981 

Fig 3. Expert prior opinion before introduction 
of the MYCYC data regarding 6-month 

remission rates using treatment with CYC or 
MMF for children with PAN. 

n  Elicitation of prior distributions can be made from a 
number of people (for example,  clinicians and patients) 
n  Combined group (hierarchical) prior distribution 
n  Consensus 
n  Multiple prior distributions 

n  Clinical prior: averages prior distributions elicited from experts 
n  Vague prior: leads to a posterior distribution proportional to the likelihood 
n  Skeptical prior: represents no treatment effect 
n  Enthusiastic prior: represents large treatment effect 

Prior elicitation 
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Prior elicitation 

n  General recommendations: 
n  Interactive feedback: helps formulate probabilistic ideas and 

to reconcile inconsistencies 
n  Scripted interview: uniformity in the elicitation process across 

experts 
n  Review: the expert should have access to literature review 
n  Percentile: Useful to consider 2.5th and 97.5th percentiles 

(95% probability intervals) 

51 



n  Problem: how to turn informal opinions into a mathematical 
prior distribution?  
n  Summarizing historical evidence 
 

n  Previous similar studies/trials can be used as the basis of a prior 
distribution 

n  Several modeling approaches 
n  Degrees of “similarity” between studies/trials 
n  Possibility of bias 

 
Note: These approaches are also used when considering historical 
controls in randomized trials, modeling for potential biases in 
observational studies and in pooling data for evidence synthesis (meta-
analysis) 

Prior elicitation 
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Irrelevance 

Exchangeable 

Potential bias 

Equal with discounting 

Functional dependence 

Spiegelhalter et al, 2004 

Historical Current Study 

More about this later in Module 6! 53 

Prior elicitation 

n  Problem: how to turn informal opinions into a 
mathematical prior distribution?  
n  Elicitation of subjective opinion 

n  ‘Histogram’ approach 

n  Assume a parametric model (e.g. conjugate priors) and 
elicit quantities of interest  
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Prior Distributions 

n  Conjugate priors 
n  Non-informative 
n  Hierarchical priors 
n  Mixture priors 
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n  Conjugate priors: 
n  Let F denote a class of sampling distributions p(y|θ) and P a class of prior 

distributions for θ. Then P is conjugate for F    
   p(θ|y) ∈ P for all p(.|θ) ∈ F  and p(.) ∈ P   

     [prior and the posterior distribution are of the same family]. 
n  Interpreted as “prior data” 
n  Computational convenience 

Prior Distributions 
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n  Non-informative: 
    (reference prior, vague prior or flat prior) 

n  Intended to provide “objective” analysis 
n  Connections to Frequentist Inference! 

n  Prior is “flat” relative to the likelihood function 
n  Minimal impact on the posterior distribution of θ. 

n  May be improper (does not “sum up” to 1) 
n  DANGER: may lead to improper posteriors!! 

Prior Distributions 
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n  Discrete parameter: 
n  Discrete uniform prior 

n  Example:  
n  Parameter = true hypothesis (null or alternative) 
n  Prior: P(H0)=P(H1)=0.5 

n  Continuous parameter:  
n  Jeffreys’ prior  

 
n  Idea: Fisher information measures the curvature of the log-likelihood. High curvature occurs 

whenever small changes in the parameter values are associated with large changes in the 
likelihood. Jeffreys’ prior gives more weight to those parameter values, ensuring that the 
influence of the data and the prior essentially coincide  

n  Invariant to transformations of θ 

 

  

Prior Distributions 

P(θ ) = I(θ )
1

2 , where I(θ ) = E −
∂2 logP(Y |θ )

∂θi∂θ j

#

$
%
%

&

'
(
(

(Fisher information)
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Prior Distributions 

n  Hierarchical priors: 
n  Prior specification in phases 

n  Structural division into stages 
n  Quantitative (subjective) specification at each stage 

n  Borrowing strength:  
n  improves precision for each parameter  

n  Nothing prevent us from going further into the hierarchy 
and adding stages. 
n  Harder to interpret parameters in higher levels of the 

hierarchy 
n  Common practice: non-informative priors at the higher levels 

(of course, “caveats” to such choices) 
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Prior Distributions 

θ1 θ2 θn 

λ 

P(λ) 

P(θi|λ) 

