SISCR Module 7 Part I:

Introduction Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers

Kathleen Kerr, Ph.D.
Associate Professor
Department of Biostatistics
University of Washington

Module Overview

- Part I: Introductory concepts
- Part II: Evaluating Risk Models
- Part III: Evaluating the Incremental Value of New Biomarkers
- Part IV: Some Guidance on Developing Risk Models
- · also: R tutorial/demo

Part I Topics

- Motivating and illustrative examples
- True and false positive rates (TPR, FPR)
- Predictive values (PPV, NPV)
- ROC curves and area under the curve (AUC)
- Risk models
- What is "personal risk"?

3

Part 1 Overview

- Some examples
- To start: 1 marker X is binary (a "test")
- We then move on: 1 marker X is continuous
- Multiple markers X, Y, ..., and risk model P(bad outcome | X, Y, ...)

What is a Marker?

- DEF: a quantitative or qualitative measure that is potentially useful to classify individuals for current or future status
 - current → diagnostic marker
 - future → prognostic marker
- Includes biomarkers measured in biological specimens
- Includes imaging tests, sensory tests, clinical signs and symptoms, risk factors

5

What is the purpose of a classifier or risk prediction tool?

- To inform subjects about risk
- · To help make medical decisions
 - Most often: identify individuals with high risk –
 the assumption is that these individuals have the greatest possibility to benefit from an intervention
 - Sometimes: identify individuals with low risk not likely to benefit from an intervention
- To enrich a clinical trial with "high risk" patients

Terminology and Notation

- "case" or "event" is an individual with the (bad) outcome
- "control" or "nonevent" is an individual without the outcome

case	control
D=1	D=0
D	\overline{D}
D	N

7

Terminology and Notation

- X, Y = potential predictors of D (demographic factors, clinical characteristics, biomarker measurements)
- Often: X is "standard" predictors and Y is a new biomarker under consideration
- risk(X) = r(X) = P(D=1 | X)
 risk(X,Y) = r(X,Y) = P(D=1 | X, Y)
- prevalence = P(D=1) = ρ ("rho")

What is risk(X)?

- risk(x) ≡ P(D=1 | X=x) is the frequency of events/disease among the group with X = x
- "Personal risk" is not completely personal!
 - Will return to this at the end of Part I

9

Example: Coronary Artery Surgery Study (CASS)

- 1465 men undergoing coronary arteriography for suspected coronary heart disease
- Arteriography is the "gold standard" measure of coronary heart disease
 - Evaluates the number and severity of blockages in arteries that supply blood to the heart
- Simple cohort study
- Possible predictor: Exercise stress test (EST)
- Possible predictor: chest pain history (CPH)

Example: EDRN Breast Cancer Biomarkers

- Women with positive mammograms undergo biopsy, the majority turn out to be benign lesions
- Provides motivation to develop serum biomarker to reduce unnecessary biopsies

11

Example: Pancreatic Cancer Biomarkers

- 141 patients with either pancreatitis (n=51) or pancreatic cancer (n=90)
- Serum samples
- Two candidate markers:
 - A cancer antigen CA-125
 - A carbohydrate antigen CA19-9
- Which marker is better at identifying cancer?
- Is either marker good enough to be useful?

Wieand, Gail, James, and James Biometrika 1989

Example: Cardiovascular Disease

- Framingham study
- D = CVD event
- Y = high density lipoprotein
- X = demographics, smoking, diabetes, blood pressure, total cholesterol
- n = 3264, $n_D = 183$

13

Simulated Data

- Artificial data are useful for exploring/illustrating methodology
- Here I introduce simple but useful models that I will use to illustrate some methods
 - Simulated data on DABS website
 - Simulated data from R packages DecisionCurve and BioPET
 - Normal and MultiNormal biomarker model

Example: Simulated data on DABS website

- $n = 10,000, n_D = 1017$
- Y = continuous, 1-dimensional
- X = continuous, 1-dimensional
- http://labs.fhcrc.org/pepe/dabs/ or search "Pepe DABS"

