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Lecture 1 
Hardy-Weinberg equilibrium and 

key forces affecting gene 
frequency 

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Seattle 
17 – 19 July 2017 

Outline 

• Genetics of complex traits 
•  Stability of distributions over time 
• Hardy-Weinberg 
• Multilocus Hardy-Weinberg 
•  Population Structure 
•  Selection 
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Mendelian basis of complex
 traits 

• Classic experiment of Nilsson-Ehle
 (1908) on wheat color 

•  “Simple” traits (green vs. yellow peas,
 etc.) had a single-gene basis 

• Do complex traits have a different
 genetic basis? 
– Notion of blending inheritance (offspring =

 blended average of parents)  
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F1 in a cross of dark red pure line x white pure 
line seems to support blending 



However, “outbreak of variation” in the F2  
rules out blending 
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Stability of the phenotypic
 distribution over time 

8 



Stability of the phenotype
 distribution 
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The parental lines, F1, and F2 all differ from  
each other.  What happens to the distribution of 
F2 trait values in the F3, F4, Fx? 

Case 1: random mating 

•  Suppose the F2 are randomly mated.  What
 are the genotype frequencies in the
 following generation? 

•  These are given by the Hardy-Weinberg
 theorem. 

•  If p = freq(A) and q = freq(a), then 
–  freq(AA) = p2 

–  freq(Aa) = 2pq 
–  freq(aa) = q2 
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•  Here freq(A) = freq(a) = ½, and freq(B) = freq(b) =
 ½.  Assuming the A and B loci are unlinked, then
 independent assortment gives 
–  Freq(dark red) = Freq(AABB) = freq(AA)*freq(BB) =

 (1/4) (1/4) = 0.0625 
–  Freq(white) = freq(aabb) = freq(aa)*freq(bb) = 0.0625 
–  Freq(med red) = freq(AAbb or AaBb or aaBB) 

•  = (1/4)*(1/4) + (1/2)*(1/2) + (1/4)*(1/4) = 0.375 

•  Hence, the distribution of phenotypes in the F3 is
 the same as the F2.  What about in the F4? F5? 

11 

Case 2: Inbred lines 
•  Suppose instead that each F2 is used to form

 an inbred line, and continually  selfed over
 many generations.  What happens to the
 distribution after complete selfing? 

•  Now each locus is a homozygote, with
 Freq(AA) = freq(aa) = freq(BB) = freq(bb) =
 ½ 
–  AABB = dark red (25%) 
–  AAbb,  aaBB = medium red (50%) 
–   aabb = white (25%) 

12 



During selfing 
•  During selfing, an AA or aa line only produces AA /aa. 

 However, an Aa line has probablity ¼: ½ : ¼ of producing AA :
 Aa : aa 

•  Hence, after one generation of selfing 
–  Freq(AA) = Freq(AA | parent AA) + Freq(AA | parent Aa) =

 1*(1/4) + (1/4)*(1/2) = 3/8 
–  Freq(aa) = 3/8, freq(Aa) = 1/4 
–  Same for the B locus 

•  Resulting phenotypic (seed color) frequencies are 
–  Freq(dark red) = Freq(AABB) = freq(AA)*freq(BB) = (3/8)

 (3/8) = 0.1406 
–  Freq(white) = freq(aabb) = freq(aa)*freq(bb) = 0.1406 
–  Freq(med red) = freq(AAbb or AaBb or aaBB) 

•  = (3/8)*(3/8) + (2/8)*(2/8) + (3/8)*(3/8) = 0.344 
13 

Hardy-Weinberg 

14 



Importance of HW 

• HW states that the distribution of
 genotypes in a population are stable
 under random mating, provided no 
– Drift (i.e., pop size is large) 
– Migration (i.e., no input of individuals from

 other populations/breeding programs) 
– Selection (no forces to systemically change

 allele frequencies) 

15 

Derivation of the  
Hardy-Weinberg result 

•  Consider any population, where 
–  Freq(AA) = X 
–  Freq(Aa) = Y 
–  Freq(aa) = Z 
–  freq(A) = p = freq(AA) + (1/2) freq(Aa) = X + ½ Y 

•  What happens in the next generation from
 random mating? 

16 



Frequency of matings 

Genotype frequencies in next generation 

Freq(AA) = 1* X2 + ½*2XY + (1/4) Y2 = (X + ½ Y) 2 = p2.  

Freq(aa) = 1* Z2 + ½*2YZ + (1/4) Y2 = (Z + ½ Y) 2 = q2.  



What about the next generation? 

19 

Freq(AA) = 1* p4 + ½*4p3q + (1/4) 4p2q2 = p2 (p+q)2 = p2.  

Genotype frequencies unchanged 

Hardy-Weinberg 

After one generation of random mating, genotype frequencies
 remain unchanged and are given by HW proportions 

Assuming random mating, no migration, drift, or selection, then 
allele frequencies remain unchanged 

More generally, for any number of alleles, freq(AiAi) = pi
2, 

freq(AiAj) = 2pipj.  



Hybridization 

•  Hardy-Weinberg assumes allele frequencies are the
 same in both sexes.  If not, then after one
 generation of random mating, the frequencies of
 autosomal alleles is the same in both sexes, and HW
 is obtained on the second generation 

•  Suppose Freq(A in males) = pm, Freq(A in females) =
 pf.  Average allele frequency p = (pm+ pf)/2. 

•  In generation one, 
–  Freq(AA) = pm* pf which is different from p2 if pm & pf differ 
–  Freq(Aa) = pm (1-pf) + (1-pm) pf 

21 

Example 
•  Cross females from a pop where pf = 0.4 with

 males from a pop where pm = 0.6.  Average
 frequency = 0.5. 
–  Under random-mating, freq(Aa) = 0.5 
–  Here, Freq(Aa) = pm (1-pf) + (1-pm) pf = 0.4*0.4 +

 0.6*0.6 = 0.52 
–  Hence, with crosses between populations where

 allele frequencies differ, we see an excess of
 heterozygotes.   

–  Excess in F1, Hardy-Weinberg values in F2. 
–  Implications for persistence of heterosis. 

22 



Crosses vs. synthetics 

•  In a cross, males and females are
 always from different populations.
 Example of nonrandom mating! 

•  In a synthetic, all individuals are
 randomly-mated, therefore F2 is in HW 

•  Example:  equal mix of P1 X P2 
–  In a synthetic, 25% of crosses are P1 X P1,

 50% P1 x P2, 25% P2 x P2. 

23 

Multi-locus Hardy-Weinberg 
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Multi-locus HW 

• When following multiple loci, we need
 to considers gametes, rather than
 alleles 
– For example, an AaBb parent gives four

 distinct gametes AB, Ab, aB, ab 
– While allele frequencies do not change

 under random mating, gamete
 frequencies can. 

– Concept of linkage disequilibrium 

25 

Genotypic frequencies under
 HW 

• Under multi-locus HW, 
– Freq(AABB) = Freq(AA)*Freq(BB) 
–  i.e., can use single-locus HW on each

 locus, and then multiply the results 

• When D is non-zero (LD is present),
 cannot use this approach 
– Rather, must follow gametes 

26 
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Linkage Disequilibrium 
•  Under linkage equilibrium, the frequency of gametes 

is the product of allele frequencies, 
–  e.g. Freq(AB) = Freq(A)*Freq(B) 
–  A and B are independent of each other 

•  If the linkage phase of parents in some set or 
population departs from random (alleles not 
independent) , linkage disequilibrium (LD) is said to 
occur 

•  The amount DAB of disequilibrium for the AB gamete 
is given by 
–  DAB = Freq(AB) gamete - Freq(A)*Freq(B) 
–  D > 0 implies AB gamete more frequent than expected 
–  D < 0 implies AB less frequent than expected 

The Decay of Linkage Disequilibrium 

The frequency of the AB gamete is given by 

If recombination frequency between the A and B loci 
is c, the disequilibrium in generation t is 

Note that D(t) -> zero, although the approach can be 
slow when c is very small 28 
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Dynamics of D 

•  Under random mating in a large population, 
allele frequencies do not change.  However, 
gamete frequencies do if there is any LD 

•  The amount of LD decays by (1-c) each 
generation 
–  D(t) = (1-c)t D(0) 

•  The expected frequency of a gamete (say AB) 
is 
–  Freq(AB) = Freq(A)*Freq(B) + D 
–  Freq(AB in gen t) = Freq(A)*Freq(B) + (1-c)t D(0) 

30 

AB/ab 

Excess of  
parental 
gametes  
AB, ab 

linkage 

Ab/aB 

Excess of  
parental 
gametes  
Ab, aB 

AB/ab 

Excess of  
parental 
gametes  
AB, ab 

Ab/aB 

Excess of  
parental 
gametes  
Ab, aB 

Pool all gametes:  AB, ab, Ab, aB equally frequent 

No LD:  random distribution of linkage phases 
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AB/ab 

Excess of  
parental 
gametes  
AB, ab 

linkage 

AB/ab 

Excess of  
parental 
gametes  
AB, ab 

AB/ab 

Excess of  
parental 
gametes  
AB, ab 

Ab/aB 

Excess of  
parental 
gametes  
Ab, aB 

Pool all gametes:  Excess of AB, ab due to an excess 
of AB/ab parents 

With LD, nonrandom distribution of linkage phase 

Example 
•  Suppose Freq(A) = 0.4, freq(B) = 0.3, D =  0.1 
•  Freq(AB) gamete is freq(A)*freq(B) + D 

–  Freq(AB) = 0.4*0.3 + 0.1 = 0.22 

•  Freq(AABB) = Freq(AB)*Freq(AB) = 0.222 =
 0.0484 

•  At multilocus HW,  
–  Freq(AABB) = Freq(AA)*freq(BB) = 0.42*0.32=

 0.0192 

•  Suppose c = 0.2.  In next generation, 
–  D(1) = (1-0.2)*D(0) = 0.8*0.1 = 0.08, 
–  Freq(AB) – 0.20; freq(AABB) = 0.04  32 



Population structure 
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Population Structure 
Populations often show structure, with an apparently 
single random-mating population instead consisting 
of a  collection of several random-mating subpopulations 

Suppose there are n subpopulations, and let wk be the 
probability that an random individual is from population k 

Let pik denote the frequency of allele Ai in subpopulation 
k. 

The overall frequency of allele Ai is 

34 



The frequency of AiAi in the population is just  

Expressed in terms of the population frequency of 
Ai,  

Thus, unless the allele has the same frequency in 
each population (Var(pi) = 0), the frequency of 
homozygotes exceeds that predicted from HW 

35 

Similar logic gives the frequency of heterozygotes 
as 

Hence, when the population shows structure, 
 homozygotes are more common 
than predicted from HW, while heterozygotes can 
be more (or less) common than expected under HW, 
as the covariance could be zero, positive, or negative 

36 



Population structure also generates disequilibrium 

Again suppose there are k subpopulations, each in 
linkage equilibrium 

The population frequency of AiBj gametes is 

The population-wide disequilibrium becomes 

37 

Consider the simplest case of k = 2 populations 

Let pi be the frequency of Ai in population 1, 
pi + δi in population 2. 

Likewise, let qj be the frequency of Bj in population 1, 
qj + δj in population 2. 

The expected disequilibrium becomes 

Here, w1 is the frequency of population 1 

38 



•  One measure of population structure is given by Wright’s FST
 statistic (also called the fixation index) 

•  Essentially, this is the fraction of genetic variation due to
 between-population differences in allele frequencies 

•  Changes in allele frequencies can be caused by evolutionary
 forces such as genetic drift, selection, and local adaptation 

•  Consider a biallelic locus (A, a). If p denotes overall population
 frequency of allele A,  
–  then the overall population variance is p(1-p) 
–  Var(pi) = variance in p over subpopulations 
–  FST = Var(pi)/[p(1-p)] 

FST, a measure of population structure 

39 

Population Freq(A) 

1 0.1 

2 0.6 

3 0.2 

4 0.7 

Assume all subpopulations 
contribute equally to 
the overall metapopulation 

Overall freq(A) = p = 
(0.1  + 0.6 + 0.2 + 0.7)/4 = 0.4  

Var(pi) = E(pi
2) - [E(pi)]2 = E(pi

2) - p2 

Var(pi) = [(0.12 + 0.62 + 0.22 + 0.72)/4] - 0.42 = 0.065 

Total population variance =  p(1-p) = 0.4(1-0.4) = 0.24 

Hence, FST = Var(pi) /[p(1-p) ] = 0.065/0.24 = 0.27   

Example of FST estimation 

40 



P1 

P2 

p=0.5 
q=0.5 

p=0.5 
q=0.5 

FST = 0 

Graphical example of FST 

Homozygous 
Diploid 

 No population differentiation  
41 

Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395 

P1 

P2 

p=0.9 
q=0.1 

p=0.25 
q=0.75 

FST=0.43 
Homozygous 
Diploid 

Graphical example of FST 

 Strong population differentiation  
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Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395 



P1 

P2 

Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395 

p=1 
q=0 

p=0 
q=1 

FST = 1 

Homozygous 
Diploid 

 Complete population differentiation  

Graphical example of FST 
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Unrooted neighbor-joining tree based on C.S. Chord (Cavalli-Sforza and Edwards 1967) based on 169 nuclear
 SSRs. The key relates the color of the line to the chloroplast haplotype based on ORF100 and PS-ID sequences. 

Garris et al. 2005. Genetics 169:1631-1638 

Rice population structure 

*Admixed individuals 

FST = 0.25 

FST = 0.43 
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Liu et al. 2003. Genetics 165:2117-2128 

Phylogenetic tree for 260 inbred lines using the log-transformed proportion of shared alleles distance  

Maize population structure 

Non-Stiff Stalk 

Tropical/Subtropical 

Stiff-Stalk 

Teosinte 
FST = 
 0.18 

Flint-Garcia et al. 2005. Plant J. 144:1054-1064 

FST = 0.22 
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Selection 

46 



Genotype AA Aa aa 

Frequency 
(before selection) 

p2 2p(1-p) (1-p)2 

Fitness WAA WAa Waa 

Frequency 
(after selection) 

p2 WAA 2p(1-p) WAa (1-p)2Waa 

One locus with two alleles 

W W W 

W 
is the mean population fitness, the fitness of an random 
individual, e.g.      = E[W] 

Where  = p2 WAA + 2p(1-p) WAa + (1-p)2Waa W 

47 

The new frequency p’ of A is just  
freq(AA after selection) + (1/2) freq(Aa after selection) 

The fitness rankings determine the ultimate fate 
of an allele 

If WAA > WAa > Waa, allele A is fixed, a lost 

If WAa > WAA, Waa, selection maintains both A & a 
Overdominant selection 

48 



General expression for selection with n allelles 

Let pi = freq(Ai), Wij = fitness AiAj 

If Wi > W, allele Ai increases in frequency 

If a selective equilibrium exists, then Wi = W  
for all segregating alleles. 49 

•  Suppose fitnesses are 1: 1.2:1.4 for the
 genotypes qq: Qq:QQ and p =freq(Q)=0.2 

50 

 qq  qQ  QQ 

Freq 0.82 = 0.64 2*0.8*0.2 = 0.32 0.22 = 0.04 

Fitness 1 1.2 1.4 

Freq*fit 0.64 0.384 0.056 

Mean fitness = 0.64 + 0.384 + 0.056 = 1.08 

Freq(Qq after selection) = 0.384/1.08 = 0.356 

Freq(QQ after selection) = 0.04/1.08 = 0.037 

New freq (Q) = (1/2)* 0.356 + 0.037 = 0.215 
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Lecture 2: 
Introduction to Quantitative
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Basic model of Quantitative Genetics 

Basic model:  P = G + E 

Phenotypic value -- we will occasionally 
also use z for this value 

Genotypic value 

Environmental value 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

Hence, genotypic values are functions of the  
environments experienced. 
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Basic model of Quantitative Genetics 
Basic model:  P = G + E 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

G x E interaction --- The performance of a particular 
genotype in a particular environment differs from 
the sum of the average performance of that 
genotype over all environments  and the average 
performance of that environment over all genotypes. 
Basic model now becomes  P = G + E + GE 

G = average value of an inbred line over a series 
of environments 
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East (1911)  data 
on US maize 

crosses 



5 
Each sample (P1, P2, F1) has same G,  all variation in 
P is due to variation in E 

Same G, Var(P) = Var(E) 
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All same G, hence 
Var(P) = Var(E) 

Variation in G 
Var(P) = Var(G) +
 Var(E) 

Var(F2) > Var(F1) due to Variation in G 



Johannsen (1903) bean data 

•  Johannsen had a series of fully inbred
 (= pure) lines. 

•  There was a consistent between-line
 difference in the mean bean size 
– Differences in G across lines 

• However, within a given line, size of
 parental seed independent of size of
 offspring speed 
– No variation in G within a line 
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The transmission of genotypes versus 
alleles 

•  With fully inbred lines, offspring have the same genotype as 
their parent, and hence the entire parental genotypic value G is 
passed along 
–  Hence, favorable interactions between alleles (such as with 

dominance) are not lost by randomization under random mating 
but rather passed along. 

•  When offspring are generated by crossing (or random mating), 
each parent contributes a single allele at each locus to its 
offspring, and hence only passes along a PART of its genotypic 
value 

•  This part is determined by the average effect of the allele 
–  Downside is that favorable interaction between alleles are NOT 

passed along to their offspring in a diploid (but, as we will see, are 
in an autoteraploid) 
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Genotypic values 
It will prove very useful to decompose the genotypic 
value into the difference between homozygotes (2a) and 
a measure of dominance (d or k = d/a)  

aa Aa AA 

C - a C + d C + a 

Note that the constant C is the average value of 
the two homozygotes. 

If no dominance, d = 0, as heterozygote value equals 
the average of the two parents.  Can also write d = ka, 
so that G(Aa) = C + ak 
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Computing a and d 

Genotype aa Aa AA 

Trait value 10 15 16 

Suppose a major locus influences plant height, with 
the following values  

C = [G(AA) +  G(aa)]/2 = (16+10)/2 = 13 
a = [G(AA) - G(aa)]/2 = (16-10)/2 = 3 
d = G(Aa)]  - [G(AA) + G(aa)]/2   
   = G(Aa)]  - C = 15 - 13 = 2 
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Population means: Random mating 
Let p = freq(A), q = 1-p = freq(a).  Assuming  
random-mating (Hardy-Weinberg frequencies),    

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency q2 2pq p2 

Mean = q2(C - a) + 2pq(C + d) + p2(C + a) 
       µRM   = C + a(p-q) + d(2pq) 

Contribution from 
homozygotes 

Contribution from 
heterozygotes 
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Population means: Inbred cross F2 
Suppose two inbred lines are crossed. If A is fixed 
in one population and a in the other, then p = q = 1/2  

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency 1/4 1/2 1/4 

Mean = (1/4)(C - a) + (1/2)(C + d) + (1/4)( C + a) 
       µRM   = C  +   d/2 

Note that C is the average of the two parental lines, so when d
 > 0, F2 exceeds this.  Note also that the F1 exceeds 
this average by d, so only half of this passed onto F2. 
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Population means:  RILs from an F2 
A large number of F2 individuals are fully inbred, either by selfing 
for many generations or by generating doubled haploids.  If p an
 q denote the F2 frequencies of A and a, what is the expected
 mean over the set of resulting RILs? 

