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Install R
Go to http://cran.rstudio.com/ (http://cran.rstudio.com/)

Click on the “Download R for [operating system]” link that is appropriate for your operating system and follow the

instructions.

Open R and make sure it works (i.e. that no error messages come up)

Install RStudio
Go to http://www.rstudio.com/products/rstudio/download/

(http://www.rstudio.com/products/rstudio/download/)

Select the installer that is appropriate for your operating system under “Installers for Supported Platforms” and

follow the instructions.

Open RStudio and make sure it works.

Install R Packages
For this module we will be using the INLA, rjags, and coda packages for Bayesian estimation and MCMC

convergence diagnostics

We will also be using the eha and survival packages for classical survival regression

To use these packages you ]rst need to install them using install.packages()

install.packages("INLA", repos="https://www.math.ntnu.no/inla/R/stable")

install.packages("rjags")

install.packages("coda")

install.packages("eha")

install.packages("survival")

Install JAGS
You will also need to install JAGS

http://cran.rstudio.com/
http://www.rstudio.com/products/rstudio/download/


Go to https://sourceforge.net/projects/mcmc-jags/]les/JAGS/4.x/ (https://sourceforge.net/projects/mcmc-

jags/]les/JAGS/4.x/)

Select the version that is appropriate for your operating system, and download and install the software

Load libraries
From within R Studio you will need to load the following libraries:

library(INLA)

library(rjags)

library(coda)

library(eha)

library(survival)

After the ]rst time you install the packages on your computer, you will only need to load the libraries in the future

Bayesian GLMs using INLA
In this lab, we will conduct an analysis using Bayesian logistic and survival regression models estimated with INLA. We

will use data from the Western Collaborative Group Study (WCGS), a study of the association between cardiovascular

health and behavioral pattern conducted in a cohort of male volunteers. Subjects were recruited in 1960-1961 and

followed for up to 9 years for onset of coronary heart disease (CHD). The scienti]c question of interest is whether

behavioral pattern is associated with CHD. Speci]cally, investigators hypothesized that men with a “Type A” behavioral

pattern would be more likely to experience CHD. Because this is an observational study design it is important to account

for confounding due to many factors such as cigarette smoking and elevated BMI.

We will use the following variables from this data set:

age Age: age in years

behpat Behavior pattern: (A1, A2, B3, B4)

bmi Body mass index

chd Indicator of CHD at any time during follow-up: 0 = no; 1 = yes

chd01 Coronary heart disease within 5 years: 0 = no; 1 = yes

chol Cholesterol: mg/100 ml

dbp Diastolic blood pressure: mm Hg

dibpat Dichotomous behavior pattern: 0 = Type B; 1 = Type A

height Height: height in inches

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/


id Subject ID

ncigs Smoking: Cigarettes/day

sbp Systolic blood pressure: mm Hg

time Time in days from baseline to onset of CHD

smoke: No = non-smoker; Yes = current smoker

weight Weight: pounds

You can download the data ]le and read it into R as follows:

wcgs <- read.csv("https://raw.githubusercontent.com/rhubb/SISCR2017/master/data/wcgs.csv", he

ader = T)

1. We will start by using logistic regression to analyze the association between behavioral pattern and onset of CHD

within 5 years of baseline (chd01). Begin by conducting an exploratory data analysis to summarize the

distribution of CHD, behavioral pattern, and possible confounders included in the data set. What conclusions do

you reach regarding the role that number of cigarettes, BMI, and age may play in the analysis of the association

between CHD and behavioral pattern?



#-- univariate tables for categorical variables

table(wcgs$chd01)/sum(table(wcgs$chd01))  

table(wcgs$behpat)/sum(table(wcgs$behpat))

table(wcgs$smoke)/sum(table(wcgs$smoke))

#-- bivariate tables for categorical predictors and CHD

# CHD and behavioral pattern

table(wcgs$behpat,wcgs$chd01)

t(sweep(table(wcgs$chd01,wcgs$behpat),2,rowSums(table(wcgs$behpat,wcgs$chd01)),"/"))

# CHD and smoking

table(wcgs$smoke,wcgs$chd01)

t(sweep(table(wcgs$chd01,wcgs$smoke),2,rowSums(table(wcgs$smoke,wcgs$chd01)),"/"))

# Behavioral pattern and smoking

table(wcgs$behpat,wcgs$smoke)

t(sweep(table(wcgs$smoke,wcgs$behpat),2,rowSums(table(wcgs$behpat,wcgs$smoke)),"/"))