15

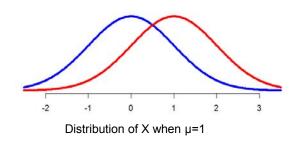
Example: Simulated data in R packages

- $n = 500, n_D = 60$
- X = sex, smoking status, Marker1
- Y = Marker2
- These simulated data will not appear in lecture notes, but will appear in software demo

Normal Model with 1 Marker

 Biomarker X Normally distributed in controls and in cases

$$X \sim N(0,1)$$
 in controls
 $X \sim N(\mu,1)$ in cases



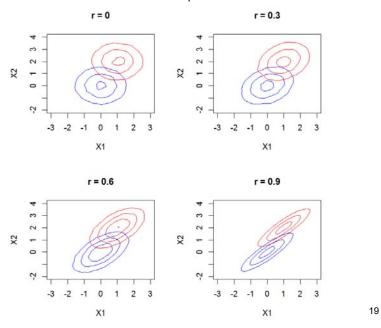
17

Multivariate Normal Model with 2 Markers (Bivariate Normal)

 Biomarkers (X₁, X₂) are bivariate Normally distributed in controls and in cases

$$\vec{X} \sim MVN(\vec{0}, \Sigma)$$
 in controls $\vec{X} \sim MVN(\vec{\mu}, \Sigma)$ in cases $\Sigma = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}$

In these examples X1 and X2 each have mean 0 in controls and mean 1 in cases. We can picture marker data in 2-dimensional space.



 Biomarkers (X₁, X₂) are bivariate Normally distributed in controls and in cases

$$\vec{X} \sim MVN(\vec{0}, \Sigma)$$
 in controls $\vec{X} \sim MVN(\vec{\mu}, \Sigma)$ in cases

 This data model is useful in research because the logistic regression model holds for each marker and for both markers together.

logit P(D=1| X_1) is linear in X_1 logit P(D=1| X_2) is linear in X_2 logit P(D=1| X_1 , X_2) is linear in X_1 and X_2

Generalization: Multivariate Normal Model

 Biomarkers (X₁, X₂, ..., X_k) are multivariate Normally distributed in controls and in cases

$$\vec{X} \sim MVN(\vec{0}, \Sigma)$$
 in controls $\vec{X} \sim MVN(\vec{\mu}, \Sigma)$ in cases

 The linear logistic model holds for every subset of markers

21

QUANTIFYING CLASSIFICATION ACCURACY (BINARY MARKER OR "TEST")

Terminology

- D = outcome (disease, event)
- Y = marker (test result)

	D=0	D=1
Y=0	true negative	false negative
Y=1	false positive	true positive

23

Terminology

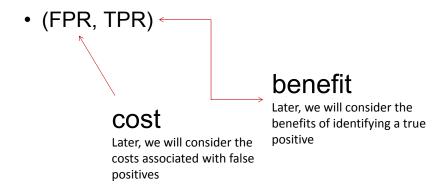
TPR = true positive rate = P[Y=1|D=1] = sensitivity

FPR = false positive rate = P[Y=1|D=0] = 1-specificity

FNR = false negative rate = P[Y=0|D=1] = 1-TPR

TNR = true negative rate = P[Y=0|D=0] = 1-FPR

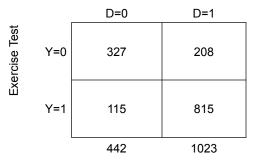
Ideal test: FPR=0 and TPR=1



25

Coronary Artery Surgery Study (CASS)

Coronary Artery Disease



FPR=115/442=26%

TPR=815/1023=80%

26

What about Odds Ratios?

- Odds ratios are very popular:
 - Because logistic regression is popular
 - Odds Ratio estimable from case-control study
 - OR≈relative risk for rare outcome

•
$$OR = \frac{TPR(1-FPR)}{FPR(1-TPR)}$$

- Good classification (high TPR and low FPR)
 → large odds ratio
- However, large odds ratio does NOT imply good classification!

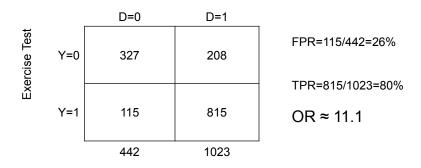
27

Good classification → large odds ratio

E.g., TPR=0.8, FPR=0.10
$$OR = \frac{0.8 \times 0.9}{0.1 \times 0.2} = 36$$

Coronary Artery Surgery Study (CASS)

Coronary Artery Disease



OR is large but classification performance is not exceptional.