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency q 0 p 

µRILs   = C  +   a(p-q) 

Note this is independent of the amount of dominance (d) 
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The average effect of an allele 

•  The average effect αA of an allele A is defined by the 
difference between offspring that get allele A and a 
random offspring. 
–   αA = mean(offspring value given parent transmits 

A) - mean(all offspring) 
–  Similar definition for αa. 

•  Note that while C, a, and d (the genotypic 
parameters) do not change with allele frequency, αx 
is clearly a function of the frequencies of alleles with 
which allele x combines. 
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Random mating 
Consider the average effect of allele A when a parent is randomly- 
mated to another individual from its population 

Allele from other 
parent 

Probability Genotype Value 

A p AA C + a 

a q Aa C + d 

Suppose parent contributes A 

Mean(A transmitted) = p(C + a) + q(C + d) = C + pa + qd 

  αA = Mean(A transmitted) - µ = q[a + d(q-p)] 
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Random mating 

Allele from other 
parent 

Probability Genotype Value 

A p Aa C + d 

a q aa C - a 

Now suppose parent contributes a 

Mean(a transmitted) = p(C + d) + q(C - a) = C - qa + pd 

  αa = Mean(a transmitted) - µ = -p[a + d(q-p)] 

18 

 α, the average effect of an 
allelic substitution 

•   α = αA - αa is the average effect of an allelic 
substitution, the change in mean trait value when an 
a allele in a random individual is replaced by an A 
allele 
–   α = a + d(q-p). Note that  

•   αA = qα   and αa   =-pα. 
• E(αX) = pαA + qαa =  pqα - qpα = 0,  
• The average effect of a random allele is zero, 

hence average effects are deviations from the 
mean 
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Dominance deviations 
•  Fisher (1918) decomposed the contribution 

to the genotypic value from a single locus as  
Gij = µ + αi + αj + δij 
–  Here, µ is the mean (a function of p) 
–   αi are the average effects 
–  Hence, µ + αi + αj is the predicted genotypic 

value given the average effect (over all 
genotypes) of alleles i and j. 

–  The dominance deviation  associated with 
genotype Gij is the difference between its true 
value and its value predicted from the sum of 
average effects (essentially a residual) 
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Fisher’s (1918) Decomposition of G 
One of Fisher’s key insights was that the genotypic value 
consists of a fraction that can be passed from parent to 
offspring and a fraction that cannot. 

Mean value   µG = Σ Gij Freq(AiAj) 

Average contribution to genotypic value for allele i 

Consider the genotypic value Gij resulting from an  
AiAj individual 

In particular, under sexual reproduction, parents only 
pass along SINGLE ALLELES to their offspring 

Gij = µG + αi + αj + δij 
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Since parents pass along single alleles to their 
offspring, the αi (the average effect of allele i) 
represent these contributions 

The genotypic value predicted from the individual 
allelic effects is thus 

The average effect for an allele is POPULATION- 
SPECIFIC, as it depends on the types and frequencies  
of alleles that it pairs with 

Gij = µG + αi + αj + δij 

Gij = µG + αi + αj 
^ 
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Dominance deviations --- the difference (for genotype 
AiAj) between the genotypic value predicted from the 
two single alleles and the actual genotypic value, 

Gij = µG + αi + αj + δij 

The genotypic value predicted from the individual 
allelic effects is thus Gij = µG + αi + αj 

^ 

Gij - Gij = δij 
^ 
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N = # Copies of Allele 2 0 1 2 

G11 

G21 

G22 

µ + 2α1 

µ + α1 + α2 

µ + 2α2 

δ12 

δ11 

δ22 

Slope = α = α2 - α1  

1 

α$

11 21 22 Genotypes 
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Fisher’s decomposition is a Regression 

Predicted value 
Residual error 

A notational change clearly shows this is a regression, 

Independent (predictor) variable N = # of A2 alleles 

Note that the slope α2 - α1 = α, the average effect 
of an allelic substitution 

Gij = µG + αi + αj + δij 

Gij = µG + 2α1 +(α2 – α1) N + δij 
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Regression slope Intercept 

A key point is that the average effects change with 
allele frequencies.  Indeed, if overdominance is present 
they can change sign with allele frequencies. 

Gij = µG + 2α1 + (α2 – α1) N + δij 
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0 1 2 
N 

G G22 

G11 

G21 

Allele A2 common, α1 > α2 

The size of the circle denotes the weight associated with 
that genotype.  While the genotypic values do not change, 
their frequencies (and hence weights) do. 
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0 1 2 
N 

G G22 

G11 

G21 

Allele A1 common, α2 > α1 

Slope = α2 - α1  

Again, same genotypic values as previous slide, but 
different weights, and hence a different slope 
(here a change in sign!) 
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0 1 2 
N 

G G22 

G11 

G21 

Both A1  and  A2 frequent, α1 = α2 = 0 

With these allele frequencies,  both alleles have the same  
mean value when transmitted, so that all parents have the  
same average offspring value  -- no response to selection 
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Average Effects and Additive Genetic Values 

A ( G ij ) = αi + 

The α values are the average effects of an allele 

A key concept is the Additive Genetic Value (A) of 
an individual 

A is called the Breeding value or the Additive genetic 
value 

αi
(k) = effect of allele i at locus k  

A ( G ij ) = αi + αj 

j!
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Why all the fuss over A? 

Suppose pollen parent has A = 10 and seed parent has  
A = -2 for plant height 

Expected average offspring  height is (10 - 2)/2  
= 4 units above the population mean.  Offspring A = 
average of parental A’s 

KEY:  parents only pass single alleles to their offspring. 
Hence, they only pass along the A part of their genotypic 
value G 

j !
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Genetic Variances 
Writing the genotypic value as 

The genetic variance can be written as 

This follows since 

Gij = µG + (αi + αj) + δij 

As Cov(α,δ) = 0 
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Genetic Variances 

σ$
2 
G = 

2 
A + 

2 
D 

Additive Genetic Variance 
(or simply Additive Variance) Dominance Genetic Variance 

(or simply dominance variance) 

Hence, total genetic variance = additive + dominance 
variances, 

σ$ σ$
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Key concepts (so far) 
•   αi = average effect of allele i 

–  Property of a single allele in a particular population 
(depends on genetic background) 

•  A = Additive Genetic Value (A)  
–  A = sum (over all loci) of average effects 
–  Fraction of G that parents pass along to their offspring 
–  Property of an Individual in a particular population 

•  Var(A) = additive genetic variance 
–  Variance in additive genetic values 
–  Property of a population 

•  Can estimate A or Var(A) without knowing any of the 
underlying genetical detail (forthcoming) 
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One locus, 2 alleles: 

Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

When dominance present,  Additive variance is an 
asymmetric function of allele  frequencies 

Since E[α] = 0,  
Var(α) = E[(α -µa)2] = E[α2]  
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Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

This is a symmetric function of 
allele frequencies 

Dominance variance 

Can also be expressed in terms of d = ak 
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Additive variance, VA,  with no dominance (k = 0) 

Allele frequency, p 

VA 
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Complete dominance (k = 1) 

Allele frequency, p 

VA 

VD 
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Epistasis 

These components are defined to be uncorrelated, 
(or orthogonal), so that 
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Additive x Additive interactions -- αα, AA 
interactions between a single allele 
at one locus with a single allele at another 

Additive x Dominance interactions -- αδ, AD 
interactions between an allele at one 
locus with the genotype at another, e.g. 
allele Ai and genotype Bkj 

Dominance x dominance interaction --- δδ, DD 
the interaction between the dominance 
deviation at one locus with the dominance 
deviation at another. 
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Heritability 
•  Central concept in quantitative genetics 
•  Fraction of phenotypic variance due to

 additive genetic values (Breeding values) 
–  h2 = VA/VP 

–  This is called the narrow-sense heritability 
–  Phenotypes (and hence VP) can be directly

 measured 
–  Breeding values (and hence VA) must be

 estimated  
•   Estimates of VA require known collections of

 relatives    
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Broad-sense heritability 

•  Narrow-sense heritability h2 applies when
 outcrossing,  
–   h2 = Var(A)/Var(P) 
–  =  the fraction of all trait variation due to variation

 in breeding (additive genetic) values 
•  Broad-sense heritability H2 applies when

 selecting among a series of pure lines 
–  H2 = Var(G)/Var(P) 
–     =  the fraction of all trait variation due to

 variation in Genotypic values 
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Defining H2 for Plant Populations 
Plant breeders often do not measure individual plants  
(especially with  pure lines), but instead  often measure a plot or  
a block of individuals. 

This replication can result in inconsistent measures of H2  even for  
otherwise  identical populations.   

Effect of the k-th plot 

deviations of individual 
plants within this plot 

Let zijkl denote the value of the l-th replicate in plot k of genotype i 
in environment j.  We can decompose this value as 

 zijkl = Gi + Ej + GEij + pijk + eijkl 
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If we set our unit of measurement as the average over  
all plots, the phenotypic variance for the mean of line  
i becomes 

Thus, VP, and  H2 = VG/VP, depend  on our choice of e, r, and n 

σ"2 ( ) = σ"2 G + σ"2 E + 
σ"2 G E 
e 
+ 
σ"2 p 
e r 
+ 

σ"2 e 
e r n 

Suppose we replicate the genotype over e environments, 
with r plots (replicates) per environment, and n individuals 
per plot. 

In order to compare board-sense heritabilities we need to use a 
consistent design (same values of e, r, and n) 

zi 
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 Key observations 
•  The amount of phenotypic resemblance

 among relatives for the trait provides an
 indication of the amount of genetic variation
 for the trait.  

•  If trait variation has a significant genetic
 basis, the closer the relatives, the more
 similar their appearance 

•  The covariance between the phenotypic
 value of relatives measures the strength of
 this similarity, with larger Cov = more
 similarity 
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Genetic Covariance between relatives 

Genetic covariances arise because two related  individuals 
 are more likely to share alleles than  
are two unrelated individuals. 

Sharing alleles means having alleles that are identical by
 descent (IBD): both copies can be traced back to  a
 single copy in a  recent common ancestor.  

Father Mother 

8 

Father Mother 

No alleles IBD One allele IBD 

Both alleles IBD 
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Resemblance between relatives and
 variance components 

•  The phenotypic variance between relatives
 can be expressed in terms of genetic
 variance components 
–  Cov(zx,zy) = axyVA + bxyVD. 
–  The weights a and b depend on the nature of the

 relatives x and y, and are measures of how often
 they are expected to share alleles identical by
 descent  

–  These are critical in predicting selection response 
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Parent-offspring genetic covariance 
Cov(Gp, Go) --- Parents and offspring share  
EXACTLY one allele IBD 

Denote this common allele by A1 

G p = A p + D p = α"1 + α"x + D 1 x 

G o = A o + D o = α"1 + α"y + D 1 y 

IBD allele Non-IBD alleles 
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Hence, relatives sharing one allele IBD have a 
genetic covariance of Var(A)/2 

The resulting parent-offspring genetic covariance  
becomes Cov(Gp,Go) = Var(A)/2 
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Half-sibs 

1 

o 1 

2 

o 2 

The half-sibs share no alleles IBD 
 •  occurs with probability 1/2 

Each sib gets exactly one
 allele from common father, 
different alleles from the
 different mothers 

Hence, the genetic covariance of half-sibs is just  
(1/2)Var(A)/2 = Var(A)/4 
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Full-sibs 
Father Mother 

Sib 1 

Prob(Allele from father IBD) = 1/2.  Given the allele in parent
 one, prob = 1/2 that sib 2 gets same allele 

Each sib gets 
exact one allele 
from each parent 

Sib 2 

Prob(Allele from father not IBD) = 1/2.  Given the allele in
 parent one, prob = 1/2 that sib 2 gets different allele 
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Full-sibs 
Father Mother 

Full Sibs 
Paternal allele not IBD [ Prob = 1/2 ] 
Maternal allele not IBD [ Prob = 1/2 ] 
Prob(sibs share 0 alleles IBD) = 1/2*1/2 = 1/4 

Each sib gets 
exact one allele 
from each parent 
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Father Mother 

Full Sibs 

Paternal allele  IBD [ Prob = 1/2 ] 
Maternal allele  IBD [ Prob = 1/2 ] 
Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4 

Each sib gets 
exact one allele 
from each parent 

Prob(share 1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2 
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I BD al l el es P rob a bil i ty Co n tr i but i on 

0 1/ 4 0 

1 1/ 2 V a r ( A ) / 2 

2 1/ 4 V a r ( A ) +  Va r( D ) 

Resulting Genetic Covariance between full-sibs 

Cov(Full-sibs) = Var(A)/2 + Var(D)/4 
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Genetic Covariances for General Relatives 

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD) 

Let u = Prob(both alleles IBD) 

General genetic covariance between relatives 
Cov(G) = rVar(A) + uVar(D) 

When epistasis is present, additional terms appear 
r2Var(AA) + ruVar(AD) + u2Var(DD) + r3Var(AAA) +  
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More general relationships  

•  To obtain the expected covariance for any
 set of relatives, we normally need only
 compute r and u for that set of relatives 

•  With general inbreeding, becomes more
 complex (as three other terms, in addition to
 VA and VD arise) 

•  With crosses involving inbred and/or related
 parents, values for r and u are different from
 those presented above. 
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Coefficients of Coancestry 
Suppose we pick a single allele each at random from 
two relatives.  The probability that these are IBD is  
called Θ, the coefficient of coancestry.  In terms of our 
previous notation, 2Θ = r = the coeff on Var(A) 

Θxy denotes the coefficient for relatives x and y 

Consider an offspring z from a (hypothetical) cross 
of x and y. Θxy = fz, the inbreeding coefficient of z. 
Why?  Because the offspring of x and y each get a  
randomly-chosen allele from each parent.  The probability 
fz that both alleles are IBD (the probability of inbreeding) 
is thus just Θxy. 
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 θ and the coefficient on VA 
•  The coefficient on the additive variance for

 the relatives x and y is just 2θxy.   
•  To see this,  

–  let AiAj denote the two alleles in x and AkAl those
 in y.  

–  Cov(breeding values) = Pr(Ai ibd Ak) cov(αi, αk) +
 Pr(Ai ibd Al) cov(αi,αl) + Pr(Aj ibd Ak) cov(αj, αk) +
 Pr(Aj ibd Al) cov(αj,αl)  = 4 θxyVar(α) 

–  Since Var(A) = 2Var(α), Cov = 2 θxyVar(A) 
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Θxx :  The Coancestry of an individual
 with itself  

Self x, what is the inbreeding coefficient of its offspring? 

To compute Θxx, denote the two alleles in x by A1 and A2 

Draw A1 

Draw A1 Draw A2 

Draw A2 

IBD 

IBD 

Hence, for a non-inbred individual, Θxx = 2/4 = 1/2 

If x is inbred, fx = prob A1 and A2 IBD,  

fx 

fx 

Θxx = (1+ fx)/2  
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Example 
B A D C 

E F 

G 

Consider the following pedigree 
Suppose A and D are fully-inbred,  
and related, lines with θAD = 0.5. 
Further, B and C are unrelated and 
outcrossed individuals 

Individual A B C D 

Fx 1 0 0 1 

 θxx = (1 + Fx)/2 1 1/2 1/2 1 
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The Parent-offspring Coancestry 
Let A1, An denote the two alleles in the offspring, where 
An is the allele from the nonfocal parent (NP), while 
A1,Ap are the two alleles in the focal parent (P) 

Draw A1 

Draw A1 Draw An 

Draw Ap 

IBD 

ΘP,NP 

For a non-inbred individual, ΘP0 = 1/4 

fp 

ΘPO = (1 + fp + 2ΘP,NP)/4 = (1 + fp + 2fo)/4  

Offspring 

Pa
re

nt
 

A1, Ap IDB if  
parent is inbred 

Prob(An,Ap), the alleles 
from the two parents are IBD, 
i.e. , offspring is inbred 

ΘP,NP 

General: 
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Θop =  Parent & Offspring 

Mother 

Offspring 

Paternal allele 

θ"p o = 
1 
4 θ"p o = 

1 + f p 
4 

 fo 

θ"p o = 
1 + 2 f o 
4 

θ"p o = 
1 
4 
( 1 + f p + 2 θ mf ) 

Parent inbred 

Offspring inbred 

1/2 = Prob random offspring allele
 from father. Prob = θmf = fo that this
 allele is IBD to mother giving 
a contribution of fo/2 

fp 

This is just 2f0   
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B A D C 

E F 

G 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2,  
θAB = θAC = θBC = θBD =  θCD = 0 

Consider A - E (inbred parent - offspring) 
θAE = (1+fA)/4 = (1+1)/4 = 1/2.  Same value for θDF 

Consider B - E (outbred parent - offspring) 
θBE = (1+fB)/4 = (1+0)/4 = 1/4.  Same value for θCF 

Consider E - G (outbred parent - offspring) 
θEG = (1+fE)/4 = (1+0)/4 = 1/4.  Same value for θFG 
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B A D C 

E F 

G 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2,  
θAB = θAC = θBC = θBD =  θCD = 0 

What about θEF ? 

The randomly-chosen allele from E has equal chance 
of being from A or B.  Likewise for F (from C or D) 

Of these four possible combinations (A&C, A&D, B&C, B&D), only  
an allele from A and an allele from D have a chance of being 
IBD, which is θAD = 1/2.  