#-- summary statistics for continuous variables by CHD

# Age

tapply(wcgs$age,wcgs$chd01,mean)

tapply(wcgs$age,wcgs$chd01,sd)

boxplot(wcgs$age ~ wcgs$chd01, xlab = "CHD", ylab = "Age (years)")

# BMI

tapply(wcgs$bmi,wcgs$chd01,mean)

tapply(wcgs$bmi,wcgs$chd01,sd)

boxplot(wcgs$bmi ~ wcgs$chd01, xlab = "CHD", ylab = "BMI")

# Number of cigarettes

tapply(wcgs$ncigs,wcgs$chd01,mean)

tapply(wcgs$ncigs,wcgs$chd01,sd)

boxplot(wcgs$ncigs ~ wcgs$chd01, xlab = "CHD", ylab = "Number of Cigarettes")

2. Next, use Bayesian logistic regression to analyze the association between CHD and behavioral pattern,

accounting for possible confounders based on your results from (1). We will explore results using several prior

distributions. For each prior distribution can you think of a context in which this prior would be preferred?

Compare your results to a classical logistic regression. How does the interpretation of the results differ for the

Bayesian GLM compared to the frequentist GLM?

a. Normal(0,10) priors



# -- Normal priors for regression coefficients (with mean=0 and scale=10)

chd.n10 <- inla(chd01~ factor(behpat) + smoke + age, data=wcgs, family = "binomial",

     control.fixed=list(mean.intercept=c(0),prec.intercept=c(1/10),mean=c(0,0),prec=rep

(1/10,2)))

chd.n10$summary.fix

# -- Plot posterior densities

plot(chd.n10, plot.prior = TRUE)

b. Normal(0,0.1) priors

# -- Normal priors for regression coefficients (with mean=0 and scale=0.1), N(0,10) pri

or for intercept

chd.n01 <- inla(chd01~ factor(behpat) + smoke + age, data=wcgs, family = "binomial",

     control.fixed=list(mean.intercept=c(0),prec.intercept=c(1/10),mean=rep(0,5),prec=r

ep(10,5)))

chd.n01$summary.fix

# -- Plot posterior densities

plot(chd.n01, plot.prior = TRUE)

c. Classical logistic regression

chd.glm1 <- glm(chd01~ factor(behpat) + smoke + age, data=wcgs, family=binomial)

summary(chd.glm1)

3. Using one of the Bayesian models you ]t in (2), interpret your results. What do you conclude about the

association between behavioral pattern and CHD? Does your choice of prior affect your conclusions? How does

the interpretation of results for the Bayesian GLM differ from the results of the frequentist GLM?

# -- Exponentiate results to obtain odds ratios

exp(chd.n10$summary.fix)    

4. Since some individuals were censored prior to the end of follow-up, a more appropriate way to analyze these data

is with survival analysis. Analyze the association between time to onset of CHD and behavioral pattern, adjusting

for the same confounders used in your logistic regression model using:

a. Cox proportional hazards model



chd.cph <- coxph(Surv(time, chd) ~ factor(behpat) + smoke + age, data=wcgs)

summary(chd.cph)

b. Parametric survival regression

chd.weib <- phreg(Surv(time, chd) ~ factor(behpat) + smoke + age, data=wcgs, dist = "we

ibull")

summary(chd.weib)

c. Bayesian non-parametric survival model

chd.np <- inla(inla.surv(time, chd) ~ factor(behpat) + smoke + age, family="coxph",data

=wcgs,control.hazard=list(model="rw1", n.intervals=10))

summary(chd.np)

exp(chd.np$summary.fix)

# plot baseline hazard function

plot(chd.np$summary.random$baseline.hazard[,"ID"],

 exp(chd.np$summary.fixed[1,1]+chd.np$summary.random$baseline.hazard[,"mean"]), type="S

",

 xlab = "time", ylab = "Baseline hazard")

d. Bayesian parametric survival model

chd.weib <- inla(inla.surv(time, chd) ~ factor(behpat) + smoke + age, family="weibullsu

rv",data=wcgs)

summary(chd.weib)

exp(chd.weib$summary.fix)    

e. What do you conclude about the relationship between behavioral pattern and hazard of CHD? Are your

conclusions affected by which estimation approach you chose? If so, which one would you prefer in this context

and why?