29

large odds ratio does NOT imply good classification!

Pepe et al, American Journal of Epidemiology 2004; 159:882-890.

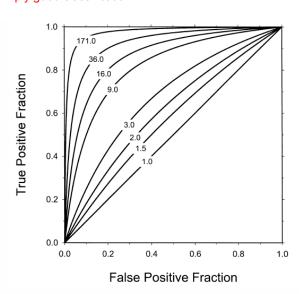


FIGURE 1. Correspondence between the true-positive fraction (TPF) and the false-positive fraction (FPF) of a binary marker and the odds ratio. Values of (TPF, FPF) that yield the same odds ratio are connected.

- Need to report both FPR and TPR
- Collapsing into one number (e.g., OR) is not sufficient
 - important information is lost

31

Misclassification Rate

MR = error rate = P(Y
$$\neq$$
 D)
= P(Y=0, D=1) + P(Y=1, D=0)
= ρ (1-TPR)+(1- ρ)FPR

- ρ is the prevalence P(D=1)
- only appropriate if the cost of false positives equals the cost of false negatives
- · seldom useful or appropriate

Misclassification Rate

- There are two kinds of wrong decisions and the MR equates these. In order to be clinically relevant we must consider the cost of each kind of error
 - ... later today

33

- FPR, TPR condition on true status (D)
- they address the question: "to what extent does the biomarker reflect true status?"

Predictive Values

Positive predictive value PPV=P(D=1|Y=1) Negative predictive value NPV=P(D=0|Y=0)

- condition on biomarker results (Y)
- address the question: "Given my biomarker value is Y, what is the chance that I have the disease?" This is the question of interest for patients and clinicians in interpreting the result of a biomarker test

35

Predictive Values

PPV and NPV are functions of TPR and FPR and the prevalence ρ

$$PPV = \frac{\rho TPR}{\rho TPR + (1 - \rho)FPR}$$

$$NPV = \frac{(1 - \rho)(1 - FPR)}{(1 - \rho)(1 - FPR) + \rho(1 - TPR)}$$

- TPR, FPR are properties of a test, but PPV, NPV are properties of a test in a population
- For low prevalence conditions, PPV tends to be low, even with very sensitive tests

False Discovery Rate

False Discovery Rate FDR=P(D=0|Y=1) =1 – PPV

"False Discovery Rate" and "False Positive Rate" sound similar, but they are not the same!

•FPR: among all those who are not diseased, how many were called positive

•FDR: among all those you called positive, how many were not actually diseased.

•We will not use or further discuss FDR further today.

37

CONTINUOUS MARKERS: ROC CURVES

Motivation

· Most biomarkers are continuous

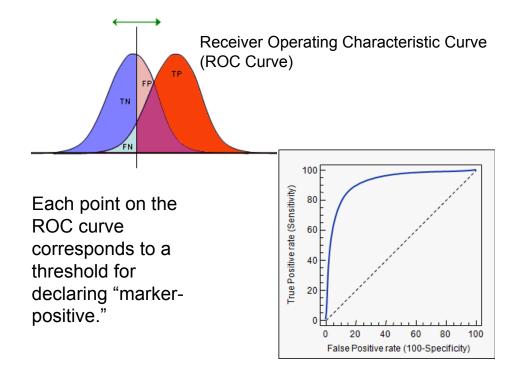
Convention

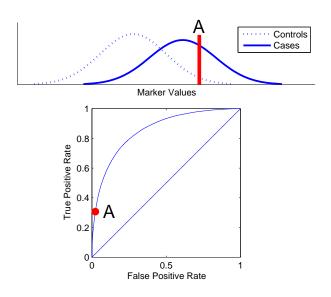
- Assume larger Y more indicative of disease
 otherwise replace Y with -Y
- Formally: P(D=1 | Y) increasing in Y