Hence, θEF  = θAD /4 = 1/8 
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m f 

1/2 1/2 

 (1/2)(1/2)(1/2)  (1/2)(1/2)(1/2) 

Θ = 1/8 + 1/8 = 1/4 

m f 

(1+fm)/2 
(1+ff)/2 

[(1 +fm )/2] (1/2)(1/2) [(1 +ff )/2] (1/2)(1/2) 

Θ =(2 + fm+ ff)/8 

Full sibs (x and y) from parents m and f 

Unrelated, non-inbred 
parents 

Unrelated, inbred 
parents 
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m f 

Θ mf 

 Θ mf /4 

Full sibs (x and y) from parents m and f 

m f 

Θ mf 

 Θ mf (1/2)(1/2) 

This gives  Θ = (2+fm+ff +4 Θ mf)/8 

Parents inbred & related. 
Two additional paths to add 
to Θ =(2+fm+ff)/8 
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Full sibs (x and y) from parents m and f 

Θxy =  (2 + fm + ff + 4Θmf)/8 

f m 

x y 

s f d f s m d m 

ff = Θsf,df fm = Θsm,dm 

Θxy =  (2 + Θsm,dm + Θsf,df + 4Θmf)/8 

Putting all this together gives 
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B A D C 

E F 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2, θEF = 1/8,  
θAB = θAC = θBC = θBD =  θCD = 0 

S1,S2 

 θS1S2 = (2 + 0 + 0 + 4[1/8])/8 = (4 + 1)/16 = 5/16 

Θxy =  (2 + ΘAB + ΘCD + 4ΘEF)/8 

Example 
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Half-sibs 

• Using the same arguments as above, 
θEF = (θAA + θAB + θAC + θBC)/4 
      = ([1 + fA]/2  + θAB + θAC + θBC)/4 
Hence, if B and C unrelated,  
θEF =  (1 + fA)/8 

A B C 

E F 

A is the common parent 



33 

Computing θxy -- The Recursive Method 
•  There is a simple recursive method for generating the elements Aij

 = 2 θij of a relationship matrix (used for BLUP selection). For ease of
 reading, we use the notation A(i,j) = Aij 
–  Basic idea is that the founding individuals of the pedigree are

 assumed to be unrelated and not inbred (although this can also
 be accommodated).  These founders are assigned values of
 A(i,i) = 1.   

–  Likewise, any unknown parent of any future individual is assumed to be
 unrelated to all others in the pedigree and not inbred, and they are
 also assigned a value of A(i,i) = 1.  

–  Let Si and Di denote the sire and dam (father and mother) of individual
 i.    For this offspring A(i,i) = 1 + A(Si, Di)/2 

–  A(i,j) = A(j,i) = [A(j,Si) + A(j,Di)]/2 = [A(i,Sj) + A(i,Dj)]/2  
–  The recursive (or tabular) method starts with the founding parents and

 then proceeds down the pedigree in a recursive fashion to fill out A for
 the desired pedigree. 
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Example 

1 

2 3 4 5 

6 7 8 

9 
10 

11 

Ancestors are 1 & 2 

A(1,1) = A(2,2) = 1 
A(1,2) = 0 

3:  S3 = 1, D3 = Unknown,  A(3,3) = 1 + A(S3,D3)/2 = 1 + A(1,unk)/2 = 1 
A(1,3) = [A(1,S3) + A(1,D3)]/2 = [A(1,1) + A(1,unk)]/2 = 1/2. 
Note also that A(1,4) = A(1,5) = 1/2, A(4,4) = A(5,5) = 1. 
A(3,4) = [A(3,S4) + A(3,D4) ]/2 = [A(3,1) + A(3,unk)]/2 = (1/2+0)/2 = 1/4. 
Same for A(3,5) = 1/4.  2 is unrelated to 3, 4, 5, giving  A(2,3) = A(2,4) = A(2,5) = 0. 

3, 4, 5, 8 all have
 unknown parents 
(only a single
 arrow to them) 



35 

1 

2 3 4 5 

6 7 8 

9 
10 

11 

So far 

6:  S6 = 2, D6 = 3.  A(6,6) = 1 + A(S6, D6)/2 = 1 + A(2,3)/2 = 1 
A(6,1) = [A(1, S6) + A(1, D6)]/2 =  [A(1,2) + A(1,3)]/2 = [0 + 1/2]/2 = 1/4 
A(6,2) = [A(2, S6) + A(2, D6)]/2 =  [A(2,2) + A(2,3)]/2 = [1+ 0]/2 = 1/2 
A(6,3) = [A(3, S6) + A(3, D6)]/2 =  [A(3,2) + A(3,3)]/2 = [0 + 1]/2 = 1/2 
A(6,4) = [A(4, S6) + A(4, D6)]/2 =  [A(4,2) + A(4,3)]/2 = [0 + 1/4]/2 = 1/8 
A(6,5) = [A(5, S6) + A(5, D6)]/2 = [A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8 

7:  S7 = 2, D7 = 4.  A(7,7) = 1 + A(S7, D7)/2 = 1 + A(2,4)/2 = 1 + 0/2 = 1 
A(6,7) = [A(6, S7) + A(6, D7)]/2 = [A(6, 2) + A(6, 4)]/2 = (1/2 +1/8)/2 = 5/16 

8:  S8 = 5, D8 = unk.  A(8,8) = 1 + A(S8, D8)/2 = 1 + A(5,unk)/2 = 1. 
A(6,8) = [A(6, S8) + A(6, D8)]/2 = [A(6, 5) + A(6, unk)]/2 = (1/8)/2 = 1/16 

9:  S9 = 7, D9 = 6.  A(9,9) = 1 + A(S9, D9)/2 = 1 + A(6,7)/2 = 1 + 5/32 = 1.156 <- inbred!  

Actual relatedness versus expected values from
 pedigrees 

36 

Values for the coefficient of coancestry (θ) and the 
coefficient of fraternity (Δ) obtained from pedigrees 
are expected values.  Due to random segregation of 
genes from parents, The actual value (or realization)  
can be different. 
For example, we expect 2θ to be ½ for full subs.  However, 
one pair of sibs may actually be more similar (0.6) and 
another less similar (say 0.35).  On average, 2θ is ½ 
for pairs of full sibs, but if we knew the actual value  
of θ, we have more information.  With sufficient  
dense genetic markers, we can estimate these 
relationships directly. 

Genomic selection uses this extra information. 



What about coefficient of coancestry θ ? 

37 37 
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Indiv x:  00  00  10  10  00  10  11  00  11  00!

Indiv y:  10  00  11  11  10  11  11  10  11  10!

Locus-specific 
θ 

0.5    1.0     0.5    0.5     0.5     0.5     1.0    0.5      1.0     0.5 

Estimated θ is the average over all ten loci, = 0.65  
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The coefficient of fraternity 
•  While (twice) the coefficient of coancestry gives the

 weight on the additive variance for two relatives, a
 related measure of IDB status among relatives gives
 the weight on the dominance variance 

•  The probability that the two alleles in individual x are
 IBD to two alleles in individual  y is denoted Δxy, and
 is called the coefficient of fraternity. 

•  This can be expressed as a function of the
 coefficients of coancestry for the parents of (mx and
 fx) of x and the parents (my and fy) of y. 
–   Δxy = θmxmyθfxfy+ θmxfyθfxmy 
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The coefficient of fraternity (cont) 

•  x and y can have both alleles IBD if 
–  The allele from the father (fx) of x and the father (fy) of y are

 IDB (probability θfxfy) AND the allele from the mother (mx)
 of x and the mother (my) of y are IDB (probability θmxmy) , or
 θfxfy θmxmy  

–  OR the allele from the mother (mx) of x and the father (fy) of
 y are IDB (probability θmxfy) AND the allele from the father
 (fx) of x and the mother (my) of y are IDB (probability θfxmy) ,
 or θmxfy θfxmy   

–  Putting these together gives  
•     Δxy = θmxmyθfxfy+ θmxfyθfxmy 
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x y 

fx fy mx 
my 

Δxy = θmxmyθfxfy + θmxfyθfxmy 

θmxmy 
θfxfy 

θmxfy 

θfxmy 

Δxy, The Coefficient of Fraternity 

Δxy = Prob(both alleles in x & y IBD) 
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Examples of Δxy: Full sibs 
•  Full sibs share same mon, dad 

–   mx = my = m,  fx = fy = f 
–   Δxy = θmxmyθfxfy + θmxfyθfxmy  = θmmθff + θmf

2 

–   Δxy = (1+fm)(1+ff)/4 + θmf
2

 

•   If parents unrelated, θfm = 0, giving  
–   Δxy = (1+fm)(1+ff)/4 

•  If parents are unrelated and not inbred, 
–   Δxy = 1/4 
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Examples of Δxy: Half sibs 
•  Paternal half sibs share same dad, different

 moms 
–  fx = fy = f;  mx and my 
–   Δxy = θmxmyθfxfy + θmxfyθfxmy  = θmxmyθff + θmxf θmyf

 

–   Δxy = θmxmy (1+fm)/2 + θmxf
 θmyf

 
 

•   If mothers are unrelated to each other and to
 the common father, θmxmy = θmxf = θmyf = 0,
 giving  
–   Δxy = 0 
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When is Δ non-zero? 
•  Since Δxy = θmxmyθfxfy + θmxfyθfxmy   
• A nonzero value for Δ requires either  

– That the fathers of both x and y are related
 AND the mothers of both x and y are
 related 

– OR that the father of x is related to the
 mother of y AND the mother of x is
 related to the father of y  
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B A D C 

E F 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2, θEF = 1/8,  
θAB = θAC = θBC = θBD =  θCD = 0 

S1,S2 

What is Δ for the full sibs (S1 and S2)? 

Δxy = θmxmyθfxfy + θmxfyθfxmy = θEEθFF + θEF
2 "

Giving Δxy = θEEθFF + θEF
2 

       = (1/2)(1/2) + (1/8)2 "
          = 1/4 + 1/64 = 17/64 = 0.266 

46 

 Δxy and the coefficient on VD 

•  The coefficient on the dominance variance for the
 relatives x and y is just Δxy.   

•  To see this,  
–  let AiAj denote the two alleles in x and AkAl those

 in y. 
–  Suppose that alleles i and k come from the

 mothers of these two relatives and alleles j and l
 from their fathers.  

–  Cov(dominance values) = Pr(Ai ibd Ak; Aj ibd Al )
 cov(δij, δkl) + Pr(Ai ibd Al; Aj ibd Ak)cov(δij, δkl)  

–   = (θfxfyθmxmy + θmxfyθjxmy) Var(D) = Δxy Var(D)  



Estimating relationships using
 molecular data 

47 

With SNP data, treat identity in state (also 
called alike in state, AIS) as IBD 

Suppose the genotypes of two individual at 10 SNPs are 

3/10 loci have Δxy = 1, so average Δxy over all loci is 
0.3* 1 = 0.3 

Indiv x:  00  00  10  10  00  10  11  00  11  00!

Indiv y:  10  00  11  11  10  11  11  10  11  10!
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General Resemblance between
 relatives 
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Example 
B A D C 

E F 
S1,S2 

We found for full sibs S1, S2 that 
θ = 5/16, hence 2 θ  = 5/8;  Δ = 17/64  

Expected genetic covariance between this sibs is 

(5/8)Var(A) + (17/64)Var(D) + (5/8)2Var(AA) + 
 (5/8) (17/64)Var(AD) + (17/64) 2Var(DD) + … 
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Autotetraploids 
•  Peanut, Potato, alfalfa, soybeans all examples

 of crops with at least some autotetraploid
 lines 

•  With autotetraploid, four alleles per locus,
 with a parent passing along two alleles to an
 offspring 

•  As a result, a parent can pass along the
 dominance contribution in G to an offspring 

•  Further, now there are four variance
 components assocated with each locus 
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Genetic variances for
 autotetraploids 

•  G = A + D + T + Q 
–  A (additive) and D (dominance, or digenic effects)

 as with diploids 
–  T (trigenic effects) are the three-way interactions

 among alleles at a locus 
–  Q (quadrigenic effects) are the four-way

 interactions at a locus 
•  Total genetic variance becomes 

–  VG = VA + VD + VT + VQ 
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Resemblance between
 autotetraploid relatives 

Relatives VA VD VT VQ 

Half-sibs 1/4 1/36 

Full-sibs 1/2 2/9 1/12 1/36 

Parent
-offspring 1/2 1/6 

Assumes unrelated, non-inbred parents 
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Response to Selection 

•  Selection can change the distribution of 
phenotypes, and we typically measure this by 
changes in mean 
–  This is a within-generation change 

•  Selection can also change the distribution of 
breeding values 
–  This is the response to selection, the change in 

the trait in the next generation (the between-
generation change) 
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The Selection Differential and the 
Response to Selection 

•  The selection differential S measures the 
within-generation change in the mean 
– S = µ* - µ 

•  The response R is the between-generation 
change in the mean 
– R(t) = µ(t+1) - µ(t) 

4 

Parental Generation 

Offspring Generation 

Truncation selection 
Uppermost fraction 

p saved 

µp µ* S 

µo 

R 
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The Breeders’ Equation:  Translating S into R 
Recall the regression of offspring value on midparent value 

Averaging over the selected midparents, 
        E[ (Pf + Pm)/2 ] = µ*,  

E[ yo - µ ] = h2 ( µ� - µ ) = h2 S 

Likewise, averaging over the regression gives 

Since E[ yo - µ ] is the change in the offspring mean, it  
represents the response to selection, giving: 

R = h2 S The Breeders’ Equation (Jay Lush) 
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•  Note that no matter how strong S, if h2 is 
small, the response is small  

•  S is a measure of selection, R the actual 
response.  One can get lots of selection but 
no response 

•  If offspring are asexual clones of their 
parents, the breeders’ equation becomes  
–   R = H2 S 

•  If males and females subjected to differing 
amounts of selection, 
–   S = (Sf + Sm)/2 
–  Example:  Selection on seed number in plants -- pollination 

(males) is random, so that S = Sf/2  
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Pollen control 
•  Recall that S = (Sf + Sm)/2 
•  An issue that arises in plant breeding is pollen 

control --- is the pollen from plants that have also 
been selected? 

•  Not the case for traits (i.e., yield) scored after 
pollination.  In this case, Sm = 0, so response only 
half that with pollen control 

•  Tradeoff:  with an additional generation, a number of 
schemes can give pollen control, and hence twice 
the response 
–  However, takes  twice as many generations, so 

response per generation the same  
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Selection on clones 
•  Although we have framed response in an outcrossed 

population, we can also consider selecting the best 
individual clones from a large population of different 
clones (e.g., inbred lines) 

•  R = H2S, now a function of the board sense 
heritability.  Since H2 > h2, the single-generation 
response using clones exceeds that using outcrossed 
individuals 

•  However, the genetic variation in the next 
generation is significantly reduced, reducing 
response in subsequent generations 
–  In contrast, expect an almost continual response for several 

generations in an outcrossed population. 
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Price-Robertson identity 
•  S = cov(w,z) 
•  The covariance between trait value z and 

relative fitness (w = W/Wbar, scaled to have 
mean fitness = 1) 

•  VERY! Useful result 
•  R = cov(w,Az), as response = within 

generation change in BV 
–  This is called Robertson’s secondary theorem of 

natural selection 

10 
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Suppose pre-selection mean = 30, and we select top 
5.  In the table zi = trait value, ni =  number of offspring 

Unweighted S = 7,  predicted response = 0.3*7 = 2.1 
offspring-weighted S = 4.69, pred resp = 1.4  

12 

Response over multiple generations 
•  Strictly speaking, the breeders’ equation only holds 

for predicting a single generation of response from 
an unselected base population 

•  Practically speaking, the breeders’ equation is usually 
pretty good for 5-10 generations 

•  The validity for an initial h2 predicting response over 
several generations depends on: 
–  The reliability of the initial h2  estimate 
–  Absence of environmental change between 

generations 
–  The absence of genetic change between the 

generation in which h2 was estimated and the 
generation in which selection is applied 
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50% selected 
Vp = 4, S =
 1.6 

20% selected 
Vp = 4, S = 2.8 

20% selected 
Vp = 1, S =
 1.4 

The selection differential is a function of both 
the phenotypic variance and the fraction selected 
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The Selection Intensity, i 
As the previous example shows, populations with the 
same selection differential (S) may experience very 
different amounts of selection 

The selection intensity i provides a suitable measure 
for comparisons between populations, 
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Truncation selection 
•  A common method of artificial selection is truncation 

selection --- all individuals whose trait value is above 
some threshold (T) are chosen. 

•  Equivalent to only choosing the uppermost fraction p 
of the population 

16 

Selection Differential Under 
Truncation Selection 

R code for i:  dnorm(qnorm(1-p))/p!

Likewise,      

S =µ*- µ!
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Truncation selection 
•  The fraction p saved can be translated into an 

expected selection intensity (assuming the trait is 
normally distributed),  
–   allows a breeder (by setting p in advance) to 

chose an expected value of i before selection, and 
hence set the expected response 

p 0.5 0.2 0.1 0.05 0.01 0.005 

i 0.798 1.400 1.755 2.063 2.665 2.892 

 Height of a unit normal at the  
threshold value corresponding to p 

R code for i:  dnorm(qnorm(1-p))/p!
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Selection Intensity Version of the Breeders’ 
Equation 

Since h = correlation between phenotypic and breeding 
values, h = rPA 

R = i rPAσA 

Response =  Intensity * Accuracy * spread in Va  

When we select an individual solely on their phenotype, 
the accuracy (correlation) between BV and phenotype is h 
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Accuracy of selection 
More generally, we can express the breeders 
equation as 

R = i ruA σA 

Where we select individuals based on the
 index u (for example, the mean of n of their
 sibs). 

ruA = the accuracy of using the measure u to 
predict an individual's breeding value =  
correlation between u and an individual's BV, A 

20 
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Improving accuracy 
•  Predicting either the breeding or genotypic 

value from a single individual often has low 
accuracy --- h2 and/or H2 (based on a single 
individuals)  is small  
– Especially true for many plant traits with 

high G x E 
– Need to replicate either clones or relatives 

(such as sibs) over regions and years to 
reduce the impact of G x E 

–  Likewise, information from a set of relatives 
can give much higher accuracy than the 
measurement of a single individual 
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Stratified mass selection 
•  In order to accommodate the high 

environmental variance with individual plant 
values, Gardner (1961) proposed the method 
of stratified mass selection 
–  Population stratified into a number of different 

blocks (i.e., sections within a field) 
–  The best fraction p within each block are chosen 
–  Idea is that environmental values are more similar 

among individuals within each block, increasing 
trait heritability. 
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Overlapping Generations 

Ry = 
im + if 

Lm + Lf 

h2σp 

Lx = Generation interval for sex x  
    = Average age of parents when progeny are born 

The yearly rate of response is 

Trade-offs:  Generation interval vs. selection intensity: 
If younger animals are used (decreasing L), i is also lower, 
as more of the newborn animals are needed as replacements 

24 

Computing generation intervals 

OFFSPRING Year 2 Year 3 Year 4 Year 5 total 

Number 
(sires) 

60 30 0 0 90 

Number 
(dams) 

400 600 100 40 1140 
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Generalized Breeder’s Equation 

Ry = 
im + if 

Lm + Lf 

ruAσA 

Tradeoff between generation length L and  
accuracy r 

The longer we wait to replace an individual, the more 
accurate the selection (i.e., we have time for progeny 
testing and using the values of its relatives) 

26 
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Permanent Versus Transient 
Response 

Considering epistasis and shared environmental values, 
the single-generation response follows from the  
midparent-offspring regression 

Permanent component  
of response 

Transient component of response --- contributes 
to short-term response.  Decays away to zero 

over the long-term 
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Permanent Versus Transient 
Response 

The reason for the focus on h2S is that this 
component is permanent in a random-mating  
population, while the other components are 
transient, initially contributing to response, but 
this contribution decays away under random mating 

Why?  Under HW, changes in allele frequencies 
are permanent (don’t decay under random-mating), 
while LD (epistasis) does, and environmental 
values also become randomized 
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Response with Epistasis 
The response after one generation of selection from 
an unselected base population with A x A epistasis is 

The contribution to response from this single generation 
after τ generations of no selection is  

c is the average (pairwise) recombination between loci 
involved in A x A 
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Response with Epistasis 

Contribution to response from epistasis decays to zero as 
linkage disequilibrium decays to zero 

Response from additive effects (h2 S) is due to changes in  
allele frequencies and hence is permanent.  Contribution  
from A x A due to linkage disequilibrium   
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Why breeder’s equation assumption of an unselected base population?   
If history of previous selection, linkage disequilibrium may be present  
and the mean can change as the disequilibrium decays 

For t generation of selection followed by 
τ generations of no selection (but recombination) 

RAA has a limiting 
value given by 

Time to equilibrium a 
function of c 

Decay half-life 

32 

What about response with higher-order epistasis? 