P(Yi|θi) 

Hierarchical Prior: 

y1 y2 yn 
… 

… 

P(θ1,...,θn ) = P(θ1,...,θn | λ)P(λ)dλ∫
= [ΠiP(θi | λ)]P(λ)dλ∫

60 



Prior Distributions 

n  Mixture Prior: 
n  Example:  
   Test results among 10 disease subjects:  

n  (0, 1, 0, 0, 0, 1, 0, 0, 0, 1) : ‘successes’=3,  ‘failures’=7 

n  Prior can be re-written as a mixture: 
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H0: θ = 0.5  versus H1: θ ≠ 0.5 
 
Priors for hypotheses: 
•  P(H0)=P(H1)=0.5 
•  Under alternative: 
  θ ~ Beta(1,1) 
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Prior density 

P(θ ) = 0.5× I{θ=0.5} + 0.5×U(0,1)
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Translating the information into a prior 
distribution 
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Beta distribution obtained by  
solving these equations: 

α
α +β

=
(.45+.05)

2
= .25

αβ

α +β( )2 (α +β +1)
=
1
4
(.45−.05) = .10

Comparison of approaches to inference 

65 

Comparison of approaches to inference 
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Traditional Approach 

•  MLE 
•  Intervals based on values of θ with large likelihood 
•  Evidence against null hypothesis via p-values 

Estimation/Testing satisfying long-run properties (repeated sampling) 
•  Unbiased estimation 
•  Confidence intervals 
•  Type I/II error rates 

•  Minimax 
•  Admissibility… 



Comparison of approaches to inference 

n  Sequential Analysis 
n  Data periodically analyzed and study stops if there are 

sufficiently convincing results 
n  Traditional Approach: 

n  Identifies “stopping boundaries” with fixed overall Type I error and 
chooses designs with minimum type II error for particular alternative 
hypotheses 

n  At the end of the study, p-values and confidence intervals are adjusted 
for the sequential nature of the design 

n  Bayesian Approach: 
n  Posterior distribution following each observation becomes the prior for 

the next 
n  Posterior distribution does not depend on the stated stopping 

procedure (data influence the posterior only through the likelihood) 
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Comparison of approaches to inference 

n  Sequential use of Bayes Theorem: 

n  Posterior distribution using initial prior p(θ) given all the data is the same 
as that obtained sequentially where posterior for the current observation 
becomes the prior for the next observation. 
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1. p(θ | y1)∝ p(θ )p(y1 |θ )

2. p(θ | y1, y2 )∝ p(θ )p(y1, y2 |θ )
∝ p(θ )p(y1 |θ )p(y2 |θ )
∝ p(θ | y1)p(y2 |θ )

Comparison of approaches to inference 

n  P-values and Bayes factors (BF) 
n  Example:  

n  Model 
n  Y ~ Binomial(n, θ)  

n  Parameter 
n  θ=True unknown population proportion of preference for A 

n  Hypotheses 
n  H0: θ = 0.5  versus H1: θ ≠ 0.5 
n  Under alternative θ ~ U(0,1)=Beta(1,1) 

 
Recall: 
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Comparison of approaches to inference 
n  Bayes Factor (BF): 

 

n  Alternative: Likelihood-based Bayes Factor (Minimum BF) 
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P(Data |H1) = P(Y = y |θ = θ̂MLE ) =
n
y
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P(Data |H0 ) = P(Y = y |θ = 0.5) =
n
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P(Data |H1) = P(Y = y |θ ≠ 0.5) = P(Y = y |θ )p(θ )dθ = ... = 1
n+1∫

BF = P(Data |H0 )
P(Data |H1)

=
n
y

!

"
##

$

%
&&
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2n

Comparison of approaches to inference 

n  Interpretation of p-values is dependent on sample size! 
n  Minimum BFs obey the Likelihood Principle, but have similar qualitative behavior 

to P-values 
n  Proper BFs can, for large samples relative to the prior precision, support the null 

hypothesis when a classical analysis would lead to its rejection. 
n  This is known as Lindley’s paradox 

n  Explanation: For large sample sizes, a p-value can be small even if the data support 
parameter values very close to the null hypothesis. Such data may be unlikely under the null, 
but even more unlikely under the alternative that spreads the prior over a wide range of 
values. Thus, the BF can support the null when the significance test would reject it. 

