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Install R
Go to http://cran.rstudio.com/ (http://cran.rstudio.com/)

Click on the “Download R for [operating system]” link that is appropriate for your operating system and follow the

instructions.

Open R and make sure it works (i.e. that no error messages come up)

Install RStudio
Go to http://www.rstudio.com/products/rstudio/download/

(http://www.rstudio.com/products/rstudio/download/)

Select the installer that is appropriate for your operating system under “Installers for Supported Platforms” and

follow the instructions.

Open RStudio and make sure it works.

Install R Packages
For this module we will be using the LearnBayes and arm packages

To use these packages you Vrst need to install them using install.packages()

install.packages("LearnBayes")
install.packages("arm")

You then need to load these libraries:

library(LearnBayes)
library(arm)

After the Vrst time you install the packages on your computer, you will only need to load the libraries in the future

Introduction to Bayesian Computing
1. You are conducting a trial of a new treatment for thyroid cancer and have obtained results for the Vrst 80

http://cran.rstudio.com/
http://www.rstudio.com/products/rstudio/download/


patients.63 patients responded to treatment and 17 patients did not. We now want to obtain the posterior

distribution for the probability of responding to this new treatment. Use R to generate the posterior distribution

and compute the posterior median under the following priors:

a. Flat prior on [0,1]

#-- prior values for probability of response

theta <- seq(0,1,length.out=99)

#-- likelihood times prior

prior <- rep(1/99, 99)
product <- dbinom(x=63, size=80, prob=theta)*prior

#-- posterior is the normalized likelihood times prior

posterior <- product/sum(product)

#-- plot posterior distribution

plot(theta, posterior, type='h', xlab=expression(~theta))

#-- posterior mean

mean.post <- sum(theta*posterior)

#-- cumulative posterior distribution

cumulative.post <- cumsum(posterior)

#-- median (approximate)

median.post <- theta[max(which(cumulative.post <=0.50))]

b. Flat prior on [0.8,1]



#-- prior values for probability of response

theta <- seq(0.8,1,length.out=99)

#-- likelihood times prior

prior <- rep(1/99, 99)
product <- dbinom(x=63, size=80, prob=theta)*prior

#-- posterior is the normalized likelihood times prior

posterior <- product/sum(product)

#-- plot posterior distribution

plot(theta, posterior, type='h', xlab=expression(~theta))

#-- posterior mean

mean.post <- sum(theta*posterior)

#-- cumulative posterior distribution

cumulative.post <- cumsum(posterior)

#-- median (approximate)

median.post <- theta[max(which(cumulative.post <=0.50))]

c. What is the danger of using the prior in (b)?

2. Let’s analyze the same set of results using LearnBayes.

a. Flat prior on [0,1]

triplot(prior=c(1,1),data=c(63,17), where = "topleft")

b. Beta(4,4) prior

triplot(prior=c(4,4),data=c(63,17), where = "topleft")

3. Now suppose we want to test the hypothesis that the probability of response to our new treatment is 0.8.

Assuming we have equipoise regarding this hypothesis (i.e., we think it is equally likely to be true or false) and

that our alternative hypothesis is that the response probability is equally likely to take any value from 0 to 1, what

are the posterior probability of the null hypothesis and the Bayes Factor? Is there evidence for or against our null

hypothesis?

pbetat(p0=0.8, prob=0.5, ab=c(1,1), data=c(63,17))



4. Finally, what if we want to estimate the posterior predictive distribution of response for a new patient based on

the data that we have observed and assuming that we initially had a Beta(4,4) prior for the probability of

response. (Recall that by using a conjugate prior our posterior distribution is also Beta with parameters 

 and .)

pbetap(ab=c((4+63-1),(4+17-1)), n=1, s=0:1)

Bayesian Regression Models
In this lab, we will conduct an analysis using a Bayesian logistic regression model. Data come from a cross-sectional

study of 1,225 smokers over the age of 40. Each participant was assessed for chronic obstructive pulmonary disease

(COPD), and characteristics of the type of cigarette they most frequently smoke were recorded. The objective of the

study was to identify associations between COPD diagnosis and cigarette characteristics.