Analysis of Correlated Data
In this lab, we will conduct an analysis using Bayesian hierarchical models estimated with INLA and rjags. We will use

data from the Study of Osteoporotic Fractures, a longitudinal study of fractures and falls in older women in the US. The

study investigated risk factors associated with fractures and falls as well as changes over time in bone mineral density

(BMD), an early indicator of changes in bone strength that may precede osteoporotic fractures. We will use data from

this study to investigate associations between BMD, body mass index (BMI), instrumental activities of daily living (IADL),

and age at menopause.



We will use the following variables from this data set:

id Patient id

visit Visit number (continuous)

totbmd Bone mineral density (continuous)

bmi Body mass index (continuous)

n_iadl Numer of impaired instrumental activities of daily living

age_base Age at baseline (continuous)

meno_age Age at menopause (continuous)

dbp Diastolic blood pressure: mm Hg

base_totbmd Bone mineral density at baseline (continuous)

You can download the data ]le and read it into R as follows:

sof <- read.csv("https://raw.githubusercontent.com/rhubb/SISCR2017/master/data/sof3.csv", hea

der = T)

1. Conduct an exploratory analysis of longitudinal changes in BMD using descriptive statistics and plots. How many

observations are available for each woman? On average how much does BMD change over time?



# Number of women in the data set

length(unique(sof$id))

# Distribution of number of non-missing BMD measures available per woman

summary(c(table(sof$id[!is.na(sof$totbmd)])))  

barplot(table(table(sof$id[!is.na(sof$totbmd)])), xlab = "Number BMD measures", ylab = 

"Number of women")   

# Correlation between visit number and BMD

cor(sof$visit,sof$totbmd, use = "pairwise.complete.obs")

# Plot of BMD across visits for first 100 women

ptid <- unique(sof$id)

plot(sof$visit[sof$id==ptid[1]],sof$totbmd[sof$id==ptid[1]], xlab = "Visit Number",

 ylab = "BMD", ylim = c(0.1,1.8), type = "l", col = "grey")

for (i in 2:100){

lines(sof$visit[sof$id==ptid[i]],sof$totbmd[sof$id==ptid[i]], col = "grey")

} 

# Simple linear regression analysis of change in BMD over time

summary(lm(totbmd ~ visit, data = sof))

2. Since repeated BMD measurements made for the same woman are likely to be highly correlated, a formal

analysis of change in BMD over time needs to account for within-woman correlation. This can be achieved using

a Bayesian hierarchical regression model. In this model we will assume that multiple measurements made for the

same woman are exchangeable conditional on subject-speci]c mean parameter  and that these subject-

speci]c means arise from a common distribution with hyperparameter . Consider adding additional predictors

to this model that may help to explain variation in BMD. What do you conclude about longitudinal trends in BMD?

mod1 <- inla(totbmd ~ visit + f(id, model = "iid"),family="gaussian", data = sof)

summary(mod1)    

mod2 <- inla(totbmd ~ visit + bmi + age_base + f(id, model = "iid"),family="gaussian", 

data = sof)

summary(mod2)    

3. Next we will repeat this analysis using rjags to implement an MCMC estimation method.

a. Prepare data for use by JAGS. Be sure to include any variables you would like to incorporate into your regression

model.

θi

μ



# first we need to remove observations with missing data

sof.nomiss <- na.omit(sof[,c("id","totbmd","visit")])    

# next create a list containing the data elements that will be used by JAGS        

sof.jags <- list(totbmd = sof.nomiss$totbmd, visit = sof.nomiss$visit, id = rep(seq(1,l

ength(unique(sof.nomiss$id))),times=table(sof.nomiss$id)), n = length(sof.nomiss$id), m 

= length(unique(sof.nomiss$id)))  

b. Write a JAGS model specifying the likelihood and priors.

sof.model <- "

model{

  ## likelihood

  for (i in 1:n){

    totbmd[i] ~ dnorm(mu[i],tausq)

    mu[i] <- beta0 + beta1*visit[i] + b0[id[i]]

  }   

  ## priors

  for (j in 1:m){

    b0[j] ~ dnorm(0,taubsq)

  }

  beta0 ~dnorm(0,0.01)

  beta1 ~dnorm(0,0.01)

  tausq <- 1/sigmasq

  taubsq <- 1/sigmabsq

  sigmasq  ~ dunif(0,1)

  sigmabsq ~ dunif(0,1)