Sample 
Size 

Preference 
for A 

Estimate P-value 
(One-sided) 

Min. BF BF 

20 15 0.750 0.02 0.07 0.31 
200 115 0.575 0.02 0.10 1.20 

2000 1046 0.523 0.02 0.12 4.30 
2000000 1001445 0.500 0.02 0.12 139.8 
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Large Sample Properties 

y = (y1,..., yn ) where yi ~ p(yi |θ ) and p(y|θ )= p(yi |θ )
i=1

n

∏
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Let: I(θ ) = E −
∂2 logP(Y |θ )

∂θi∂θ j

#

$
%
%

&

'
(
(

(Fisher information)



Large Sample Properties 

n  Likelihood-based Inference (MLE) 

n  Bayesian Inference 

 
n  Thus, the posterior distribution will give essentially the same 

asymptotic estimates and intervals as the maximum 
likelihood estimator. However, note that the posterior 
distribution is a distribution of θ given    whereas the 
previous result gives the sampling distribution of    given θ. 

n  This is a nice result as it connects Bayesian and Frequentist 
analyses. But it is important to note that Bayesian inference 
does not need to rely on asymptotic result! You get ‘exact’ 
inference.    73 

θ̂ ~ N θ, I −1(θ̂ )( )

θ ~ N θ̂, I −1(θ̂ )( )

θ̂
θ̂

Large Sample Properties 
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θ̂ ~ N θ, I −1(θ̂ )( )
p(θ̂ |θ ) = 1

2π I −1(θ̂ )
exp − 1

2I −1(θ̂ )
(θ̂ −θ )2

"

#
$

%

&
'

θ ~ N θ̂, I −1(θ̂ )( )
p(θ |θ̂ ) = 1

2π I −1(θ̂ )
exp − 1

2I −1(θ̂ )
(θ −θ̂ )2

"

#
$

%

&
'

To convince you of the previous result, suppose the parameter is uni-dimensional.  
Note that we get the same density functions:   

Introduction to Bayesian Computation 
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Introduction to Bayesian Computation: Grid approach  
(discrete prior for a continuous valued parameter)  

n  Bayesian inference can be achieved by approximating the 
continuous θ with a (dense) grid of discrete values. 

n  A disadvantage of this approach is that the approximation is 
only as good as the grid is.  

n  An advantage of this approach is that it provides flexibility in the 
choice of prior distributions. 

n  We will illustrate this approach using  
n  “brute-force” method (simple application of Bayes rule) or, 
n  R package (LearnBayes) 
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Introduction to Bayesian Computation 

 
n  Test results of 10 disease subjects:  

n  (0, 1, 0, 0, 0, 1, 0, 0, 0, 1) 
(‘successes’=3,  ‘failures’=7) 
 

n  Parameter of interest: 
n  Probability of disease 
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# Method 1: Brute-force ------------------------------------------- 
#-- Prior 1: 
prior <- rep(1/99, 99) 
 
#-- likelihood times prior 
product <- dbinom(x=data[1], size=sum(data), prob=theta)*prior 
 
#-- posterior is the normalized likelihood times prior 
posterior <- product/sum(product) 
 
#-- plot posterior distribution 
plot(theta, posterior, type='h', xlab=expression(~theta)) 
 
#-- posterior mean 
mean.post <- sum(theta*posterior) 
 
#-- cumulative posterior distribution 
cumulative.post <- cumsum(posterior) 
 
#-- median (approximate) 
median.post <- theta[max(which(cumulative.post <=0.50))] 

> mean.post 
[1] 0.3333333 
 
> median.post 
[1] 0.31 

P(θi |Y ) =
P(θi )P(Y |θi )
P(θ j )P(Y |θ j )

j
∑

Introduction to Bayesian Computation: Grid approach  
(discrete prior for a continuous valued parameter)  
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# Method 1: Brute-force ------------------------------------------- 
 
#-- Prior 2: 
f <- theta*(theta<=0.2) +(1-theta)*(theta>=0.8) + 0.2*(theta>0.2 & theta < 0.8) 
prior <- f/sum(f) 
 
#-- likelihood times prior 
product <- dbinom(x=data[1], size=sum(data), prob=theta)*prior 
 