Fixed incremental difference 
that decays when selection 

stops 
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Response in autotetraploids 

•  Autotetraploids pass along two alleles at 
each locus to their offspring 

•  Hence, dominance variance is passed along 
•  However, as with A x A, this depends upon 

favorable combinations of alleles, and these 
are randomized over time by transmission, so 
D component of response is transient. 
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P-O covariance Single-generation 
response 

Response to t generations of 
selection with constant  
selection differential S 

Response remaining after t generations of selection  
followed by τ generations of random mating 

Contribution from dominance 
quickly decays to zero 

Autotetraploids 
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General responses 
•  For both individual and family selection, the 

response can be thought of as a regression of some 
phenotypic measurement (such as the individual 
itself or its corresponding selection unit value x) on 
either the offspring value (y) or the breeding value RA 
of an individual who will be a parent of the next 
generation (the recombination group). 

•  The regression slope for predicting  
–  y from x is  σ (x,y)/σ2(x)  
–  BV RA from x  σ (x,RA)/σ2(x) 

•  With transient components of response, these 
covariances now also become functions of time --- 
e.g. the covariance between x in one generation and 
y several generations later 
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 Maternal Effects: 
Falconer’s dilution model 

 z = G + m zdam + e 

G = Direct genetic effect on character 
G = A + D + I.  E[A] = (Asire + Adam)/2 

maternal effect passed from dam to offspring m zdam is  
just a fraction m of the dam’s phenotypic value 

 m can be negative --- results in the potential for 
 a reversed response 

The presence of the maternal effects means that response 
is not necessarily linear and time lags can occur in response 
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Parent-offspring regression under the dilution model 

In terms of parental breeding values, 

With no maternal effects, baz = h2 

The resulting slope becomes bAz = h2 2/(2-m) 

- 

38 

Parent-offspring regression under the dilution model 
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Response to a single generation of selection 

Reversed response in 1st  
  generation largely due to 
  negative maternal correlation 
  masking genetic gain 

Recovery of genetic response after 
    initial maternal correlation decays 

 h2 = 0.11, m = -0.13  (litter size in mice) 
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Selection occurs for 10 generations and then stops 



Additional material 

Unlikely to be covered in class 
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Selection on Threshold Traits 

Assume some underlying continuous value z, the  
liability, maps to a discrete trait. 

z < T      character state zero (i.e.  no disease) 

z > T      character state one (i.e.   disease) 

Alternative (but essentially equivalent model) is a 
probit (or logistic) model, when p(z) =  
Prob(state one | z).  Details in LW Chapter 14. 

Response on a binary trait is a special case of
 response on a continuous trait 
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Frequency of character state on 
in next generation 

Frequency of trait 

Observe: trait values
 are either 0,1. Pop 
mean = q (frequency 
of the 1 trait) 

Want to map from 
q onto the underlying 
liability scale z, where 
breeder’s equation 
Rz = h2Sz holds 
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Liability scale Mean liability before selection 

Selection differential 
on liability scale 

Mean liability in next generation 
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qt* - qt is the  
selection differential  
on the phenotypic scale 

Mean liability in next generation 
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Steps in Predicting Response to Threshold Selection 

i)  Compute initial mean µ0 

We can choose a scale where the liability 
z has variance of one and a threshold T = 0 

Hence, z - µ0 is a unit normal random variable 

P(trait) = P(z > 0) = P(z - µ > -µ) = P(U > -µ) 

U is a unit normal 

Define z[q] = P(U < z[q] ) = q.  P(U > z[1-q] ) = q 

For example, suppose 5% of the pop shows the trait. P(U > 1.645) =
 0.05, hence µ = -1.645. Note:  in R, z[1-q] = qnorm(1-q), with
 qnorm(0.95) returning 1.644854 

General result: µ = - z[1-q]  
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Steps in Predicting Response to Threshold Selection 

ii)  The frequency qt+1 of the trait in the next  
generation is just 

qt+1 = P(U > - µt+1 ) = P(U > - [h2S + µt ] ) 
                            = P(U > -  h2S - z[1-q] )  

iii)  Hence, we need to compute S, the selection  
differential for the liability z 

Let pt = fraction of individuals chosen in 
generation t that display the trait 
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- 
- t t q 

S t = π π t = 
φ!( π t ) p t - q t 

1 q 
* 

This fraction does not display 
 the trait, hence z < 0   

When z is normally distributed, this reduces to 

Height of the unit normal density function 
at the point µt 

Hence, we start at some initial value given h2 and 
µ0, and iterative to obtain selection response 

This fraction displays 
 the trait, hence z > 0   



49 

25 20 15 10 5 0 0.00 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Generation 

Se
le

ct
io

n 
di

ffe
re

nt
ia

l S
 

q,
 F

re
qu

en
cy

 o
f c

ha
ra

ct
er
 S q 

Initial frequency of q = 0.05.  Select only on adults 
showing the trait (pt = 1) 
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Ancestral Regressions 
When regressions on relatives are linear, we can think of the response as
 the sum over all previous contributions  

For example, consider the response after 3 gens: 

8 great-grand parents 
S0 is there selection 
differential 
β3,0 is the regression 
coefficient for an  
offspring at time 3 
on a great-grandparent 
From time 0 

4 grandparents 
Selection diff S1 
 β3,1 is the regression 
of relative in generation 
3 on their gen 1 relatives 

2 parents 
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Ancestral Regressions 

βT,t = cov(zT,zt) 

More generally, 

The general expression cov(zT,zt), where we keep track of the actual
 generation, as oppose to cov(z, zT-t ) -- how many generations 
separate the relatives, allows us to handle inbreeding, where the 
regression slope changes over generations of inbreeding. 
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Changes in the Variance under Selection 
The infinitesimal model --- each locus has a very small 
effect on the trait. 

Under the infinitesimal, require many generations  
for significant change in allele frequencies 

However, can have significant change in genetic 
variances due to selection creating linkage disequilibrium 

Under linkage equilibrium, freq(AB gamete) =
 freq(A)freq(B) 

With positive linkage disequilibrium, f(AB) > f(A)f(B), so
 that AB gametes are more frequent 

With negative linkage disequilibrium, f(AB) < f(A)f(B),
 so that AB gametes are less frequent 
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Selection that reduces the variance generates  
negative d, selection that increases the variance 
generates positive d 
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Additive variance with LD: 
Additive variance is the variance of the sum of allelic effects, 

Additive variance 

Genic variance: value of Var(A) 
in the absence of disequilibrium 
function of allele frequencies 

Disequilibrium contribution. Requires covariances
 between allelic effects at different loci 
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Key:  Under the infinitesimal model, no  
(selection-induced) changes in genic 
variance  σ2

a  

Selection-induced changes in d change σ2
A, σ2

z , h2 

Dynamics of d:  With unlinked loci, d loses half its value each  
generation (i.e, d in offspring is 1/2  d of their parents, 
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Dynamics of d:  Computing the effect of selection in  generating d 

Consider the parent-offspring regression 

Taking the variance of the offspring given the selected parents gives 

Change in variance from selection 
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Change in d = change from recombination plus 
change from selection 

Recombination Selection 

+ = 

In terms of change in d, 

This is the Bulmer Equation (Michael Bulmer), and it is 
akin to a breeder’s equation for the change in variance 

At the selection-recombination  
equilibrium, 
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Application:  Egg Weight in Ducks 
Rendel (1943) observed that while the change  
mean weight weight (in all vs. hatched) as 
negligible, but their was a significance decrease 
in the variance, suggesting stabilizing selection 

Before selection, variance = 52.7, reducing to 
43.9 after selection. Heritability was h2 = 0.6 

= 0.62 (43.9 - 52.7) = -3.2 
Var(A) = 0.6*52.7= 31.6.  If selection stops, Var(A) 
is expected to increase to 31.6+3.2= 34.8 
Var(z) should increase to 55.9, giving h2 = 0.62 
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Specific models of selection-induced 
changes in variances 

Proportional reduction model: 
constant fraction k of  

variance removed 

Bulmer equation simplifies 
to 

Closed-form solution 
to equilibrium h2 
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Equilibrium h2 under direction 
truncation selection 

62 

Directional truncation selection 
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Changes in the variance = changes in h2 
and even S (under truncation selection) 

R(t) = h2(t) S(t) 
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Inbreeding 
•  Inbreeding =  mating of related individuals 
•  Often results in a change in the mean of a trait 
•  Inbreeding is intentionally practiced to: 

–  create genetic uniformity of laboratory stocks  
– produce stocks for crossing (animal and plant 

breeding) 
•  Inbreeding is unintentionally generated: 

– by keeping small populations (such as is found 
at zoos) 

– during selection 
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Genotype frequencies under inbreeding 

•  The inbreeding coefficient, F 
•  F = Prob(the two alleles within an individual 

are IBD) -- identical by descent 
•  Hence, with probability F both alleles in an 

individual are identical, and hence a 
homozygote 

•  With probability 1-F, the alleles are 
combined at random 
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Genotype Alleles IBD Alleles not IBD frequency 

A1A1 Fp (1-F)p2 p2 + Fpq 

A2A1 0 (1-F)2pq (1-F)2pq 

A2A2 Fq (1-F)q2 q2 + Fpq 

p A1

A2q

F

F

A1A1

A2A2

p

p A1A1

A2A1
q

A2A1
q

A2A2

Alleles IBD!

1-F 

1-F 

Random mating 

Alleles IBD!
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Changes in the mean under inbreeding 

µF = µ0 - 2Fpqd 

Using the genotypic frequencies under inbreeding, the  
population mean µF under a level of inbreeding F is 
related to the mean µ0 under random mating by 

Genotypes  A1A1   A1A2   A2A2 
      0    a+d      2a 

 freq(A1) = p,   freq(A2) = q!
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•  There will be a change of mean value if dominance is present (d not 0) 

•  For a single locus, if  d > 0, inbreeding will decrease the mean value of
 the  trait.  If  d < 0, inbreeding will increase the mean 

•  For multiple loci, a decrease (inbreeding depression) requires  
directional dominance  ---  dominance effects  di tending to be positive. 

 • The magnitude of the change of mean on inbreeding depends on gene  
frequency, and is greatest when  p = q = 0.5  
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Inbreeding Depression and Fitness 
traits 

Inbred! Outbred!

8 

Inbreeding depression 

Example for maize height 

F2 F3 F4 F5 F6 
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Fitness traits and inbreeding depression 

•  Often seen that inbreeding depression is 
strongest on fitness-relative traits such as 
yield, height, etc. 

•  Traits less associated with fitness often show 
less inbreeding depression 

•  Selection on fitness-related traits may 
generate directional dominance 
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Why do traits associated with fitness 
show inbreeding depression? 

•  Two competing hypotheses: 
–   Overdominance Hypothesis: Genetic variance for fitness is 

caused by loci at which heterozygotes are more fit than both 
homozygotes. Inbreeding  decreases the frequency of 
heterozygotes, increases the frequency of homozygotes, so 
fitness is reduced. 

–   Dominance  Hypothesis:  Genetic variance for fitness is caused 
by rare deleterious alleles that are recessive or partly recessive; 
such alleles persist in populations because of recurrent mutation.  
Most copies of deleterious alleles in the base population are in 
heterozygotes.  Inbreeding increases the frequency of 
homozygotes for deleterious alleles, so fitness is reduced.  
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Inbred depression in largely 
selfing lineages 

•  Inbreeding depression is common in outcrossing 
species 

•  However,  generally fairly uncommon in species with 
a high rate of selfing 

•  One idea is that the constant selfing have purged 
many of the deleterious alleles thought to cause 
inbreeding depression 

•  However, lack of inbreeding depression also means a 
lack of heterosis (a point returned to shortly) 
–  Counterexample is Rice:  Lots of heterosis but 

little inbreeding depression 

12 

Variance Changes Under Inbreeding 

Inbreeding reduces variation within each population 

Inbreeding increases the variation between populations 
(i.e., variation in the means of the populations)  

F = 0 
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F = 1/4 

F = 3/4 

F = 1 

Between-group variance increases with F 

Within-group variance  decreases with F 

14 

Implications for traits 

•  A series of inbred lines from an F2 population 
are expected to show  
–  more within-line uniformity (variance about the 

mean within a line)  
• Less within-family genetic variation for 

selection 

–  more between-line divergence (variation in the 
mean value between lines) 
• More between-family genetic variation for 

selection 
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Variance Changes Under Inbreeding 

General F = 1 F = 0 

Between lines 2FVA 2VA 0 

Within Lines (1-F) VA 0 VA 

Total (1+F) VA 2VA VA 

The above results assume ONLY additive variance 
i.e., no dominance/epistasis.  When nonadditive 
variance present, results very complex (see WL Chpt 11). 
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Line Crosses:  Heterosis 
When inbred lines are crossed, the progeny show an increase in mean 
for characters that previously suffered a reduction from inbreeding. 

This increase in the mean over the average value of the 
parents is called   hybrid vigor or heterosis 

A cross is said to show heterosis if H > 0, so that the  
F1 mean is larger than the average of both parents.!
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Expected levels of heterosis!

If pi denotes the frequency of Qi in line 1, let pi + δpi denote 
the frequency of Qi in line 2. 

•  Heterosis depends on dominance:  d = 0  = no inbreeding depression and no  
Heterosis. As with inbreeding depression, directional dominance is required for heterosis. 

• H is proportional to the square of the difference in allele frequencies  
between populations.  H is greatest when alleles are fixed in one population and 
lost in the other (so that |δpi| = 1).  H = 0  if  δp = 0. 

• H is specific to each particular cross. H  must be determined empirically, 
since we do not know the relevant loci nor their gene frequencies.  

The expected amount of heterosis becomes!

H F 1 = 
n X 

i = 1 
( ± p i ) 2 d i 

Heterosis declines in the F2 

In the F1, all offspring are heterozygotes.  In the F2,  
random mating has occurred, reducing the frequency  
of heterozygotes.!

As a result, there is a reduction of the amount of  
heterosis  in the F2 relative to the F1, !

Since random mating occurs in the F2 and subsequent 
generations, the level of heterosis stays at the F2 level.!
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Agricultural importance of heterosis 

Crop % planted 
as hybrids 

% yield 
advantage 

Annual 
added 

yield:  % 

Annual 
added 

yield: tons 

Annual land 
savings 

Maize 65 15 10 55 x 106   13 x 106 ha 

Sorghum 48 40 19 13 x 106   9 x 106 ha 

Sunflower 60 50 30 7 x 106   6 x 106 ha 

Rice 12 30 4 15 x 106  6 x 106 ha 

Crosses often show   high-parent heterosis, wherein the  
F1 not only beats the average of the two parents  
(mid-parent  heterosis), it exceeds the best parent. 
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Hybrid Corn in the US 

Shull (1908) suggested objective of corn breeders  
should be to find and maintain the best parental 
lines for crosses 

Initial problem:  early inbred lines had low seed set 

Solution (Jones 1918):  use a hybrid line as the seed  
parent, as it should show heterosis for seed set 

1930’s - 1960’s:  most corn produced by double crosses 

Since 1970’s most from single crosses 
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A Cautionary Tale 

1970-1971 the great  Southern Corn Leaf Blight  almost
 destroyed the whole US corn crop 

Much larger (in terms of food energy) than the great potato
 blight of the 1840’s 

Cause:  Corn can self-fertilize, so to make hybrids either have to
 manually detassle the pollen structures or use genetic tricks that
 cause male sterility. 