We will use the following variables from this data set:

TYPE: Type of cigarette, 1 = Menthol, 0 = Regular

NIC: Nicotine content, in mg

TAR: Tar content, in mg

LEN: Length of cigarette, in mm

FLTR: 1 = Filter, 0 = No Vlter

copd: 1 = COPD diagnosis, 0 = no COPD diagnosis

You can download the data Vle and read it into R as follows:

copd <- read.csv("https://raw.githubusercontent.com/rhubb/SISCR2017/master/data/copd.csv", he
ader = T)

1. First carry out some exploratory data analysis to summarize the distribution of copd, cigarette type, nicotine

content, and Vlter.

a + y − 1 b + n − y − 1



#-- univariate tables for categorical variables

table(copd$copd)/sum(table(copd$copd))  
table(copd$TYPE)/sum(table(copd$TYPE))
table(copd$FLTR)/sum(table(copd$FLTR))

#-- bivariate tables for categorical predictors and copd

table(copd$TYPE,copd$copd)
t(sweep(table(copd$copd,copd$TYPE),2,rowSums(table(copd$TYPE,copd$copd)),"/"))
table(copd$FLTR,copd$copd)
t(sweep(table(copd$copd,copd$FLTR),2,rowSums(table(copd$FLTR,copd$copd)),"/"))

#-- summary statistics for nicotine content by copd

by(copd$NIC,copd$copd,mean)
by(copd$NIC,copd$copd,sd)
boxplot(copd$NIC ~ copd$copd, xlab = "COPD", ylab = "Nicotine (mg)")

2. Next, use Bayesian logistic regression to analyze the association between COPD and predictors cigarette type,

nicotine content, and Vlter. We will explore results using several prior distributions. For each prior distribution can

you think of a context in which this prior would be preferred? Compare your results to a standard frequentist

logistic regression. How does the interpretation of the results differ for the Bayesian GLM compared to the

frequentist GLM?

a. Normal(0,10) prior

# -- Normal priors for regression coefficients (with mean=0 and scale=10)

copd.n10 <- bayesglm(copd ~ TYPE + NIC + FLTR, data=copd, family=binomial, prior.mean=0
, 
   prior.scale=10, prior.df=Inf)
display(copd.n10)

b. Normal(0,0.1) prior

# -- Normal priors for regression coefficients (with mean=0 and scale=0.1)

copd.n1 <- bayesglm(copd ~ TYPE + NIC + FLTR, data=copd, family=binomial, prior.mean=0,  
   prior.scale=0.1, prior.df=Inf)
display(copd.n1)

c. Cauchy prior



# -- Cauchy priors for regression coefficients 

copd.cau <- bayesglm(copd ~ TYPE + NIC + FLTR, data=copd, family=binomial, prior.mean=0
, 
   prior.scale=10)
display(copd.cau)

d. Frequentist logistic regression

copd.glm1 <- glm(copd ~ TYPE + NIC + FLTR, data=copd, family=binomial)
summary(copd.glm1)

3. Using one of the Bayesian models you Vt in (2), interpret your results. How does the interpretation of the Bayesian

logistic regression results differ from the classical results in (d)?

4. How would the results in (2) differ if our data set had been smaller? ReVt the models in (2) using only the Vrst 200

observations in the data set. What can you say about the results for cigarette type?