}

"

c. Use JAGS to estimate regression parameters and subject-speci]c random effects



# define jags model

mod <- jags.model(file=textConnection(sof.model), data=sof.jags, inits=list(beta0 = 0, 

beta1 = 0, b0 = rep(0,length(unique(sof.nomiss$id))), sigmasq = 0.01, sigmabsq = 0.01), 

n.chains=2, n.adapt=10000)

# specify parameters to be monitored

params <- c("beta0","beta1","sigmasq","sigmabsq")

# run jags and save posterior samples

samps <- coda.samples(mod, params, n.iter=10000, n.thin = 10)

# summarize posterior samples

summary(samps)

c. Use diagnostic plots and statistics to evaluate model convergence. Are there any parameters for which it appears

that your chains have not converged? Can you think of any approaches that might improve the convergence of

your chains?

# Traceplots

traceplot(samps)    

# Auto-correlation plots    

autocorr.plot(samps)

# Gelman & Rubin diagnostics

gelman.diag(samps)

gelman.plot(samps)

# Geweke diagnostic

geweke.diag(samps)

# Raftery & Lewis diagnostic

raftery.diag(samps)

# Heidelberger & Welch diagnostic

heidel.diag(samps)

4. How do your results obtained using JAGS compare to those from INLA? Using, JAGS try out several different prior

distributions. Are results sensitive to your choice of prior?



Meta-Analysis
In this lab, we will conduct a meta-analysis of 28 studies investigating the effect of interventions designed to reduce

cholesterol on ischemic heart disease (IHD). The outcome of interest in these studies (IHD) was occurrence of fatal or

non-fatal myocardial infarction.

We will use the following variables from this data set:

id Trial id

cholreduc Average cholesterol reduction in treated group - average reduction in control grup (mmol/l)

Y Number of IHD events

N Total number of participants

Trt Treatment group: 1 = Intervention, 0 = Control

You can download the data ]le and read it into R as follows:

chol <- read.csv("https://raw.githubusercontent.com/rhubb/SISCR2017/master/data/cholesterol.c

sv", header = T)

1. We will conduct a series of Bayesian meta-analyses of these data to investigate the association between

interventions targeting cholesterol reduction and odds of IHD.

a. Meta-analysis ignoring between-trial heterogeneity

ma1 = inla(Y~ factor(Trt), data=chol, Ntrials=N, family="binomial")

summary(ma1)

# posterior median odds ratio

exp(ma1$summary.fixed[2,4])

b. Meta-analysis ignoring between-trial heterogeneity accounting for reductions in cholesterol level

# created centered cholesterol reduction variable

chol$chol.cent <- chol$ cholreduc-mean(chol$ cholreduc)   

ma2 = inla(Y~ factor(Trt) + chol.cent, data=chol, Ntrials=N, family="binomial")

summary(ma2)

# posterior median odds ratio

exp(ma2$summary.fixed[2,4])

c. Meta-analysis accounting for between trial heterogeneity via ]xed-effects



ma3 = inla(Y~ -1 + factor(id)+ factor(Trt), data=chol, Ntrials=N, family="binomial")

summary(ma3)

# posterior median odds ratio

exp(ma3$summary.fixed[29,4])

d. Meta-analysis accounting for between trial heterogeneity via random-effects

ma4 = inla(Y~ factor(Trt) + f(id, model = "iid", param = c(0.001,0.001)), data=chol, Nt

rials=N, family="binomial")

summary(ma4)

# posterior median odds ratio

exp(ma4$summary.fixed[2,4])

e. Meta-analysis accounting for between trial heterogeneity via random-effects and cholesterol reduction

ma5 = inla(Y~ factor(Trt) + chol.cent + f(id, model = "iid", param = c(0.001,0.001)), d

ata=chol, Ntrials=N, family="binomial")

summary(ma5)

# posterior median odds ratio

exp(ma5$summary.fixed[2,4])   

f. Meta-analysis accounting for between trial heterogeneity via random-effects and allowing for moderation by

cholesterol reduction

ma6 = inla(Y~ factor(Trt)*chol.cent + f(id, model = "iid", param = c(0.001,0.001)), dat

a=chol, Ntrials=N, family="binomial")

summary(ma6)

# posterior median odds ratio at mean cholesterol reduction

exp(ma6$summary.fixed[2,4])   

# effect of 1 mmol/l greater reduction in cholesterol on posterior median odds ratio

exp(ma6$summary.fixed[4,4])   

2. Overall what do you conclude about the association between cholesterol reduction and IHD? Which meta-analysis

approach do you prefer in this example and why?