Almost 85% of US corn in 1970 had Texas cytoplasm Tcms, a
 mtDNA encoded male sterility gene 

Tcms turned out to be hyper-sensitive to the fungus 
Helminthosporium maydis.  Resulted in over a billion dollars 
of crop loss 

Crossing Schemes to Reduce the 
Loss of Heterosis:  Synthetics 

Take n lines and construct an F1 population by 
making all pairwise crosses 
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Synthetics 

•  Major trade-off 
– As more lines are added, the F2 loss of 

heterosis declines 
– However, as more lines are added, the 

mean of the F1 also declines, as less elite 
lines are used 

– Bottom line:  For some value of n,  F1 - H/n 
reaches a maximum value and then starts 
to decline with n  

24 

Types of crosses 
•  The F1 from a cross of lines A x B (typically 

inbreds) is called a single cross 
•  A three-way cross (also called a modified 

single cross) refers to the offspring of an A 
individual crossed to the F1 offspring of B x 
C. 
–  Denoted A x (B x C) 

•  A double (or four-way) cross is (A x B) x (C x 
D), the offspring from crossing an A x B F1 
with a C x D F1. 
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Predicting cross performance 

•  While single cross (offspring of A x B) hard to 
predict, three- and four-way crosses can be 
predicted if we know the means for single 
crosses involving these parents 

•  The three-way cross mean is the average mean 
of the two single crosses: 
–  mean(A x {B x C}) = [mean(A x B) + mean(A x C)]/2  

•  The mean of a double (or four-way) cross is the 
average of all the single crosses, 
–  mean({A x B} x {C x D}) = [mean(AxC) + mean(AxD) + 

mean(BxC) + mean(BxD)]/4 

Individual vs. Maternal Heterosis 
•   Individual heterosis   

–   enhanced performance in a hybrid individual 
•   Maternal heterosis   

–  enhanced maternal performance (such as
 increased litter size and higher survival rates of
 offspring) 

–  Use of crossbred dams 
–  Maternal heterosis is often comparable, and can

 be greater than, individual heterosis 



Individual vs. Maternal Heterosis in Sheep traits 

Trait Individual H Maternal H total 

 Birth weight 3.2% 5.1% 8.3% 

Weaning weight 5.0% 6.3% 11.3% 

Birth-weaning 
survival  

9.8% 2.7% 12.5% 

Lambs reared 
per ewe 

15.2% 14.7% 29.9% 

Total weight 
lambs/ewe 

17.8% 18.0% 35.8% 

Prolificacy 2.5% 3.2% 5.7% 

Estimating the Amount of 
Heterosis in Maternal Effects 

z A = z + g 
I 
A + g 

M 
A + g 

M 0 

A 

Contributions to mean value of line A 

Individual
 genetic

 effect (BV) 

Maternal
 genetic

 effect (BV) 

Grandmaternal
 genetic effect (BV) 



z A B = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
B + g 

M 0 

B + h 
I 
A B 

Consider the offspring of an A sire and a B dam 

Individual genetic
 value is the

 average of both
 parental lines 

Maternal and
 grandmaternal

 effects 
from the B mothers 

Contribution
 from (individual) 

heterosis 

z B A = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
A + g 

M 0 
A + h 

I 
A B 

Now consider the offspring of an B sire and a A dam 

Maternal and grandmaternal
 genetic effects for B line 

z A B = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
B + g 

M 0 

B + h 
I 
A B 

Difference between the two line means estimates 
difference in maternal + grandmaternal effects 
in A vs. B 



z A B + z B A 

2 

z A A + z B B 

2 
= h 

I 
A B 

Hence, an estimate of individual heteroic effects is 

z C A B = 2 g 
I 
C + g I A + g I B 

4 + h 
I 
C A + h I C B 

2 + g 
M 
A + g M 

B 
2 + h M 

A B + g M 0 
B + r 

I 
a b 
2 

The mean of offspring from a sire in line C crossed to 
a dam from a A X B cross (B = granddam, AB = dam) 

Average individual genetic value 
(average of the line BV’s) 

New individual
 heterosis of C x AB

 cross 

Genetic maternal effect  
(average of maternal BV for both

 lines) 
Grandmaternal
 genetic effect 

Maternal genetic
 heteroic effect 

“Recombinational loss” --- 
 decay of the F1 heterosis

 in the F2   

z C A B = 
z C A + z C B 

2 
= h 

M 
A B + 

r I a b 
2 

One estimate (confounded) of maternal heterosis 



1 

Lecture 6: 
Selection on  

Multiple Traits!

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Seattle 
17 – 19 July 2017 

2 

Genetic vs. Phenotypic correlations 
•  Within an individual, trait values can be 

positively or negatively correlated, 
–  height and weight -- positively correlated 
–  Weight and lifespan  -- negatively correlated 

•  Such phenotypic correlations can be directly 
measured,  
–  rP denotes the  phenotypic correlation 

•  Phenotypic correlations arise because 
genetic and/or environmental values within 
an individual are correlated. 
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r  P 

P x P y 

The phenotypic values between traits x and y 
within an individual are correlated 

x y 

A r 

A A 

Correlations between the
 breeding values of x and y
 within the individual can

 generate a 
phenotypic correlation 

Likewise, the
 environmental values

 for the two traits within
 the individual could also

 be correlated 

y 

r E 

E x E 
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Genetic & Environmental Correlations 

•  rA = correlation in breeding values (the 
genetic correlation) can arise from 
–  pleiotropic effects of loci on both traits 
–  linkage disequilibrium, which decays over time 

•  rE = correlation in environmental values 
–  includes non-additive genetic effects (e.g., D, I) 
–  arises from exposure of the two traits to the same 

individual environment 
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The relative contributions of genetic and environmental 
correlations to the phenotypic correlation 

If heritability values are high for both traits, then 
the correlation in breeding values dominates the 
phenotypic corrrelation 

If heritability values in EITHER trait are low, then 
the correlation in environmental values dominates the 
phenotypic correlation 

In practice, phenotypic and genetic correlations often  
have the same sign and are of  similar magnitude, but   
this is not always the case 
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Estimating Genetic Correlations 
Recall that we estimated VA from the regression of 
trait x in the parent on trait x in the offspring, 

Trait x in parent 

Trait x in 
offspring 

       Slope =  
(1/2) VA(x)/VP(x) 

VA(x) = 2 *slope * VP(x) 
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Estimating Genetic Correlations 
Similarly, we can estimate VA(x,y), the covariance in the 
breeding values for traits x and y, by the regression of 
trait x in the parent and trait y in the offspring 

Trait x in parent 

Trait y in 
offspring 

       Slope =  
(1/2) VA(x,y)/VP(x) 

VA(x,y) = 2 *slope * VP(x) 
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Thus, one estimator of VA(x,y) is 

VA(x,y)  =  by|x VP(x) + bx|y VP(y) 

2 *by|x * VP(x) + 2 *bx|y * VP(y)  

2 
VA(x,y) = 

Put another way,  
            Cov(xO,yP) = Cov(yO,xP) = (1/2)Cov(Ax,Ay) 

   Cov(xO,xP) = (1/2) VA (x) = (1/2)Cov(Ax, Ax) 
   Cov(yO,yP) = (1/2) VA (y) = (1/2)Cov(Ay, Ay) 

Likewise, for half-sibs, 
 Cov(xHS,yHS) = (1/4) Cov(Ax,Ay) 
 Cov(xHS,xHS) = (1/4) Cov(Ax,Ax) = (1/4) VA (x)  
 Cov(yHS,yHS) = (1/4) Cov(Ay,Ay) = (1/4) VA (y)  

giving 

General:  Cov(xi,yj) = 2ΘijCov(Ai,Aj) 



9 

Correlated Response to Selection 
Direct selection of a character can cause a within- 
generation change in the mean of a phenotypically 
correlated character. 

Direct selection on 
x also changes the 
mean of y 

* 

+ 

Select All 

X 

Y 

S X 

S Y 
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Phenotypic correlations induce within-generation 
changes  

For there to be a between-generation change, the 
breeding values must be correlated.  Such a change 
is called a correlated response to selection 

Trait y 

Trait x 

Phenotypic values 

Sy 

Sx 



Example 
•  Suppose h2 trait x = 0.5, h2 trait y = 0.3 
•  Select on trait one to give Sx = 10 

– Expected  response is Rx = 5 

•  Suppose Cov(tx,ty) = 0.5, then Sy = 5 
• What is the response in trait 2? 

–  is it CRy = 0.3*5 = 1.5.  NO! 
– Could be positive, negative, or zero 
– Depends on the Genetic correlation

 between traits x and y.  Why?? 
11 

12 

Trait y 

Trait x 

Phenotypic values 

Rx 

Ry = 0 
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Trait y 

Trait x 

Breeding values 

Rx 

Ry = 0 

Phenotypic values are misleading, what we want are the
 breeding values for each of the selected individuals.  Each  
arrow takes an individual’s phenotypic value into its actual 
breeding value. 
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Trait y 

Trait x 

Breeding values 

Rx 

Ry = 0 
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S S 

Direct selection Indirect selection 
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Predicting the correlated response 

bAy|Ax  = 
Cov(Ax,Ay) 

Var(Ax) 
= rA 

σ(Ax) 

σ(Ay) 

The change in character y  in response to selection 
on x  is the regression of the breeding  value of y  
on the breeding value of x, 

  Ay = bAy|Ax Ax 

where 

 If Rx denotes the direct response to selection on x, 
CRy denotes the correlated response in y, with 

CRy = bAy|Ax Rx  
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We can rewrite CRy = bAy|Ax Rx as follows 

First, note that Rx = h2
xSx = ixhx σA (x)  

Recall that ix = Sx/σP
 (x) is the selection

 intensity on x 

Since bAy|Ax  = rA σA(x) / σA(y),  

We have CRy = bAy|Ax Rx = rA σA (y) hxix  

Substituting σA (y)= hy σP (y) gives our final result:  

CRy =  ix hx hy rA σP (y) 

18 

CRy =  ix hx hy rA σP (y) 

Noting that we can also express the direct response as 
Rx = ixhx

2 σp (x) 

shows that hx hy rA in the corrected response plays the 
same role as hx

2 does in the direct response.  As a result, 
hx hy rA  is often called the co-heritability 
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Direct vs. Indirect Response 
We can change the mean of x via a direct response Rx 
or an indirect response CRx due to selection on y 

Hence, indirect selection gives a large response when 

• Character y  has a greater heritability than x, and the genetic 
correlation between x  and y is high. This could occur if x is difficult to 
measure with precison but y is not.   

• The selection intensity is much greater for y  than x.  This would be true 
 if y were measurable in both sexes but x  measurable in only one sex. 

20 

G x E 
The same trait measured over two (or more) environments 
can be considered as two (or more) correlated traits. 

If the genetic correlation | ρ| = 1 across environments and 
the genetic variance of the trait is the same in both 
environments, then no G x E 

However, if |ρ| < 1, and/or Var(A) of the trait varies 
over environments, then G x E present 

Hence, dealing with G x E is a multiple-trait problem 
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Participatory breeding 
The environment where a crop line is developed may 
be different from where it is grown 

An especially important example of this is participatory
 breeding, wherein subsistence farmers are involved in the
 field traits. 

Here, the correlated response is the yield in subsistence 
environment given selection at a regional center, while direct 
response is yield when selection occurred in subsistence 
environment.   Regional center selection works when 

22 

Dimensions given by rows x columns (r x c) 
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Matrix Multiplication 

In order to multiply two matrices, they must conform 

A r x c  B c x k  = C r x k 

24 

Matrix Multiplication 
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The Multivariate Breeders’ 
Equation 

Suppose we are interested in the vector R of responses 
when selection occurs on n correlated traits 

Let S be the vector of selection differentials. 

In the univariate case, the relationship between R 
and S was the Breeders’ Equation, R = h2S 

What is the multivariate version of this? 

28 
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The multivariate breeder’s equation 

R = G P-1 S 

R= h2S = (VA/VP) S 
Natural parallels 
with univariate 

breeder’s equation 

 P-1 S = β is called the selection gradient and measures the
 amount of direct selection on a character 

The gradient version of the breeder’s equation is given by R = G β. 
This is often called the Lande Equation (after Russ Lande) 
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Sources of within-generation change in the mean 

Since β = P-1 S, S  = P β,%
giving the j-th element as 

Change in mean from
 phenotypically 

correlated characters
 under direct selection 

 Within-generation
 change in trait j 
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Within-generation change in the mean 

Between-generation
 change (response) 

 in trait j 

Indirect response
 from genetically 

correlated
 characters under
 direct selection 

Response in the mean 
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Example in R 

Suppose you observed a within-generation change of 
-10 for oil, 10  for protein, and 100 for yield. 

What is R?  What is the nature of selection on each 
trait? 
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Enter G, P, and S 

R = G P-1S 
13.6  decrease in oil 
12.3 increase in protein 
65.1 increase in yield 

34 

S versus β :  Observed change versus targets of 
Selection, β = P-1 S, S  = P β,%

 β: targets of selection S: observed within-generation 
change 

Observe a within-generation increase in protein, but the 
actual selection was to decrease it. 
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Quantifying Multivariate Constraints to Response 

Is there genetic variation in the direction of selection? 

Consider the following G and β: 

Taken one trait at a time, we might expect Ri = Giiβi 

Giving R1 = 20, R2 = -40. 
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Constraints Imposed by 
Genetic Correlations 

While β is the directional optimally favored by 
selection, the actual response is dragged off 
this direction, with R = G β. 

What is the true nature of selection on the two traits? 
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What does the actual response look like? 
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Time for a short diversion: 
The Geometry of a matrix 

A vector is a geometric object, leading from the 
origin to a specific point in n-space. 

We can thus change a vector by both rotation and scaling 

Hence, a vector has a length and a direction. 

The length (or norm) of a vector x is denoted by ||x|| 
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The (Euclidean) distance between two vectors x and y 
(of the same dimension) is 

The angle θ between two vectors provides a measure 
for how they differ. 

If two vectors satisfy x = ay (for a constant a), then 
they point in the same direction, i.e., θ = 0 (Note that  
a  < 0 simply reflects the vector about the origin) 

Vectors at right angles to each other, θ = 90o or 270o 

are said to be orthogonal.  If they have unit length as 
well, they are further said to be orthonormal. 
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Matrices Describe Vector transformations 

The action of multiplying a vector x by a matrix A 
generates a new vector y = Ax, that has different 
dimension from x unless A is square.  

Matrix multiplication results in a rotation and a scaling of 
a vector 

Thus A describes a transformation of the original 
coordinate system of x into a new coordinate system. 

Example:  Consider the following G and β: 



41 

The resulting angle between R and β is given by 

For an angle of θ = 45 o 
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Eigenvalues and Eigenvectors 
The eigenvalues and their associated eigenvectors 
fully describe the geometry of a matrix. 

Eigenvalues describe how the original coordinate 
axes are scaled in the new coordinate systems 

Eigenvectors describe how the original coordinate 
axes are rotated in the new coordinate systems 

For a square matrix A, any vector y that satisfies 
Ay = λy for some scaler λ is said to be an eigenvector 
of A and λ its associated eigenvalue. 
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Note that if  y is an eigenvector, then so is a*y 
for any scaler a, as Ay = λy.  

Because of this, we typically take eigenvectors to 
be scaled to have unit length (their norm = 1) 

An eigenvalue λ of A satisfies the equation 
det(A - λI) = 0, where det = determinant 

For an n-dimensional square matrix, this yields an 
n-degree polynomial in λ and hence up to n unique roots. 

Two nice features: 

det(A) = Πi λi. The determinant is the product of the eigenvalues 

trace(A) = Σi λi. The trace (sum of the diagonal elements) is 
 is the sum of the eigenvalues 
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Note that det(A) = 0 if any only if at least one 
eigenvalue = 0 

For symmetric matrices (such as covariance matrices) 
the resulting n eigenvectors are mutually orthogonal, 
and we can factor A into its spectral decomposition,  

Hence, we can write the product of any vector x and A as 
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Example:  Let’s reconsider a previous G matrix 
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Even though β points in a direction very close of e2, 
because most of the variation is accounted for by e1, 
its projection is this dimension yields a much longer 
vector.  The sum of these two projections yields the 
selection response R. 
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Realized Selection Gradients 

Suppose we observe a difference in the vector of means 
for two populations, R =  µ1 - µ2. 

If we are willing to assume they both have a common 
G matrix that has remained constant over time, then 
we can estimate the nature and amount of selection 
generating this difference by 

β = G-1 R 

Example:  You are looking at oil content (z1) and yield (z2)  
in two populations of soybeans. Population a 
has µ1 = 20 and µ2 = 30, while for Pop 2, µ1 = 10 and 
µ2 = 35.  
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Suppose the variance-covariance matrix has been 
stable and equal in both populations, with 

The amount of selection on both traits to obtain this 
response is 
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Heritability 
Narrow vs. broad sense 

Narrow sense: h2 = VA/VP  

Broad sense: H2 = VG/VP  

Slope of midparent - offspring regression 
        (sexual reproduction) 

Slope of a parent - cloned offspring  regression 
     (asexual reproduction) 

When one refers to heritability, the default is narrow-sense, h2 

h2 is the measure of (easily) usable genetic 
variation under sexual reproduction 



6/26/17 

2 

Why h2 instead of h? 
 

Blame Sewall Wright, who used h to denote the correlation 
between phenotype and breeding value.  Hence,  h2 is the total 
fraction of phenotypic variance due to breeding values 

Heritabilities are functions of populations 
Heritability values only make sense in the content of the population 
for which it was measured 

Heritability measures the standing genetic variation of a population 

A zero heritability DOES NOT imply that the trait is not 
genetically determined 

r(A,P) = σ (A,P)
σ Aσ P

=
σ A
2

σ Aσ P

=
σ A

σ P

= h

Heritabilities are functions of the distribution of 
environmental values (i.e., the universe of E values) 

Decreasing VP increases h2. 

Heritability values measured in one environment 
(or distribution of environments) may not be valid  
under another 

Measures of heritability for lab-reared individuals 
may be very different from heritability in nature 
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Heritability and the Prediction of Breeding Values 
 

If P denotes an individual’s phenotype, then best linear  
predictor of their breeding value A is 

The residual variance is also a function of h2: 

The larger the heritability, the tighter the distribution of 
true breeding values around the value h2(P - mP) predicted 
by an individual’s phenotype. 

A = σ (P,A)
σ P
2 (P −µP )+ e = h

2 (P −µP )+ e

σ e
2 = (1− h2 )σ P

2

Heritability and Population Divergence 

Heritability is a completely unreliable predictor of 
long-term response 

Measuring heritability values in two populations 
that show a difference in their means provides 
no information on whether the underlying 
difference is genetic 
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 Sample Heritabilities 
h2 

 People Height 0.80 
Serum IG 0.45 

 Pigs Back-fat 0.70 
Weight gain 0.30 
Litter size 0.05 

 Fruit Flies Abdominal Bristles 0.50 
Body size 0.40 
Ovary size 0.30 
Egg production 0.20 

Traits more 
closely associated 
with fitness tend 
to have lower 
heritabilities 

ANOVA: Analysis of Variance 
•  Partitioning of trait variance into within- and among-

group components 

•  Two key ANOVA identities 
–  Total variance = between-group variance + within-

group variance 
•  Var(T) = Var(B) + Var(W) 

–  Variance(between groups) = covariance (within 
groups) 

–  Intraclass correlation, t = Var(B)/Var(T) 

•  The more similar individuals are within a group (higher 
within-group covariance), the larger their between-
group differences (variance in the group means) 
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Situation 1 

Var(B) = 2.5 
Var(W) = 0.2 
Var(T) = 2.7 

Situation 2 

Var(B) = 0 
Var(W) = 2.7 
Var(T) = 2.7 

 t = 2.5/2.7 = 0.93  t = 0 

4 3 2 1 4 3 2 1 

 Phenotypic Resemblance Between Relatives 
Relatives Covariance Regression (b) or 

correlation (t) 
Offspring and 

one parent 
 

Offspring and 
mid-parent 

 
Half sibs 

 
 

Full sibs 
 
 
 

t =

1
2
VA +

1
4
VD +VEc
VP

t = 1
4
VA
VP

b = 1
2
VA
VP

b = VA
VP

1
2
VA

1
2
VA

1
4
VA

1
2
VA +

1
4
VD +VEc
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Why cov(within) = variance(among)? 