#-- posterior is the normalized likelihood times prior 
posterior <- product/sum(product) 
 
#-- plot of prior distribution 
plot(theta, prior, type='h', xlab=expression(~theta)) 
 
#-- posterior is the normalized likelihood times prior 
posterior <- product/sum(product) 
 
#-- plot posterior distribution 
plot(theta, posterior, type='h', xlab=expression(~theta)) 
 
#-- posterior mean 
mean.post <- sum(theta*posterior) 
 
#-- cumulative posterior distribution 
cumulative.post <- cumsum(posterior) 
 
#-- median (approximate) 
median.post <- theta[max(which(cumulative.post <=0.50))] 
 

> mean.post 
[1] 0.342133 
 
> median.post 
[1] 0.32 
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Introduction to Bayesian Computation: Grid approach  
(discrete prior for a continuous valued parameter)  
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Suppose a prior which places probability  
zero for θ < 0.5 and uniform otherwise 

Sample proportion was around here,  
but posterior places prob. zero for  
values < .5! 

Introduction to Bayesian Computation: Grid approach  
(discrete prior for a continuous valued parameter)  

Prior distributions 

n  Be careful! 
n  Cromwell’s rule: 

n  “If a coherent Bayesian attaches a prior probability of zero to the 
hypothesis that the Moon is made of green cheese, then even whole 
armies of astronauts coming back bearing green cheese cannot 
convince him otherwise”  (Lindley, 1985) 

n  In other words, by placing a prior probability of zero,  
         then there is no learning with data! 
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n  Likelihood function: 
where y: number of successes 
          n: sample size 

n  Prior? 
n  Let’s consider a prior with a functional form that resembles 

that of the likelihood function 
n  Prior should be of the form θa’(1 − θ)b’ 
n  It turns out that such a prior for θ is a Beta  

Cool fact: multiply likelihood and the prior and you’ll again get 
a function of the same form as the prior… 
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L(θ |Y ) = n
y

!

"
##

$

%
&&θ

y (1−θ )n−y

Overview of the Bayesian approach 

n  Likelihood function: 

n  Prior: 
n  a: “prior” successes 
n  b: “prior” failures 

n  Posterior (via Bayes Theorem):  
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L(θ |Y ) = n
y

!

"
##

$

%
&&θ

y (1−θ )n−y

θ ~ Beta(a,b) and P(θ ) = Γ(a+ b)
Γ(a)Γ(b)

θ a−1(1−θ )b−1

P(θ |Y )∝θ y (1−θ )n−yθ a−1(1−θ )b−1

∝θ a+y−1(1−θ )b+n−y−1

(θ |Y ) ~ Beta(a+ y,b+ n− y)

Overview of the Bayesian approach 
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n  Point estimation: 
n  Mean    = 0.333 
n  Median = 0.324 
n  Mode    = 0.300 

n  Interval estimation: 
n  Equal tail 95% credible interval: 

[0.109, 0.610] 

n  95% HPD: [0.101,0.581] 

Interpretation: there is a 95% 
probability that the test sensitivity 
lies between  [0.101, 0.581] 

[Note: we obtain probability 
statements about θ] 

Bayesian Inference for a Proportion Using R: 
 
library(LearnBayes) 
triplot(prior=c(1,1),data=c(3,7)) 
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Introduction to Bayesian Computation: conjugate models 
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Introduction to Bayesian Computation: conjugate models 

n  Hypothesis testing: 
n  Hypotheses: H0 vs. H1    [simple vs. simple] 

n  Prior probabilities: Pr(H0) & P(H1) 
n  Likelihood: P(Data|H0) & P(Data|H1) 

n  Posterior probabilities: 
   P(H0|Data) = P(H0) P(Data|H0) / P(Data) 

where P(Data) = P(Data|H0) P(H0) + P(Data|H1) P(H1) 
 

n  Odds: 
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Posterior Odds = Likelihood Ratio x Prior Odds 
                        (a.k.a. Bayes Factor) 86 

Overview of the Bayesian approach 

n  Strength of evidence provided by Bayes Factor 
Bayes Factor Evidence in favor of 

H0 versus H1 

1 to 3.2 Not worth more than 
a bare mention 

3.2 to 10 Substantial 

10 to 32 Strong 

32 to 100 Very strong 

>100 Decisive 

BF will partially  
eliminate the  
influence of the 
prior and 
emphasizes the  
role of data  
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Overview of the Bayesian approach 