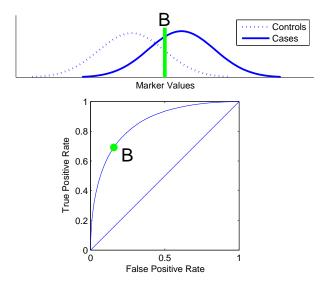
39

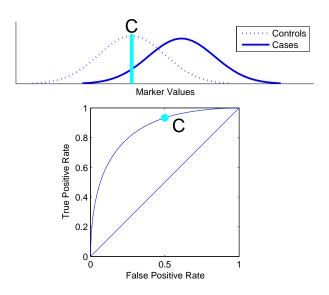
Receiver Operating Characteristic (ROC) Curve

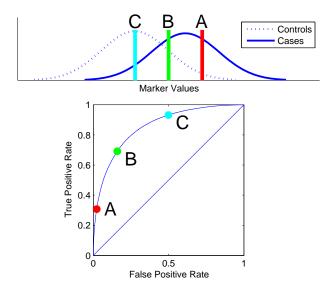
- generalizes (FPR, TPR) to continuous markers
- considers rules based on thresholds "Y≥c"
 makes sense if P(D=1|Y) increasing in Y
- TPR(c)=P($Y \ge c \mid D=1$)
- $FPR(c)=P(Y \ge c \mid D=0)$
- ROC(·)={FPR(c), TPR(c); c in (-∞,∞)}





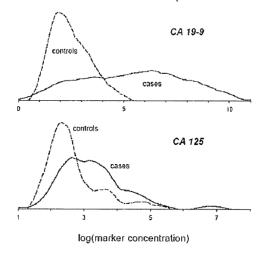


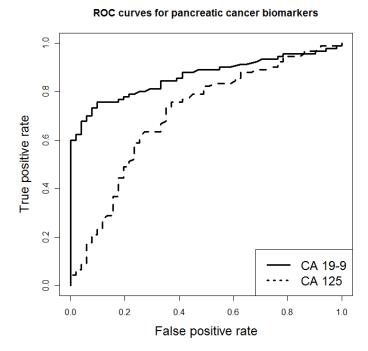




45

Pancreatic cancer biomarkers (Wieand et al 1989)



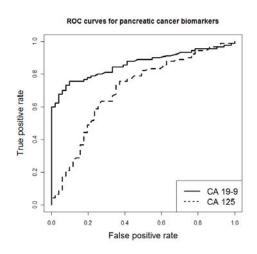


Properties of ROC curves

- non-decreasing from (0,0) to (1,1) as threshold decreases from c=∞ to c= -∞
- ideal marker has control distribution completely disjoint from case distribution; ROC through (0,1)
- useless marker has ROC equal to 45 degree line
- doesn't depend on scale of Y: invariant to monotone increasing transformations of Y
- · puts different markers on a common relevant scale
- shows entire range of possible performance

47

CA-19-9 appears to be the more accurate diagnostic biomarker for pancreatic cancer



- for most fixed FPR, CA-19-9 has the better corresponding TPR
- for most fixed TPR, CA-19-9 has the better corresponding FPR

Comparing ROC Curves: AUC

- AUC is Area under ROC curve
- AUC = $_0\int^1 ROC(t) dt = average(TPR)$
 - average is uniform over (0,1)
- commonly used summary of an ROC curve
 - also called the c-index or c-statistic
- ideal test: AUC=1.0
- useless test: AUC=0.5
- A single number summary of a curve is necessarily a crude summary

AUC: probabilistic interpretation

- P(Y_D > Y_N) for a randomly selected case D and a randomly selected control N
 - Provides an interpretation for AUC beyond "area under ROC curve"
- The AUC is a summary of an ROC curve that is commonly used to compare ROC curves – it is interpretable, but the interpretation also shows that AUC is not clinically meaningful

51

RISK PREDICTION

Risk Model: Huntington's Disease

- Huntington's Disease is caused by the gene HTT on human chromosome 4. There is a CAG segment that is repeated 10-35 times in non-diseased individuals. If the segment is repeated 36-120+ times, a person always* develops Huntington's Disease in middle-age. The genetic abnormality is dominant, meaning one abnormal gene causes disease.
 - *>40 times: always develop HD
 - *36-39 times: might not develop HD (ignoring this small possibility for this example)

Risk Model: Huntington's Disease

- Relevant Population: Individuals with a biological parent who have Huntington's Disease
- These individuals have a 50% chance of developing HD depending on whether they inherited the abnormal or normal version of the gene from their affected parents.
- $P(D) = 0.5 = \rho$ in this population.