•  Let zij denote the jth member of group i. 
–  Here zij = u + gi + eij 
–  gi  is the group effect 
–  eij  the residual error 

•  Covariance within a group Cov(zij,zik )  
  = Cov(u + gi + eij, u + gi + eik)  
  = Cov(gi, gi) as all other terms are uncorrelated 

–     Cov(gi, gi) = Var(g) is the among-group variance 

Estimation: One-way ANOVA 
Simple (balanced) full-sib design:  N full-sib families, 

each with n offspring:  One-way ANOVA model 

zij = m + fi + wij 
   

Trait value in 
sib j from 

family i 
Common mean 

Effect for family i; 
deviation of mean of i from  

the common mean 

Deviation of sib j 
from the family 

mean 
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Covariance between members of the same group  
equals the variance among (between) groups 

Hence, the variance among family effects equals the  
 covariance between full sibs 

σ f
2 =σ A

2 / 2+σ D
2 / 4+σ Ec

2

Cov(Full Sibs) =σ (zij , zik )
                   =σ [(µ + fi +wij ),(µ + fi +wik )]
                   =σ ( fi , fi )+σ ( fi ,wik )+σ (wij , fi )+σ (wij ,wik )

                   =σ f
2

 The within-family variance  σ2
w = σ2

P - σ2
f, 

 

σ w(FS)
2 =σ P

2 − (σ A
2 / 2+σ D

2 / 4+σ Ec
2 )

         =σ A
2 +σ D

2 +σ E
2 − (σ A

2 / 2+σ D
2 / 4+σ Ec

2 )
         = (1 / 2)σ A

2 + (3 / 4)σ D
2 +σ E

2 −σ Ec
2
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One-way ANOVA: N families 
with n sibs, T = Nn 

Factor Degrees of 
freedom, df Sum of squares (SS) Mean 

squares (MS) E[MS] 

Among 
family N-1 SSf/(N-1) σ2

w + n σ2
f 

 

Within 
family T-N SSw/(T-N) σ2

w 

SSf = n (zi − z)
2

i=1

N

∑

SSw = (zij − zi )
2

j=1

n

∑
i=1

N

∑

Var( f ) =
MSf −MSw

n

 Estimating the variance components: 

Since 

2Var(f) is an upper bound for the additive variance 

Var(w) =MSw

Var(z) =Var( f )+Var(w)

σ f
2 =σ A

2 / 2+σ D
2 / 4+σ Ec

2
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Assigning standard errors ( = square root of Var) 

Fun fact: Under normality, the (large-sample) variance 
for a mean-square is given by 

σ 2 (MSx ) ≅
2(MSx )

2

dfx + 2

Var[Var(w(FS))] =Var(MSw) ≅
2(MSx )

2

T − N + 2

Var[Var( f )] =Var
MSf −MSw

n
⎡

⎣
⎢

⎤

⎦
⎥

                    ≅ 2
n2

(MSf )2

N +1
+

(MSw )2

T − N + 2

⎡

⎣
⎢

⎤

⎦
⎥

Estimating heritability 

tFS =
Var( f )
Var(z)

=
1
2
h2 +σ D

2 / 4+σ Ec
2

σ z
2

Hence, h2 ≤ 2 tFS 
 
An approximate large-sample standard 
error for h2 is given by 

SE(h2 ) ≅ 2(1− tFS )[1+ (n−1)tFS ] 2 / [Nn(n−1)]
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Worked Example 

Factor df SS MS EMS 

Among-families 9 SSf = 405 45 σ2
w  + 5 σ2

f 

Within-families 40 SSw = 800 20 σ2
w 

10 full-sib families, each with 5 offspring are measured 

Var( f ) =
MSf −MSw

n
=
45− 20
5

= 5

Var(w) =MSw = 20

Var(z) =Var( f )+Var(w) = 25

SE(h2 ) ≅ 2(1− 0.4)[1+ (5−1)0.4] 2 / [50(5−1)] = 0.312

VA < 10 

h2 < 2 (5/25) = 0.4 

Full sib-half sib design: Nested ANOVA 

1 

3 

o 2 

o 

o n 

. . . 

o 1 
* 

* 

* 

* 

2 

3 

o 2 

o 

o n 

. . . 

o 1 
* 

* 

* 

* 

M 

3 

o 2 

o 

o n 

. . . 

o 1 
* 

* 

* 

* 

1 

.   .   . 

1 

3 

o 2 

o 

o n 

. . . 

o 1 
* 

* 

* 

* 

2 

3 

o 2 

o 

o n 

. . . 

o 1 
* 

* 

* 

* 

M 

3 

o 2 

o 

o n 

. . . 

o 1 
* 

* 

* 

* 

N 

Full-sibs 

Half-sibs 
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Estimation: Nested ANOVA 
Balanced full-sib / half-sib design:  N males (sires) are 

crossed to M dams each of which has n offspring:  
 Nested ANOVA model 

Value of the 
kth offspring 
from the jth 
dam for sire i 

Overall mean 

Effect of sire i; deviation 
of mean of i’s family from 

overall mean  

Effect of dam j of sire i; 
deviation of mean of dam j from 

sire and overall mean  

Within-family deviation of 
kth offspring from the 
mean of the ij-th family  

zijk = m + si + dij + wijk 
 

Nested ANOVA Model 

σ2
s = between-sire variance = variance in sire family means 

σ2
d = variance among dams within sires = variance of dam 

means for the same sire 

σ2
w = within-family variance 

σ2
T = σ2

s + σ2
d + σ2

w 

zijk = m + si + dij + wijk 
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Nested ANOVA: N sires crossed to 
M dams, each with n sibs, T = NMn 

Factor df SS MS E[MS] 
Sires N-1 SSs SSs/(N-1) 

Dams(Sires) N(M-1) SSd SSd/[N(M-1)] 

Sibs(Dams) T-NM SSw SSw/(T-NM) 

σ w
2 + nσ d

2 +Mnσ s
2

σ w
2 + nσ d

2

σ w
2

SSs =Mn (zi − z )
2

i=1

N

∑

SSd = n (zij − zi )
2

j=1

M

∑
i=1

N

∑ SSw = n (zijk − zij )
2

k=1

n

∑
j=1

M

∑
i=1

N

∑

   where: 
 
 
                                           and 

Estimation of sire, dam, and family variances: 

Var(s) = MSs −MSd
Mn

Var(d) = MSd −MSw
n

Var(e) =MSw

Translating these into the desired variance components: 
 
� Var(Total) = Var(between FS families) + Var(within FS) 
 
 
 
� Var(Sires) = Cov(Paternal half-sibs) 

→σ w
2 =σ z

2 −Cov(FS)

σ d
2 =σ z

2 −σ s
2 −σ w

2 =σ (FS)−σ (PHS)
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Summarizing: 

Expressing these in terms of the genetic and 
environmental variances: 

σ w
2 =σ z

2 −σ (FS)

σ s
2 =σ (PHS) σ d

2 =σ z
2 −σ s

2 −σ w
2

    =σ (FS)−σ (PHS)

σ w
2 ≅

σ A
2

2
+
3σ D

2

4
+σ Es

2

σ d
2 ≅

σ A
2

4
+
σ D
2

4
+σ Ec

2σ s
2 ≅

σ A
2

4

Intraclass correlations and estimating heritability 

Note that 4tPHS  = 2tFS  implies no dominance or 
shared family environmental effects 

tPHS =
Cov(PHS)
Var(z)

=
Var(s)
Var(z)

→ 4tPHS = h
2

tFS =
Cov(FS)
Var(z)

=
Var(s)+Var(d)

Var(z)
→ h2 ≤ 2tFS
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Worked Example: N = 10 sires, M = 3 dams, n = 10 sibs/dam 

Factor df SS MS E[MS] 
Sires 9 4,230 470 

Dams(Sires) 20 3,400 170 

Within Dams 270 5,400 20 

σ w
2 +10σ d

2 +30σ s
2

σ w
2 +10σ d

2

σ w
2

σ w
2 =MSw = 20

σ d
2 =

MSd −MSw
n

=
170− 20
10

=15

σ s
2 =

MSs −MSd
Nn

=
470−170
30

=10

σ P
2 =σ s

2 +σ d
2 +σ w

2 = 45

σ d
2 =15= (1 / 4)σ A

2 + (1 / 4)σ D
2 +σ Ec

2

            =10+ (1 / 4)σ D
2 +σ Ec

2

σ A
2 = 4σ s

2 = 40

h2 = σ A
2

σ P
2 =

40
45

= 0.89

σ D
2 + 4σ Ec

2 = 20

Beetle Example 

Factor df SS MS 

Sires 23 33,983 1,477.5 

Dams(Sires) 86 64,441 749.3 

Sibs(Dams) 439 77,924 177.5 

Messina and Fry (2003): 24 males each mated to 4 or 5 
dams (different for each sire), and 5 female progeny 
from each dam were measured for two traits, mass 
eclosion and lifetime fecundity  

beetle example 

ANOVA for fecundity 
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Beetle Example 
Expected Mean Squares (EMS) 

Sires:        σR
2 + nσD

2 + nqσS
2 

Dams(Sires):  σR
2 + nσD

2 
Sibs(Dams):   σR

2 
 
Approximately n = 5 progeny by mating, and an average 
of q = 4.58 dams per sire, so: 

 σR
2 = 177.5 

 σD
2 = (749.3 – 177.5)/5 = 114.36 

 σS
2 = (1,477.5 - 749.3)/22.9 = 31.80 

•  Note: ANOVA method works only with balanced or 
 slightly unbalanced data sets; otherwise ML or 
 REML should be preferred  

Beetle Example 
Estimation of genetic (causal) parameters: 

 σS
2 = VA/4 

 σD
2 = VA/4 + VD/4 + VEc 

 σR
2 = VA/2 + 3VD/4 + VEs 

 
For simplicity, assuming VD = 0, the following 
estimates are obtained for the causal components: 

 VA= 4σS
2 = 127.2 

 VEc = σD
2 - σS

2 = 82.56 
 VEs = σR

2 – 2σS
2 = 113.9 

 
Heritability: h2 = VA/(σR

2 + σD
2 + σS

2) = 0.393 
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Parent-offspring Regression 
Single parent - offspring regression 

The expected slope of this regression is: 

Residual error variance (spread around expected values) 

zoi = µ + bo|p (zpi −µ)+ ei

E(bo|p ) =
σ (zo, zp )
σ 2 (zp )

≅
(σ A

2 / 2)+σ (Eo,Ep )
σ z
2 =

h2

2
+
σ (Eo,Ep )

σ z
2

σ e
2 = 1− h

2

2
⎛

⎝
⎜

⎞

⎠
⎟σ z

2

E(bo|p ) =
σ (zo, zp )
σ 2 (zp )

≅
(σ A

2 / 2)+σ (Eo,Ep )
σ z
2 =

h2

2
+
σ (Eo,Ep )

σ z
2

The expected slope of this regression is: 

Shared environmental values 

To avoid this term, typically regressions are 
male-offspring, as female-offspring more 

likely to share environmental values 
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zoi = µ + bo|MP
zmi + z fi
2

−µ
⎛

⎝
⎜

⎞

⎠
⎟+ ei

Midparent-offspring 
regression: 

The expected slope of this regression is h2 
Residual error variance (spread around expected values) 

bo|MP =
Cov[zo,(zm + z f ) / 2]

Var[(zm + z f ) / 2]

       =
[Cov(zo, zm )+Cov(zo, z f )] / 2

[Var(z)+Var(z)] / 4

       =
2Cov(zo, zp )

Var(z)
= 2bo|p

σ e
2 = 1− h

2

2
⎛

⎝
⎜

⎞

⎠
⎟σ z

2

Standard Errors  
Single parent-offspring regression, N parents, each with n offspring 

Var(bo|p ) ≅
n(t − bp|p

2 )+ (1− t)
Nn

Square regression slope 

Sib correlation  t =  

Total number 
of offspring 

tHS = h
2 / 4

tFS = h
2 / 2+σ D

2 +σ Ec
2

σ z
2

for half-sibs 
 

              for full-sibs 

Var(h2 ) =Var(2bo|p ) = 4Var(bo|p )
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Midparent-offspring regression,  
N sets of parents, each with n offspring 

•  Midparent-offspring variance half that of single 
parent-offspring variance 

Var(h2 ) =Var(bo|MP ) ≅
2[n(tFS − bo|MP

2 / 2)+ (1− tFS )]
Nn

Var(h2 ) =Var(2bo|p ) = 4Var(bo|p )

Estimating Heritability in Natural Populations 
Often, sibs are reared in a laboratory environment, 
making parent-offspring regressions and sib ANOVA 
problematic for estimating heritability 
 
Let b’ be the slope of the regression of the values of 
lab-raised offspring regressed in the trait values of 
their parents in the wild 
 
A lower bound can be placed of heritability using 
parents from nature and their lab-reared offspring, 
 

hmin
2 = (b'o|MP )

2 Varn (z)
Varl (A)

Trait variance in nature 
 
 
Additive variance in lab 
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Why is this a lower bound? 

(b'o|MP )
2 Varn (z)
Varl (A)

=
Covl,n (A)
Varn (z)

⎡

⎣
⎢

⎤

⎦
⎥

2
Varn (z)
Varl (A)

= γ 2hn
2

γ =
Covl,n (A)

Varn (A)Varl (A)

Covariance between 
breeding value in nature 

and BV in lab 

where 
 
 
is the additive genetic covariance 
between environments and hence ϒ2 ≤ 1 

Defining H2 for Plant Populations 
Plant breeders often do not measure individual plants 
(especially with pure lines), but instead measure a plot 
or a block of individuals. This can result in inconsistent 
measures of H2 even for otherwise identical populations 

zijkl =Gi +Ej +GEij + pijk + eijkl

Genotype i 

Interaction between 
genotype i and environment j 

Environment j Effect of plot k for 
genotype i in 
environment j 

Deviations of 
individual plants 

within plots 



6/26/17 

20 

Hence, VP, and hence H2, depends 
on our choice of e, r, and n 

e = number of environments 
r = (replicates) number of plots/environment 
n = number of individuals per plot 

zijkl =Gi +Ej +GEij + pijk + eijkl

σ 2 (zi ) =σG
2 +σ E

2 +
σGE
2

e
+
σ p
2

er
+
σ e
2

ern
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General Linear Model 
(Fixed Effects Model) 

y = Xβ+ ε
responses 

design/incidence 
matrix (known) 

overall mean + fixed 
effects parameters 

residuals 

),0(N~      )I,(N~ 2
iid

i
2

n σε→σ0ε

_ Fixed effect: levels included in the study represent 
all levels about which inference is to be made. Fixed 
effects models: models containing only fixed effects 

Example 1 
Experiment to compare growth performance of pigs 
under two experimental groups (Control and Treatment), 
with three replications each.  

Control Treatment 

53 61 
46 66 
58 57 

Model:  

ijiij ey +δ+µ=

yij: weight gain of pig j of 
group i  

µ: constant; general mean 

δi: effect of group i 

eij: residual term 4 
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Matrix Notation 
Control Treatment 

53 61 
46 66 
58 57 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

δ

δ

µ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

23

21

21

13

12

11

2

1

23

22

21

13

12

11

e
e
e
e
e
e

101
101
101
011
011
011

57
66
61
58
46
53

y
y
y
y
y
y

5 

Flowering time (days, log scale) 
of Brassica napus according to 
genotype in specific locus, such 
as a candidate gene 

Genotype 
qq Qq QQ 
3.4 2.9 3.1 
3.7 2.5 2.6 
3.2 ijiij ey +µ=

yij: flowering time of replication j (j = 1,…, ni) of 
genotype i (i = qq, Qq and QQ) 

µi: expected flowering time of plants of genotype i 

eij: residual (environment and polygenic effects) 

Model:  

Example 2 

6 
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_ The expected phenotypic values µi, however, can be 
expressed as a function of the additive and dominant 
effects 

ijiij ey +µ=

Expected phenotypic value according to the 
genotype on a specific locus. 7 

The model can be 
written then as: 

µ: constant (mid-point flowering time between 
homozygous genotypes) 

xij: indicator variable (genotype), coded as -1, 0 and 1 
for genotypes qq, Qq and QQ 

α and β: additive and dominance effects 

ijijijij e|)x|1(xy +δ−+α+µ=

In matrix notation: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

δ

α

µ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

32

31

22

21

13

12

11

32

31

22

21

13

12

11

e
e
e
e
e
e
e

011
011
101
101
011
011
011

6.2
1.3
5.2
9.2
2.3
7.3
4.3

y
y
y
y
y
y
y
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Least-Squares Estimation 

y =Xβ+ ε

ε ~ (0, Inσ
2 )   →    εi ~

iid
(0,σ2 )

(β̂)

RSS= (ε̂i )
2

i=1

n

∑ = ε̂Tε̂ = (y−Xβ̂)T (y−Xβ̂)

An estimate       of the vector β can be obtained by the method of 
least-squares, which aims to minimize the residual sum of squares, 
given (in matrix notation) by: 

β̂ = (XTX)−1XTy

Taking the derivatives and equating to zero, it can be shown that 
the least-squares estimator of β is: 

E[β̂]= β Var[β̂]= (XTX)−1σ2Ü It is shown that                 and    9 

Var(εi ) = σ i
2 =wiσ

2

Var(ε) =Wσ2

β̂WLS = (X
TW−1X)−1XTW−1y

GSS= εTε = (y−Xβ)TV−1(y−Xβ)

The estimator                                  is called ordinary least 
squares (OLS) estimator, and it is indicated only in situations 
with homoscedastic and uncorrelated residuals 

If the residual variance is heterogeneous (i.e.,                            ), 
the residual variance matrix can be expressed as                   , 
where W is a diagonal matrix with the elements wi, a better 
estimator of β is given by:  

which is generally referred to as weighted least squares (WLS) 
estimator. 