Back to example: 
 
n  Test results among 10 disease subjects:  

n  (0, 1, 0, 0, 0, 1, 0, 0, 0, 1) 
(‘successes’=3,  ‘failures’=7) 
 

88 

Overview of the Bayesian approach 

Back to example: 
 
n  Test results among 10 disease subjects:  

n  (0, 1, 0, 0, 0, 1, 0, 0, 0, 1) 
(‘successes’=3,  ‘failures’=7) 
 
 
 
 
 
 
 
 
n  The posterior probability of the null hypothesis is 0.56 
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> pbetat(p0=0.5, prob=0.5, ab=c(1,1), data=c(3,7)) 
$bf 
[1] 1.289063 
 
$post 
[1] 0.5631399 

H0: θ = 0.5  versus H1: θ ≠ 0.5 
 
Priors for hypotheses: 
•  P(H0)=P(H1)=0.5 
•  Under alternative: 
  θ ~ Beta(1,1) 

Introduction to Bayesian Computation: conjugate models 

n  Prediction: 
n  Prior predictive distribution: 

n  Posterior Predictive Distribution of YNEW 

n  Uses: 
n  Design and (predictive) power calculations 
n  Sequential monitoring 
n  Model checking 
n  Decision making 
n  … 

 

P(YNEW |Data) = P(YNEW |Data,θ )P(θ |Data)dθ∫
= P(YNEW |θ )P(θ |Data)dθ∫

P(Y ) = P(Y |θ )P(θ )dθ∫

90 

Overview of the Bayesian approach 
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Prior Predictive Distribution 
 
> pbetap(ab=c(1,1), n=10, s=0:10) 
 [1] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 
 [7] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 
 
> predplot(prior=c(1,1), n=10, yobs=3) 
 
 
 
Posterior Predictive Distribution 
 
> pbetap(ab=c(4,8), n=1, s=0:1) 
[1] 0.6666667 0.3333333 
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Introduction to Bayesian Computation: conjugate models 

Bayesian GLM 
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Generalized Linear Regression Models 

n  Mean: 
 
n  Regression Model: 

n  Linear regression model 
 
n  Logistic regression model 
 
 
n  Probit regression model 

n  Poisson regression model  
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E[Yi | Xi1,Xi2,…,Xip ]= µi = g
−1(ηi ) where g is a link function

g(µi ) =ηi = β0 +β1Xi1 +β2Xi2 +…+βpXip

g(µi ) = µi = β0 +β1Xi1 +β2Xi2 +…+βpXip

g(µi ) = log
µi

1−µi

"

#
$

%

&
'= β0 +β1Xi1 +β2Xi2 +…+βpXip

g(µi ) =Φ
−1(µi ) = β0 +β1Xi1 +β2Xi2 +…+βpXip

g(µi ) = log(µi ) = β0 +β1Xi1 +β2Xi2 +…+βpXip



Bayesian GLM 

n  Mean: 
 
n  Regression Model: 

n  Priors:  
n  Regression parameters: 

n  “Nuisance” parameters (e.g. in linear regression     ) 

n  Note: 
n  Regression coefficients have the same interpretation (e.g. difference in 

means; log-odds ratio; etc) 
n  Interpretation of inferential results are different (e.g. posterior mean; 

probability that the regression parameter lies in some interval; etc) 
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E[Yi | Xi1,…,Xip ]= µi = g
−1(ηi ) where g is a link function

g(µi ) =ηi = β0 +β1Xi1 +β2Xi2 +…+βpXip

(β0 ,β1,β2,...βp )

σ 2

Bayesian GLM in R 

n  We will use the arm package 
n  Different approaches to estimation of GLMs 

n  Approximate posterior inference (Bayesian CLT) 

n  Advantages: 
n  Syntax very similar to traditional GLMs 
n  No need for heavy programming (e.g. MCMC methods) 

n  Disadvantages: 
n  Approximate method under small samples 
n  Constrained by model formulations handled by the packages 
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Bayesian GLM in R: arm package 

n  Builds on a modification of glm()  
n  Uses priors on an augmented regression 
n  Uses an approximate EM algorithm to update regression 

coefficients  
n  Gelman, Jakulin, Grazia, Pittau, Su, 2008. A Weakly Informative Default Prior Distribution 

for Logistic and Other Regression Models. The Annals of Applied Statistics, 2,1360-1383. 
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Bayesian GLM in R: arm package 

n  Augmentation Idea (context linear models): 
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Matrix Formulation:
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In short :Y = Xβ +ε

Prior: β j ~ N(mj,vj
2 ), j = 0,..., p
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Bayesian GLM in R: arm package 
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bayesglm {arm}  R Documentation   
 
Bayesian generalized linear models. 
 