Risk Model: Huntington's Disease

- These individuals can choose to have their HTT gene genotyped. Say HTT=0 means 0 copies of abnormal gene; HTT=1 mean 1 copy of abnormal gene.
- P(D|HTT=0)=0%; P(D|HTT=1)=100%.
- The marker HTT stratifies the patient population (risk=50%) into the subgroup with 0% risk and the subgroup with 100% risk.

55

Risk model

- risk prediction model gives a risk for a marker value or a combination of markers
- Predicted risks are in the interval [0,1] and interpreted as probabilities
- It is rare that a risk model is definitive like the HD example
 - In fact, because the genetic test for Huntington's Disease is definitive, most people do not even think of it as a risk model

Risk model examples

- Most risk models combine information from multiple risk factors
- E.g., Gail model for breast cancer risk
 - for use in women with no history of breast cancer
 - Estimates 5-year risk of breast cancer based on current age, age at menarche, age at first birth, family history, race.
- E.g., Framingham CHD risk score
 - Estimates risk of CHD based on age, sex, smoking status, total and HDL cholesterol, BP

57

Risk model examples

- E.g. STS risk score for dialysis following cardiac surgery is formed via:
 - STS risk score = $f(α + β_1 Age + β_2 Surgery Type + β_3$ Diabetes + $β_4 MI Recent + β_5 Race + β_6 Chronic Lung$ Disease + $β_7 Reoperation + β_8 NYHA Class + β_9$ Cardiogenic Shock+ $β_{10} Last Serum Creatinine)$

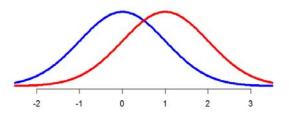
What is "personal risk"?

- Recall: risk(x) = P(D=1 | X=x) is the frequency of events among the group with marker values x
- "Personal risk" is not completely personal!
 (next example)

59

What is "personal risk"?

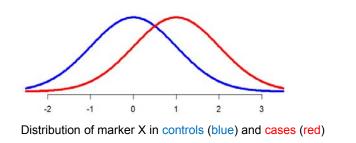
- Suppose the prevalence of D in "Population A" is 1%
 - Without any additional information, the only valid risk prediction instrument is to assign everyone in the population risk=1%
- Suppose we have a marker X that tends to be higher in the cases than controls



Distribution of marker X in controls (blue) and cases (red)

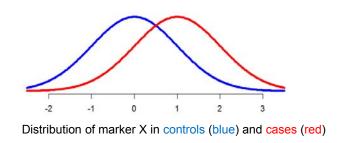
What is "personal risk"?

- Suppose an individual in Population A has X measured as 1.
- We can calculate his risk(X=1)≈1.6%
 - We can calculate the risk using Bayes' rule



What is "personal risk"?

- Suppose the marker acts exactly the same in Population B. The only difference between Populations A and B is that B has prevalence=10%.
- An individual in Population B has X=1. For that individual, his risk is ≈15.5%



62

What is "personal risk"?

- "Personal risk" is a term that is prone to be misconstrued
- Risk <u>is personal</u> when calculated based on personal characteristics
- However, <u>personal risk is not completely divorced from population characteristics</u>. For example, the previous example shows that the population (specifically, the population prevalence) affects "personal" risk.

63

What is "personal risk"?

- Occasionally one will hear mention of estimating a person's "individual risk" or "true personal risk."
- Frequentist statisticians cannot really claim to do so.
- One might claim John's "true risk" of a heart attack in the next 5 years is 7%. But we can only observe John having or not having a heart attack in the next 5 years. I cannot observe John having a heart attack in 7% of 5-year periods.
- The best I can claim is that "among people with John's characteristics, 7% will have a heart attack in the next 5 years."
 - More than one way to define "people like John."

Summary

- Some example datasets
- FPR, TPR
- PPV, NPV
 - function of FPR, TPR and disease prevalence
- ROC curves
- AUC
 - geometric interpretation as area under curve
 - probability interpretation
- risk model: risk(X)=P(D=1|X)