Furthermore, in situations with a general residual variance-
covariance matrix V, including correlated residuals, a 
generalized least squares (GLS) estimator                                             
is obtained by minimizing the generalized sum of squares, given 
by:  

Least-Squares Estimation 

10 

β̂GLS = (X
TV−1X)XTV−1y

β̂OLS = β̂ = (X
TX)−1XTy
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Maximum Likelihood Estimation 

Likelihood Function: any function of the model parameters 
that is proportional to the density function of the data  
Hence, to use a likelihood-based approach for estimating 
model parameters, some extra assumptions must be made 
regarding the distribution of the data 
In the case of the linear model                    , if the 
residuals are assumed normally distributed with mean 
vector zero and variance-covariance matrix V, 
i.e.                            , the response vector y is also 
normally distributed, with expectation                     and 
variance   

y =Xβ+ ε

ε ~ MVN(0,V)
Xβy =][E

Vy =][Var
11 

The distribution of y has a density function given by: 
 

 

so that the likelihood and the log-likelihood functions 
can be expressed respectively as: 

 

 
  and 

⎭
⎬
⎫

⎩
⎨
⎧ −−−π= −−− )()(
2
1exp||)2()V,|(p 1T2/12/n XβyVXβyVβy

⎭
⎬
⎫

⎩
⎨
⎧ −−−∝ −− )()(
2
1exp||)V,(L 1T2/1 XβyVXβyVβ

)()(
2
1||log

2
1)]V,(Llog[)V,(l 1T XβyVXβyVββ −−−−∝= −

Maximum Likelihood Estimation 

12 
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Assuming V known, the likelihood equations for β are 
given by taking the first derivatives of l(β,V) with 
respect to β and equating it to zero 
   
The maximum likelihood estimator (MLE) for β is 
then shown to be: 
    
 
 
Note: Under normality the MLE coincides with the 
GLS estimator discussed previously 
 
In addition, it is shown that: 

yVXXVXββ 1T11T )(ˆ)(MLE −−−==

Maximum Likelihood Estimation 

13 

))(,(MVN~ˆ 11T −− XVXββ

Two-stage Analysis of Longitudinal Data 
Step 1 

yij = β0i +β1izij +β2izij
2 + εij

Supposed a series of longitudinal data (e.g., repeated 
measurements on time) on n individuals. Let yij 
represent the observation j (j = 1,2,…,ni) on individual i 
(i = 1,2,…,n), and the following quadratic regression of 
measurements on time (zij) for each individual: 

 

 

where β0i, β1i and β2i are subject-specific regression 
parameters, and εij are residual terms, assumed 
normally distributed with mean zero and variance σε2 

14 
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yi =Ziβi + εi

yi = (yi1, yi2,…, yini )
T

In matrix notation such subject-specific regressions 
can be expressed as: 

 

 
 
where                                         ,                                  , 
 
                                                              and  εi = (εi1,εi2,…,εini )

T ~ N(0, Iσε
2 )

βi = (β0i,β1i,β2i )
T

Zi =

1 zi1 zi1
2

1 zi2 zi2
2

  
1 zini zini

2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

(1) 
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β̂i = (Zi
TZi )

−1Zi
Tyi

Under these specifications, it is shown that the least-
squares estimate of βi is: 

 

 
 

Note that this is also the maximum likelihood 
estimate of βi 
Such estimates can be viewed as summary statistics 
for the longitudinal data, the same way one could use 
area under the curve (AUC), or peak (maximum value 
of yij), or mean response. 

16 
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β̂i =Wiβ+ui

Two-stage Analysis of Longitudinal Data 
Step 2 

Supposed now we are interested on the effect of 
some other variables (such as gender, treatment, 
year, etc.) on the values of βi 
 
Such effects could be studied using a model as: 
 
 
 
where ui ~ N(0,D), which is an approximation for the 
model: 

βi =Wiβ+ui (2) 

17 

Single-stage Analysis of Longitudinal Data 

The two step-analysis described here can be merged 
into a single stage approach by substituting (2) in (1): 
 
 
 
which can be expressed as: 
 
 
 
where Xi = ZiWi. By concatenating observations from 
multiple individuals, we have the following mixed 
model:  

y =Xβ+Zu+ ε

yi =Xiβ+Ziui + εi

yi =Zi[Wiβ+ui ]+ εi

18 
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Linear Mixed Effects Model 

eZuXβy ++=

⎟⎟
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⎞
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Σ0
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e
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responses 
incidence 
matrices 

random 
effects 

residuals 
fixed 

effects 

19 

Estimation of Fixed Effects 

))(,(MVN~)(ˆ 11T1T11T −−−−−= XVXβyVXXVXβ

eZuε +=

εXβy +=

with                      , such that  
 
è MLE of β :  
 
 

where  

Var[ε]=ZGZT + Σ

ΣZGZV += T

20 
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Prediction of Random Effects 
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Replacing β by its estimate: 

])[E]([Var][Cov][E]|[E 1T yyyyu,uyu −+= −

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ −+=−= −−

)ˆ()ˆ 1TT βXyΣ(ZGZGZu −+= −

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
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⎦
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⎢
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⎡
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−
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−−

yΣZ
yΣX

u
β

GZΣZXΣZ
ZΣXXΣX
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1T

11T1T

1T1T

ˆ

ˆ

Mixed Model Equations 

22 

)ˆ()(ˆ 1T111T βXyΣZGZΣZu −+= −−−−

β̂ = {XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]X}−1

× XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]y

BLUP and BLUE: 
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BLUE and BLUP require knowledge of G and Σ 
These matrices, however, are rarely known and 
must be estimated 
Variance and covariance components estimation: 

•  Analysis of Variance (ANOVA) 

•  Maximum Likelihood 

•  Restricted Maximum Likelihood (REML) 

•  Bayesian Inference 

23 

Estimation of Variance Components 

Animal/plant breeding programs are based on the 
principle that phenotypic observations on related 
individuals can provide information about their 
underlying genotypic values 
 
The additive component of genetic variation is the 
primary determinant of the degree to which 
offspring resemble their parents, and therefore 
this is usually the component of interest in 
artificial selection programs 

Mixed Models in Animal and 
Plant Breeding 

24 
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Many statistical methods for analysis of genetic 
data are specific (or more appropriate) for 
phenotypic measurements obtained from planned 
experimental designs and with balanced data sets 
 
While such situations may be possible within 
laboratory or greenhouse experimental settings, 
data from natural populations and agricultural 
species are generally highly unbalanced and 
fragmented by numerous kinds of relationships 

Mixed Models in Animal and 
Plant Breeding 

25 

Culling of data to accommodate conventional statistical 
techniques (e.g. ANOVA) may introduce bias and/or lead 
to a substantial loss of information 

The mixed model methodology allows efficient estimation 
of genetic parameters (such as variance components and 
heritability) and breeding values while accommodating 
extended pedigrees, unequal family sizes, overlapping 
generations, sex-limited traits, assortative mating, and 
natural or artificial selection 

To illustrate such application of mixed models in breeding 
programs, we consider here the so-called Animal Model in 
situations with a single trait and a single observation 
(including missing values) per individual 

Animal Model 

26 
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The animal model can be described as: 

eZuXβy ++=

y is an (n × 1) vector of observations (phenotypic scores) 
β is a (p × 1) vector of fixed effects (e.g. herd-year-

season effects) 
u ~ N(0, G) is a (q × 1) vector of breeding values (relative 

to all individuals with record or in the pedigree file, 
such that q is in general bigger than n) 

e ~ N(0, Inσe2) represents residual effects, where σe2 is 
the residual variance 

27 

Animal Model 

The Matrix  A 
The matrix G describing the covariances among the 
random effects (here the breeding values) follows 
from standard results for the covariances between 
relatives 

It is seen that the additive genetic covariance 
between two relatives i and i’ is given by             , 
where       is the coefficient of coancestry between 
individuals i and i’, and       is the additive genetic 
variance in the base population 

Hence, under the animal model,                , where A 
is the additive genetic (or numerator) relationship 
matrix, having elements given by 

2
a'ii2 σθ

2
aσ

2
aσ= AG

'ii'ii 2a θ=

'iiθ

28 
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The Matrix  A 

For each animal i in the pedigree (i = 1, 2,…,n), going from 
older to younger animals, compute aii and aij (j = 1, 2,…,i-1) 
as follows: 

If both parents (s and d) of animal i are known: 

 aij = aji = (ajs + ajd)/2 and aii = 1 + asd/2 

If only one parent (e.g. d) of animal i is known: 

 aij = aji = ajd/2 and aii = 1 

If parents unknown: 

 aij = aji = 0 and aii = 1 

Example 

1 2 

4 3 

5 6 

Animal Sire Dam 
1 - - 
2 - - 
3 1 2 
4 1 - 
5 4 3 
6 5 2 

pedigree matrix A 
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In general, in animal/plant breeding interest is 
on prediction of breeding values (for selection 
of superior individuals), and on estimation of 
variance components and functions thereof, 
such as heritability 

The fixed effects are, in some sense, nuisance 
factors with no central interest in terms of 
inferences, but which need to be taken into 
account (i.e., they need to be corrected for 
when inferring breeding values) 

31 

Animal Model 

Since under the animal model                        and                    
                  , the mixed model equations can be 
expressed as: 

2
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Animal Model 
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Conditional on the variance components ratio λ, the 
BLUP of the breeding values are given then by: 
 
 
 
These are generally referred to as Estimated Breeding 
Values (EBV) 
 
Alternatively, some breeders associations express 
their results as Predicted Transmitting Abilities (PTA) 
(or Estimated Transmitting Abilities (ETA) or Expected 
Progeny Difference (EPD)), which are equal to half the 
EBV, representing the portion of an animal’s breeding 
values that is passed to its offspring 

)ˆ()(ˆ T11T βXyZAZZu −λ+= −−

33 

The amount of information contained in an animal’s 
genetic evaluation depends on the availability of 
its own record, as well as how many (and how close) 
relatives it has with phenotypic information 
 
As a measure of amount of information in livestock 
genetic evaluations, EBVs are typically reported 
with its associated accuracies 
 
Accuracy of predictions is defined as the 
correlation between true and estimated breeding 
values, i.e.,                     
 
Instead of accuracy, some livestock species 
genetic evaluations use reliability, which is the 
squared correlation of accuracy (   ) 

)u,û(r iii ρ=

2
ir 34 
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The calculation of               requires the diagonal 
elements of the inverse of the MME coefficient 
matrix, represented as: 

 

 
 
It is shown that the prediction error variance of 
EBV      is given by: 

 

 
where      is the i-th diagonal element of       , 
relative to animal i.  

Prediction Accuracy 

C = XTX XTZ
ZTX ZTZ+ λA−1
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Prediction Accuracy 

The PEV can be interpreted as the fraction of 
additive genetic variance not accounted for by 
the prediction 
 
Therefore, PEV can be expressed also as: 

 

 

such that                             , from which the 
reliability is obtained as: 

2
a

2
i )r1(PEV σ−=

2
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2
i
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e

uu
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2
i c1/c1r λ−=σσ−=

36 



19 

herd 1 

herd 2 

Animal Model 
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R Code 
y<-matrix(c(310,270,350),nrow=3) 
X<-matrix(c(1,1,0,0,0,1),nrow=3) 
Z<-matrix(c(1,0,0,0,0,0,0,1,0,0,0,0,0,1,0),nrow=3, byrow = TRUE) 
A<-matrix(c(1,0,0.5,0.5,0.25, 
            0,1,0,0.5,0, 
            0.5,0,1,0.25,0.5, 
            0.5,0.5,0.25,1,0.125, 
            0.25,0,0.5,0.125,1),nrow=5) 
 
h2<-1/3 # heritability 
a=(1-h2)/h2 
 
# crossproducts 
XX<-crossprod(X,X) 
XZ<-t(X) %*% Z 
ZX<-t(Z) %*% X 
ZZ<-crossprod(Z,Z)+a*solve(A) 
 
# mixed model equations 
# coefficient matrix and right hand side 
C<-rbind(cbind(XX,XZ),cbind(ZX,ZZ)) 
rhs<-rbind(t(X) %*% y,t(Z) %*% y) 
 
#solution 
theta.hat <- solve(C) %*% rhs 39 

animal model 
toy example 

The animal model can be extended to model multiple 
(correlated) traits, multiple random effects (such as 
maternal effects and common environmental effects), 
repeated records (e.g. test day models), and so on 

Example (Mrode 1996, pp74-76): Weaning weight (kg) 
of piglets, progeny of three sows mated to two boars: 

40 

Animal Model 
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A linear model with the  (fixed) effect of sex, and the 
(random) effects of common environment (related to 
each litter) and breeding values can be expressed as X: 

 

 

 

Assuming that            ,              and            , the MME 
are as follows: 

 

 

 

where                         and 
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The BLUEs and BLUPs 
(inverting the numerator 
relationship matrix) are: 

42 Mrode example 
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Human Genome, Chromosomes 

Graphical representation of the idealized human diploid karyotype 

Centromeres 

Mitochondrial 
DNA not shown 

A
utosom

es 

Sex 
chromosomes 

Sequences of Base Pairs Mapping 

Genetic maps: relative positions of loci in chromosomes or 
linkage groups. Distances in genetic maps are measured 
in centimorgans (cM, about 1 million base pairs) 

Physical maps: overlapping collections of DNA fragments 
(measured in kilobases, kb) which are assembled 
together to build the base-by-base sequence of DNA 
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Comparison of Meiosis and Mitosis 

Crossing-Over and Recombination 
During Meiosis  

In meiosis, the precursor 
cells of the sperm or ova 
must multiply and at the 
same time reduce the 
number of chromosomes 
to one full set.  

During the early stages of cell 
division in meiosis, two chromo-
somes of a homologous pair may 
exchange segments in the manner 
shown above, producing genetic 
variations in germ cells. Ga
m

et
es
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Crossing Over and Recombination 

Because crossing over takes place at random, the 
probability of recombination (r) is higher for loci that are 
farther apart than for loci that are closer to each other 

An odd number of 
crossovers between two loci 
results in a recombination 

between them 

0 ≤ r ≤ 0.5
completely 
linked loci unlinked loci 

Two Point Linkage Analysis 
ð  Backcross experiment 
ð  Genotypic information for two loci (A and B) 

ð  Estimate the recombination rate rAB 

ð  Are these two loci linked? A1  A1 

B1  B1 

A2  A2 

B2  B2 

A1  A2 

B1  B2 

A1  A1 

B1  B1 

Four possible genotypes 

Individual A B 
1 0 0 
2 0 1 
! ! ! 
n 1 1 
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ð  Suppose n = 80 and y = 16 (recombinants) 

ð  Point estimate of rAB : 

ð  Confidence interval (95%) of rAB : 

r̂AB =
y
n
= 0.20

CI(rAB;  95%) = [0.1189;   0.3044]

Two Point Linkage Analysis 

Recombination Rate 
and Linkage Map 

Estimates of recombination rates between pairs 
of markers are used to order markers and to 

infer their genetic distances (centimorgans; cM) 
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Interference 
ð  Lack of independence in recombinations at different 

intervals on a chromosome 

rAB              rBC 

A            B                     C 

•  If rAB and rBC are independent, the probability 
of double recombination is Pr(DR) = rAB × rBC 

•  If rAB and rBC are not independent, the above 
probability is given by Pr(DR) = c × rAB × rBC 
where c is called “coefficient of coincidence”  

•  Interference: I = 1 - c 

Map Distance 

The map distance x between two loci, in 
Morgan units, is defined as the expected 

number of crossovers between them 

Unlike recombination rates, map distances 
are additive 

The relationship between map distances 
and recombination rates is discussed next 
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Map Functions 
Map functions provide a transformation from map 

distance to recombination rate. Two approaches have 
been used to derive map functions: 

In the first case, a probability model is assumed for the 
number of crossovers in an interval of length x. Then, 

recombination rate is calculated as the probability of an 
odd number of crossovers in the interval 

In the second approach, recombination events in two 
adjacent intervals are modeled, allowing for interference 
Examples of map functions: Haldane, Binomial, Kosambi 

Haldane Map Function 
Haldane (1919) suggested that the number of 
crossovers in any chromosomal interval follows a 
Poisson distribution, with no interference 

If Pk is the probability of k crossovers, then the 
probability of recombination (r) is r = P1 + P3 + P5 + … 

This leads to the Haldane’s map function: 

The inverse of which is: x =
−

1
2

ln(1− 2r) ,   if  0 ≤ r < 0.5

∞ ,   if  r = 0.5      

$

%
&

'
&

r = 1
2
(1− e−2x )
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Haldane Map Function 

Genetic distance (M) 

Re
co

m
bi

na
ti

on
 r

at
e 

Multipoint Point Linkage Analysis 

ð Instead of two loci, suppose there are M loci 
ð If order is unknown: M!/2 alternatives 

 

Goal: Determine the order of the loci and estimate 
recombination fractions between neighboring loci, 
i.e. “Map Construction” 
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Methods for Mapping QTL 

ð  Single Marker Analysis 

ð  Interval Mapping 

ð  Composite Interval Mapping 

ð  Bayesian Methods 

ð Methods based on linkage disequilibrium 
between markers and QTL (line crossing 
or segregating population) 

ð Requirements: 

    � Linkage (marker) maps 

    � Variation for the quantitative trait 

  M1          M2    M3                                             Mk-1          Mk  

…
r1              r2              r3                                             r(k-2)              r(k-1)  

QTL ? 