Description 
Bayesian functions for generalized linear modeling with independent normal, t, or Cauchy prior distribution for the coefficients. 
 
Usage 
bayesglm (formula, family = gaussian, data,  
    weights, subset, na.action,  
    start = NULL, etastart, mustart,  
    offset, control = glm.control(...),  
    model = TRUE, method = "glm.fit",  
    x = FALSE, y = TRUE, contrasts = NULL,  
    drop.unused.levels = TRUE, 
    prior.mean = 0,  
    prior.scale = NULL,  
    prior.df = 1,  
    prior.mean.for.intercept = 0,  
    prior.scale.for.intercept = NULL,  
    prior.df.for.intercept = 1,  
    min.prior.scale=1e-12, 
    scaled = TRUE, keep.order=TRUE,  
    drop.baseline=TRUE, n.iter = 100,  
    print.unnormalized.log.posterior=FALSE, 
    Warning=TRUE,...) 

Motivating example: Fracture Intervention Trial 

n  The Fracture Intervention Trial was an RCT that enrolled women age 
55-81 who were at high risk of experiencing a fracture due to low 
bone mineral density (BMD) 

n  Women were randomized to receive alendronate or placebo and 
followed-up to assess the number of osteoporotic fractures they 
experienced in the subsequent 3 years 

n  The scientific question of interest is whether alendronate decreases 
the number of osteoporotic fractures a woman experiences and 
whether this effect is modified by a woman’s baseline fracture risk 
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Motivating example: Fracture Intervention Trial 

n  Data for this study are available on the course Github page: 
https://github.com/rhubb/SISCR2017  

n  Data are for a subset of 344 women and include the following 
variables 
 

id: participant id 

age: age at baseline (years, continuous) 

numnosp: number of non-spine osteoporotic fractures (continuous) 

trt01: treatment group assignment (0 = placebo, 1 = alendronate) 

riskcat4: high risk of fracture (1 = high risk, 0 = low risk) 

htotbmd: total BMD (continuous) 

100 

FIT: data description and exploration 
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> ## read FIT data set 
> fit <- read.csv("https://raw.githubusercontent.com/rhubb/SISCR2017/master/data/FIT.csv", header = T) 
 
> ## examine a few entries of the data set 
> head(fit) 
 
  id age numnosp trt01 htotbmd riskcat4  
1  1  69       0     0   0.517        1      
2  2  76       0     1   0.583        1      
3  3  66       0     1   0.709        0      
4  4  72       0     0   0.738        0      
5  5  58       0     1   0.690        0      
6  6  74       0     1   0.480        0      

> ## summarize the variables 
> summary(fit) 
 
 id               age             numnosp          trt01            htotbmd          riskcat4 
 Min.   :  1.00   Min.   :56.00   Min.   :0.0000   Min.   :0.0000   Min.   :0.3990   Min.   :0.0000 
 1st Qu.: 86.75   1st Qu.:65.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.6060   1st Qu.:0.0000 
 Median :268.50   Median :69.00   Median :0.0000   Median :1.0000   Median :0.6675   Median :0.0000 
 Mean   :236.46   Mean   :69.31   Mean   :0.1453   Mean   :0.5058   Mean   :0.6622   Mean   :0.1871 
 3rd Qu.:360.25   3rd Qu.:74.00   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.7260   3rd Qu.:0.0000    
 Max.   :457.00   Max.   :81.00   Max.   :3.0000   Max.   :1.0000   Max.   :0.8740   Max.   :1.0000 
                                                                                     NA's   :2         

FIT: data description and exploration 
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## Summarize number of fractures stratified by treatment group 
 