a. Normal(0,10) prior

# -- Normal priors for regression coefficients (with mean=0 and scale=10)

copd.n10.v2 <- bayesglm(copd ~ TYPE + NIC + FLTR, data=copd[1:200,], family=binomial, p
rior.mean=0, 
   prior.scale=10, prior.df=Inf)
display(copd.n10.v2)

b. Normal(0,0.1) prior

# -- Normal priors for regression coefficients (with mean=0 and scale=0.1)

copd.n1.v2 <- bayesglm(copd ~ TYPE + NIC + FLTR, data=copd[1:200,], family=binomial, pr
ior.mean=0, 
   prior.scale=0.1, prior.df=Inf)
display(copd.n1.v2)

c. Cauchy prior

# -- Cauchy priors for regression coefficients 

copd.cau.v2 <- bayesglm(copd ~ TYPE + NIC + FLTR, data=copd[1:200,], family=binomial, p
rior.mean=0, 
   prior.scale=10)
display(copd.cau.v2)

d. Frequentist logistic regression



copd.glm1.v2 <- glm(copd ~ TYPE + NIC + FLTR, data=copd[1:200,], family=binomial)
display(copd.glm1.v2)

Interim Monitoring of Clinical Trials
In this lab, we will examine data from a trial and determine whether or not to stop the trial at a series of interim analyses

based on the posterior probability of success. We will use the function PP(), provided below, to simulate the posterior

probability of success:

# n.total = total sample size for the trial

# nullp = value for response probability under the null hypothesis

# eta = posterior probability of p>nullp must exceed eta to stop the trial

# data = number of successes and failures observed

# prior.par = parameters of Beta prior for p

# B = number of samples from posterior distribution

PP <- function(n.total, nullp, eta=0.95, data=c(12,8), prior.par=c(1,1), B=1000){
  # posterior
  post.par <- data + prior.par
  
  # samples from posterior distribution
  post.sample <- rbeta(B, post.par[1], post.par[2])
  
  # samples new values of x (extending to the maximum sample size)
  x.new <- rbinom(B, size=n.total-sum(data), post.sample)
  
  # organize data with first column number of 'responses' and second 'non responses'
  data.new <- cbind(x.new, n.total-sum(data)-x.new)
  
  # posterior parameters given predicted data
  post.pred.par <- cbind(data.new[,1] + post.par[1], data.new[,2]+ post.par[2])
  
  # posterior probability that P(p > nullp |data)
  post.pred <- pbeta(nullp, post.pred.par[,1], post.pred.par[,2], lower.tail=FALSE)
  
  # posterior predictive probability of success 
  PP <- mean(post.pred > eta)
  return(PP)
}



In all interim analyses, assume that there is an existing treatment with response probability of 0.3 and that we will

declare the trial to be a success if the posterior probability that the therapy under study has a higher response probability

than the existing therapy exceeds 0.9. The table below provides the number of success and failures at three interim time

points and at the conclusion of the study

1. Using a jat prior (Beta(1,1)), would you decide to stop the trial at any of the interim analyses? Are your interim

analysis decisions consistent with the conclusion you would draw at the end of the trial?

#-- interim analyses

PP(n.total = 100, nullp = 0.3, eta = 0.9, data = c(17,22),prior.par = c(1,1))
PP(n.total = 100, nullp = 0.3, eta = 0.9, data = c(21,39),prior.par = c(1,1))
PP(n.total = 100, nullp = 0.3, eta = 0.9, data = c(30,50),prior.par = c(1,1))

#-- posterior probability of response probability exceeding 0.3 at end of trial

pbeta(0.3,(34-1),(66-1), lower.tail = FALSE)

2. Repeat (1) using a prior centered at the null hypothesis such as a Beta(0.3,1). How does this affect your

conclusions about whether or not to stop the trial?

#-- interim analyses

PP(n.total = 100, nullp = 0.3, eta = 0.9, data = c(17,22),prior.par = c(0.3,1))
PP(n.total = 100, nullp = 0.3, eta = 0.9, data = c(21,39),prior.par = c(0.3,1))
PP(n.total = 100, nullp = 0.3, eta = 0.9, data = c(30,50),prior.par = c(0.3,1))

#-- posterior probability of response probability exceeding 0.3

pbeta(0.3,(34-1),(66-1), lower.tail = FALSE)

3. If you were designing a trial would you favor the jat prior, a prior centered at the response probability for the

existing therapy, or a different prior? What considerations contribute to your decision?