> by(fit$numnosp,fit$trt01,summary) 
fit$trt01: 0 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.0000  0.0000  0.1529  0.0000  3.0000  
----------------------------------------------------------------------------  
fit$trt01: 1 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.0000  0.0000  0.1379  0.0000  3.0000 
 
 
 



Bayesian GLM in R: arm package 
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> ## -- Normal priors for regression coefficients (with mean=0 and scale=10) 
> fit.arm <- bayesglm(numnosp ~ trt01 + htotbmd + riskcat4 + age, data=fit,  

 family=poisson, prior.mean=0,    prior.scale=10, prior.df=Inf) 
 
> summary(fit.arm) 
 
Call: 
bayesglm(formula = numnosp ~ trt01 * riskcat4, family = poisson,  
    data = fit, prior.mean = 0, prior.scale = 10, prior.df = Inf) 
  
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.6031  -0.5492  -0.5492  -0.5078   3.6251   
  
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.89186    0.21296  -8.883   <2e-16 *** 
trt01          -0.15675    0.32242  -0.486    0.627     
riskcat4        0.18742    0.54184   0.346    0.729     
trt01:riskcat4  0.06999    0.70247   0.100    0.921     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
(Dispersion parameter for poisson family taken to be 1) 
  
    Null deviance: 222.1  on 341  degrees of freedom 
Residual deviance: 221.5  on 338  degrees of freedom 
  (2 observations deleted due to missingness) 
AIC: 315.17 
  
Number of Fisher Scoring iterations: 6 
  
 

This can be interpreted as  
posterior mean/median &  
posterior standard deviations 
of the regression coefficients 

This can be interpreted as  
two-sided posterior tail  
probabilities of “no effect”… 

Bayesian GLM in R: arm package 

n  More formally, the posterior probabilities are: 
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2×min(P(β j ≤ 0 | data),P(β j ≥ 0 | data))

Traditional GLM in R 
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> fit.glm <- glm(numnosp ~ trt01*riskcat4, data=fit, family=poisson) 
> summary(fit.glm) 
  
Call: 
glm(formula = numnosp ~ trt01 * riskcat4, family = poisson, data = fit) 
  
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.6030  -0.5490  -0.5490  -0.5075   3.6258   
  
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -1.89256    0.21320  -8.877   <2e-16 *** 
trt01          -0.15702    0.32292  -0.486    0.627     
riskcat4        0.18782    0.54355   0.346    0.730     
trt01:riskcat4  0.07001    0.70508   0.099    0.921     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
(Dispersion parameter for poisson family taken to be 1) 
  
    Null deviance: 222.1  on 341  degrees of freedom 
Residual deviance: 221.5  on 338  degrees of freedom 
  (2 observations deleted due to missingness) 
AIC: 315.17 
  
Number of Fisher Scoring iterations: 6 
  
 
  

Exercise:  
  Compare and contrast the 
Bayesian and traditional GLM 
results 



Bayesian GLM in R: alternative priors 
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> ##-- T prior with df = 10 and scale 10  
> fit.arm2 <- bayesglm(numnosp ~ trt01*riskcat4, data=fit, family=poisson, prior.mean=0,  
+    prior.scale=10, prior.df = 10) 
>  
> ##-- Cauchy prior with scale 10  
> fit.arm3 <- bayesglm(numnosp ~ trt01*riskcat4, data=fit, family=poisson, prior.mean=0,  
+    prior.scale=10) 
>  
> ##-- Normal prior with different prior mean and scale for each coefficient 
> fit.arm4 <- bayesglm(numnosp ~ trt01*riskcat4, data=fit, family=poisson, prior.mean=c(log(0.5),0,0),  
+    prior.scale=c(1,10,10), prior.df = Inf) 

n  You can customize choice of prior distribution, mean, 
and scale 

n  In this example, results are similar across a wide range 
of choices 

n  We will take a closer look at the available options for 
priors in the lab 

A Bayesian perspective on trials of fracture risk 
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Bayesian interpretation of trial results 

108 
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Background 

n  Interim analyses for stopping/continuing trials are one 
form of adaptive trials 

n  Various metrics for decisions of stopping 
n  Frequentist: Multi-stage, group sequential designs, 

conditional power 
n  Bayesian: Posterior distributions, predictive power, Bayes 

factors 

n  Question: Why and when should we use Bayesian 
predictive probabilities for interim monitoring? 
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Why interim analyses? 

n  Questions they can address: 
n  Is there convincing evidence in favor of the null or alternative 

hypotheses? 
n  Evidence presently shown by data 

n  Is the trial likely to show convincing evidence in favor of the 
alternative hypothesis if additional data are collected? 

n  Prediction of what evidence will be available later 

n  Important factors to consider: 
n  ethical imperative to avoid treating patients with ineffective or 

inferior therapies 
n  inefficient allocation of resources 
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Predictive Probability of Success 

n  Definition: 
n  The probability of achieving a successful (significant) result 

at a future analysis, given the current interim data 

n  Computation: 
n  Obtained by integrating the data likelihood over the posterior 

distribution (i.e. we integrate over future possible responses) 
and predicting the future outcome of the trial 

n  Decision making: 
n  Efficacy rules based either on Bayesian posterior distributions 

(fully Bayesian) or frequentist p-values (mixed Bayesian-
frequentist) 
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Computation via Simulation 
1)  At an interim analysis, sample the parameter of interest from the 

current posterior given current data. 

2)  Complete the dataset by sampling future samples, observations not 
yet observed at the interim analysis, from the predictive 
distribution. 

3)  Use the complete dataset to calculate success criteria (p-value, 
posterior probability). If success criteria are met (e.g. p-value < 
0.05), the trial is a success. 

4)  Repeat steps 1-3 a total of B times; the predictive probability 
(PPoS) is the proportion of simulated trials that achieve success. 
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Example 

n  Trial:  
n  Single arm Phase II study of 100 patients measuring binary 

outcome (favorable response to treatment) 
n  Goal: compare proportion to a gold standard 50% response 

rate 

n  Model: X ~ Bin(p;N = 100) where  
n  p = probability of response in the study population 
n  N = total number of patients 

n  Prior: p ~ Uniform(0,1) = Beta(1,1) 
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Example 

n  Trial Design: 
n  Trial is a success if the posterior probability that the 

proportion exceeds the gold standard is greater than η=0.95, 
that is,  
   Pr(p > 0.5|x) > η 

n  Success if 59 or more of 100 patients respond 
n  Pr(p > 0.50|x = 58; n = 100) = 0.944 
n  Pr(p > 0.50|x = 59; n = 100) = 0.963 

n  3 interim analyses monitoring at 20, 50, and 75 patients 
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…
 

R function to compute PP  
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PP <- function(n.total= 100, nullp = 0.5, eta=0.95, data=c(12,8), prior.par=c(1,1), B=1000){ 
  # posterior 
  post.par <- data + prior.par 
   
  # samples from posterior distribution 
  post.sample <- rbeta(B, post.par[1], post.par[2]) 
   
  # samples new values of x (extending to the maximum sample size) 
  x.new <- rbinom(B, size=n.total-sum(data), post.sample) 
   
  # organize data with first column number of 'responses' and second 'non responses' 
  data.new <- cbind(x.new, n.total-sum(data)-x.new) 
   
  # posterior parameters given predicted data 
  post.pred.par <- cbind(data.new[,1] + post.par[1], data.new[,2]+ post.par[2]) 
   
  # posterior probability that P(p > nullp |data) 
  post.pred <- pbeta(nullp, post.pred.par[,1], post.pred.par[,2], lower.tail=FALSE) 
   
  # posterior predictive probability of success  
  PP <- mean(post.pred > eta) 
  return(PP) 
} 

> PP(n.total=100, nullp=0.5, eta=0.95, data=c(12,20-12), prior.par=c(1,1), B=1000) 
[1] 0.55 
> PP(n.total=100, nullp=0.5, eta=0.95, data=c(28,50-28), prior.par=c(1,1), B=1000) 
[1] 0.307 
> PP(n.total=100, nullp=0.5, eta=0.95, data=c(41,75-41), prior.par=c(1,1), B=1000) 
[1] 0.081 
> PP(n.total=100, nullp=0.5, eta=0.95, data=c(49,90-49), prior.par=c(1,1), B=1000) 
[1] 0.003 

Final Comments 
n  There is ‘art’ in Bayesian Analysis 

 
 
 

n  Achieving ‘mastery’ requires practice!  

120 