QTL Mapping 
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BC 

Single Marker Analysis; Example with Backcross 

× Purebreds, 
lines 

80 40 F1 

65 

× 

68 55 57 61 59 

QTL Mapping 

65 68 55 57 61 59 

Marker 

59 61 
55 57 
68 65 

Genotype 
65 

60 

55 

70 

Single Marker Analysis; Example with Backcross 
QTL Mapping 
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65 68 55 57 61 59 

Marker 

61 59 
55 68 
57 65 

Genotype 
65 

60 

55 

70 

Single Marker Analysis; Example with Backcross 
QTL Mapping 

Single Marker Analysis 
C Simple example with candidate gene and BC population 

Q1Q1 Q2Q2 

Q1Q2 Q1Q1 

Q1Q2 Q1Q1 
δ 

µ1 

µ2 

Q1Q2 Q1Q1 

Genotype Obs. Mean STD 
Q1Q1 n1 m1 s1 

Q1Q2 n2 m2 s2 

ð  H0: δ = 0   vs   H1: δ ≠ 0  
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µ3 

µ2 

µ = (µ1 + µ3)/2 

QQ Qq qq 

QTL genotypes 

α 

α 

τ 

µ1 Additive 

Dominance 

y 

Example with F2 Population 

Information on phenotypes and 
genotypes for a specific marker 

Marker 
Genotype 

Phenotype 
(8 individuals per group) 

MM    95.9, 108.0,   96.5,   92.9 
 101.0,   94.5,   93.7,   89.8 

Mm  105.2, 107.9,   89.9, 113.4 
 109.7, 102.4,   97.1, 107.1 

mm  117.1,   95.2, 106.4, 104.7 
   92.5, 123.9,   97.8, 100.5 

Example with F2 Population 

Candidate 
gene 
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C QTL and marker (M); recombination frequency = r 

M1   M1 
Q1    Q1 

M1   M2 
Q1    Q2 

M1   M1 
Q1    Q1 

M1   M2 
Q1    Q2 

M1   M2 
Q1    Q1 

M1   M1 
Q1    Q2 

Genotype Freq. E[y] Marker group Freq. E[y] 
M1M1Q1Q1 (1-r)/2 µ1 M1M1 ½ 
M1M1Q1Q2 r/2 µ2 
M1M2Q1Q1 r/2 µ1 M1M2 ½ 
M1M2Q1Q2 (1-r)/2 µ2 

21 )1( µµ rr −+

21)1( µµ rr +−

Difference between marker 
group expected values 

2121 )1()1( µµµµ rrrr −−−−+

δµµ )21())(21( 12 rr −=−−=

Single Marker Analysis 

(EXAMPLE) 

ð Brassica napus; Flowering time 

ð 10 Markers  
     (positions: 0, 8.8, 20.6, 27.4, 34.2, 42.9, 53.6, 64.1, 69.2, 83.9 cM) 

ð 104 individuals; Double haploid 

3.0204      -1      -1      -1      -1      -1      -1      -1      -1     -99      -1 

2.9704      -1      -1      -1      -1     -99      -1      -1      -1      -1       1 

2.7408      -1      -1       1       1       1       1       1       1       1       1   

  !           !       !        !       !        !       !       !        !       !        ! 

3.3673       1       1       1       1      -1      -1      -1      -1      -1       1 

3.0681       1       1       1       1     -99       1       1       1      -1      -1 

3.2771      -1     -99      -1      -1      -1      -1      -1      -1      -1      -1 

(Satagopan et al. Genetics 144: 805-816, 1996) 

Single Marker Analysis 
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Interval Mapping 

M QTL N 

r1 r2 

r

(Lander & Botstein, 1989) 

M  m 
N   n 

Backcross 

M  m 
Q   q 
N   n 

m   m 
q    q 
n    n 

m  m 
 n   n 

M  m 
 n   n 

m  m 
N   n 

δ 
µ 

 QQ  Qq 

iii qy εδµ ++=

phenotype QTL 
genotype 

residual 

0 , if qq 
1 , if Qq qi = 
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Interval Mapping 

Marker Genotypes Pr(qi = QQ) Pr(qi = Qq) 

M,N (1 - r1)(1 - r2)/(1 - r) r1 r2 /(1 – r) 

M,n (1 - r1) r2 / r r1 (1 - r2 )/ r 

m,N r1 (1 - r2 )/ r (1 - r1) r2 / r 

m,n r1 r2 /(1 - r) (1 - r1)(1 - r2 )/(1 - r) 

Pr(qi|λ) is modeled in terms of recombinations 
between flanking markers and QTL: 

Markers Pr(qi = QQ) Pr(qi = Qq) 

M,N 1 0 

M,n (1 - p) p 

m,N p (1 - p) 

m,n 0 1 

Approximation: 
(no double recombination) r

rp 1=

Interval Mapping 
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ð Likelihood estimation: EM algorithm to estimate 
parameters, including λ (position of QTL) 

ð Alternatively: Fix λ (grid search) and evaluate LOD 

⎥
⎦

⎤
⎢
⎣

⎡

=
=

)0,|ˆ,ˆ,ˆ(L
)|ˆ,ˆ,ˆ,ˆ(LlogLOD 2

2

10 δσµ
σδµ

λ yq
yq

C A QTL is detected whenever the LOD score gets 
larger than a threshold; estimated position of the 
QTL maximizes LOD 

Interval Mapping 

REGRESSION APPROACH 
(Haley & Knott, 1992) 
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Residual Sum of Squares: 

Estimated position of the 
QTL minimizes RSS. 

alternatively  

Interval Mapping 
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Chromosome, marker positions (cM) 
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Interval Mapping; Example with Backcross 
QTL Mapping 

ð COMMENTS: 

    � Backcross to both parental lines, or use F2 design, 
         to estimate additive and dominance effects 

    � Threshold; multiple testing; false positives 

    � Confidence intervals 

    � Multiple QTL, ghost QTL 

Interval Mapping 
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R/QTL package in R: Simulated backcross data (Broman 
and Saunak, 2009) with 400 individuals (200 males and 
200 females; sex == 1 and 0, respectively) with a single 
quantitative phenotype. 

Interval mapping with sex as an additive covariate and 
sex as an interactive covariate, and also with males and 
females separately. Detection of regions of the genome 
affecting the phenotype, and also QTL × sex 
interactions? 

Interval Mapping Example 

QTL scan 

(Zeng, 1993, 1994) 

ð Interval analysis adding marker cofactors (to account 
     for the effects of unlinked QTLs); combination of 
     single interval mapping and multiple linear regression 

Mj 

QTL 

λ 

Mj-1 Mj+1 Mj+2 

Flanking markers 

Cofactors Cofactors 

Composite Interval Mapping 
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Dummy variables 
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(Zeng, 1993, 1994) 

Composite Interval Mapping 

ð Brassica napus; Flowering time (Satagopan et al., 1996) 
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(Example) 
Interval Mapping 
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ð Brassica napus; Flowering time (Satagopan et al., 1996) 

(Example) 
Composite Interval Mapping 

QTL Database (Livestock) 
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EXPRESSION QTL (eQTL) 

D
ar

va
si

 (
20

03
) 

Jansen and N
ap (2001) 

Genome-Wide Association 
Analysis (GWAS)  

Guilherme J. M. Rosa 
University of Wisconsin-Madison 
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ð  Linkage Analysis (QTL Analysis) 

ð  Fine Mapping Strategies (LDLA approach, 
Selective Genotyping, etc.) 

ð  Association Analysis, Candidate Gene 
Approach 

ð  Genome-wide Association Analysis (GWAS) 

Gene Mapping 

ð Many species: humans, plants, animals 

ð Technology (Affymetrix, Illumina, etc.) 

ð Genome-wide Association Analysis (GWAS), 
 Genome-wide Marker Assisted Selection (GWMAS),  
 Population Structure, Selection Signature, etc. 

High Density SNP Panels 
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ð Measurement/recording error 
ð Genotyping error; Mendelian inconsistencies 

ð Redundancies 

ð Heterozygosity (H) 
 Polymorphism Information Content (PIC) 

ð Minor Allele Frequency (MAF) 

ð Hardy-Weinberg equilibrium 

Descriptive Statistics 
& Data Cleaning 

Single Marker Regression  

where: 
y: vector of phenotypic observations (n individuals) 
β: environmental covariates, such as gender, age, etc. 
X: incidence matrix relating β to y 
gj: ‘effect’ of marker j (j = 1, 2,…, k) 
m = [m1j, m2j,…, mnj, ]T: vector of genotypes for 

marker j, with mij = -1, 0 or 1 
e: residual vector 

y = Xβ+mg j + e

ð Series of models, one for each marker j (j = 1, 2,…, k): 
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ð True model:  yij = µ + Groupi + eij  

Confounding 

Accounting for Population 
Stratification 

where: Ψ is a population structure term (e.g. PC 
built from genotypes) 

y = Xβ+ψ+mg j + e

ð Series of models, one for each marker j (j = 1, 2,…, k): 
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Mixed Model Approach 

where all terms are as before, except that a 
polygenic (infinitesimal) term u is included to account 
for population sub-structure, with u ~ N(0, Kσu

2); K 
is a kinship matrix built from pedigree information 
(e.g. A) or genotypic information (e.g. G) 
Note: Efficient computation, e.g. EMMA and GEMMA 

y = Xβ+u+mg j + e

ð The model now is expressed as: 

Manhattan Plot with Marker Effects 
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Manhattan Plot with Significance Tests 

Statistical Power 

ð Power is a function of: 
   Significance level (α) 

   Sample size (n) 

   Effect size (δ), expressed as a proportion of 
variance in measured phenotype, subsumes 
allele frequency, mode of inheritance, 
measurement reliability, degree of LD, and 
all other aspects of genetic model 

   Test statistic (T) 
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H0 is not rejected H0 is rejected 

H0 is true  
 

No error (1-α) Type I error (α) 

H0 is false Type II error (β) No error (1-β) 

Power 

Significance 
level 

Æ Standard approach: 

� Specify an acceptable type I error rate (α) 

� Seek tests that minimize the type II error rate (β), 
     i.e., maximize power (1 - β) 

Hypothesis Testing 

Suppose you carry out 10 hypothesis tests at the 5% level 
(assume independent tests ) 

The probability of declaring a particular test 
significant under its null hypothesis is 0.05 

But the probability of declaring at least 1 of 
the 10 tests significant is 0.401  

If you perform 20 hypothesis tests, this 
probability increases to 0.642… 

1 - 0.9510 

Æ Typically thousands of markers tested simultaneously 

Æ Example: Suppose trait with H2 = 0 and association analysis 
considering 100 markers and α = 5% (for each test) 

 • Expected 100 x 0.05 = 5 false associations… 

The Multiple Testing Issue 
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# H0 not rejected # H0 rejected 

# true H0 
 

A B m0 

# false H0 C D m1 

m – R R m 

Observable quantity (no rejected H0) known quantity 
(number of tests) 

The Multiple Testing Issue 

• Family-wise error rate (FWER): 

)0BPr(1)1BPr(FWER =−=≥=

• False discovery rate (FDR): 

)0RPr(]0R|R/B[EFDR >>=

Positive FDR (pFDR); Storey (2002) 

The Multiple Testing Issue 
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]1 ,mpmin[p~ jj =

Æ Controlling the FWER at level α: 

• Bonferroni: Rejects any hypothesis Hj with p-value less  
                    than or equal to α/m, i.e.: 

adjusted p-value                    unadjusted p-value 

Pr[V ≥ 1] 

]1 ,)p1(1min[p~ g
jj −−=

• Sidák: Rejects any hypothesis Hj with p-value less  
                    than or equal to 1-(1-α)1/g, i.e.: 

- Very similar to Bonferroni adjustment. 

- Both are too conservative... 

Æ Controlling the FDR: 

• Benjamini and Hochberg (1995) algorithm: 

Definition: FDR = E[V/R | R>0]Pr[R>0]; expected proportion of 
                false positive findings among all rejected hypotheses 
                times the probability of making at least one rejection. 

Positive FDR (pFDR); Storey (2002) 

- Fix a value α* ∈ (0,1) 

- Let p(1), p(2),…,p(m) be the ordered observed p-values 

- Let    = max{k: p(k) ≤ α*(k/m)} 

  (If p(k) > α*(k/m) for all k = 1,…,m, let    = 0) 

- If    ≥ 1, reject the hypotheses corresponding to p(1), p(2),…,p( )  

- If    = 1, do not reject any hypothesis 

k̂
k̂

k̂
k̂

k̂
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Under H0 Mixture of H0 and Ha 

P-value P-value 

P
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nt 
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Distribution of P-values 
(Histogram) 

Under H0 Mixture of H0 and Ha 

F 
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st 
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Quantile Quantile 

Distribution of P-values 
(Q-Q Plot) 
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ð Confounding factors, population structure and 
stratification, Type I error, etc. 

ð Biased estimates of gene effects due to 
significance threshold 

ð Multiple genes, with modest individual effects 

ð Gene × gene and gene × environment interactions 

ð Inter population heterogeneity 

ð Low statistical power 

ð Validation of association findings 

ð But what constitutes a replication? 

Replication 
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Lecture 10 
Multi-Trait Models,  

Binary and Count Traits, 
Genome-enhanced prediction 

Guilherme J. M. Rosa 
University of Wisconsin-Madison 

Introduction to Quantitative Genetics 
SISG, Seattle 

17 – 19 July 2017 

OUTLINE 

•  Animal Model 
•  Multiple-trait Model 
•  Repeatability Model 
•  Maternal Effects 
•  Generalized Linear Models 
•  Genome-enhanced Prediction 

2 
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Animal Model 
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Mixed Model Equations 

BLUP: 
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Genetic Correlation 
Schematic representation of pleiotropy 

•  Pleiotropic genes affect both y1 and y2 resulting in a genetic 
correlation between the two traits 

•  In addition to pleiotropy, genetic correlations can be caused 
also by linkage disequilibrium (LD) between genes affecting 
the different traits. LD however is a ‘temporary’ cause of 
genetic correlation as recombination can breakdown LD over 
the generations 

Genes affecting 
trait y1 

Genes affecting 
trait y2 

Genes affecting both y1 and y2 

ry1,y2 = h1h2ra1,a2 + e1e2rε1,ε2

X1 

y1 
β1 β2 

y2 

a1 a2 

ε1 ε2 

X2 h2 h1 

e2 e1 

ra1,a2

r
ε1,ε2

Multiple (Correlated) Traits 
Genetic 

correlation 

Environmental 
correlation 

h j = h j
2

e j =1− h j

Phenotypic correlation: 
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Multiple (Correlated) Traits 
The animal model can be extended for the joint analysis 
of multiple traits 
Let the model for each of k traits be: 
 
 
where j is an index to indicate the trait (j = 1, 2,…,k).  
For the joint analysis of the k trait, the model becomes: 
 
 
with design matrices given by: 

y j =X jβ j +Z ja j + ε j

y =Xβ+Za+ ε

X =

X1 0  0
0 X2  0
   
0 0  Xk

!
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#
#
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Z =

Z1 0  0
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0 0  Zk
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Multiple (Correlated) Traits 
In this case it is assumed that: 
 
 
 
 
where G and Σ are the genetic and residual variance-
covariance matrices, given by: 
 
 
 
 
 
 
Note: ⊗ represents the direct (Kronecker) product 
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Multiple (Correlated) Traits 

The MME for multi-trait analyses are of the same form 
as before, i.e.: 
 
 
 
 
 
 
 
 
from which the BLUEs and BLUPs of β and a can be 
obtained. 

Multiple (Correlated) Traits 

The dimensionality of multi-trait MME, however, can 
become a hurdle for solving it when more than two or 
three traits are considered 
 
An alternative for the analysis of multiple traits is to 
use a canonical transformation of the traits, which 
consists of transforming the vectors of correlated 
traits into a new vector of uncorrelated variables 
 
In such case, each transformed variable can be analyzed 
independently using standard single trait models, and 
subsequently the estimated breeding values are 
transformed back to the original scale of measurement 



6 

Repeatability Model 

Repeatability Model 

For the analysis of repeated measurements, 
environmental effects can be partitioned into 
permanent and temporary effects 
 
In this case, the mixed model, usually called 
‘repeatability model’, can be written as: 
 
 
 
where p ~ N(0, Iσp

2) is the vector of permanent 
environmental effects, with each level pertaining to 
a common effect to all observations of each animal 
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Repeatability Model 

It is often assumed that a, p, and ε, which are 
independent from each other 
 
Under these assumptions, the MME becomes: 
 
 
 
 
 
 
with                   and 

Repeatability Model 
An important definition related to repeated 
measurements refers to repeatability (r), which is 
given by the intraclass correlation, i.e., the ratio of 
the within-individual (or between repeated 
measurements) to the phenotypic variances: 
 
  
 
 
The repeatability coefficient measures the 
correlation between records on the same animal, and 
so it is useful for example in the estimation of 
producing ability of an animal 
  

r =
σa
2 +σp

2

σy
2 =

σa
2 +σp

2

σa
2 +σp

2 +σε
2
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Maternal Effects 

Maternal Effects 
There are some traits of interest in livestock, such 
as weaning weight in beef cattle, in which progeny 
performance is affected by the dam’s ability to 
affect the calf’s environment, such as in the form 
of nourishment through her milk production, the 
quantity and quality of which is in part genetically 
determined 
 
In such cases, dams contribute to the performance 
of their progeny not only through the genes passed 
to the progeny (the “direct genetic effects”) but 
also through their ability to provide a suitable 
environment (the “indirect genetic effects”) 
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Maternal Effects 
Maternally influenced traits can be analyzed by using 
a model as: 
 
 
 
where m is a vector of random maternal genetic 
effects, and p is a vector of random maternal 
permanent environmental effects 
 
It is assumed that m ~ N(0, Aσm

2) and p ~ N(0, Iσp
2), 

and quite often a covariance structure between 
direct and maternal additive genetic effects is 
considered, assumed equal to Aσa,m 
 

Computing Strategies 

Solving the MME does not necessary require the 
inversion of the coefficient matrix C 
 
More computationally convenient alternatives for 
solving high dimensional systems of linear equations 
include methods based on iteration on the MME, such 
as the Jacobi or Gauss-Seidel iteration, and the 
“iteration on the data” strategy, which is commonly 
used methodology in national genetic evaluations 
involving millions of records 
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Generalized Linear Mixed Models 

The models discussed so far assumed a Gaussian 
(normal) distribution of the phenotypic traits 
 
Often however phenotypic traits are expressed a a 
binary (e.g., pregancy in dairy cattle, or germination 
in seeds) or count variable (e.g., litter size in swine, 
or fruits in trees) 
 
In such cases the linear (Gaussian) model is not 
appropriate, and a generalized linear model (GLM) 
approach is necessary 

Generalized Linear Mixed Models 
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Generalized Linear Mixed Models 

GLM can actually model outcomes (response 
variables) generated from any distribution from 
the exponential family, which includes the normal, 
binomial, Poisson and gamma distributions, among 
others 
 
The GLM consists of three elements: 

1.  Probability distribution from the exponential 
family. 

2.  Linear predictor η = Xβ 
3.  Link function g such that E(Y) = µ = g-1(η).  

Generalized Linear Mixed Models 

Notice that the Gaussian model is a specific case 
of the GLM, with the normal distribution and an 
identity link function 
 
In the case of Generalized Linear Mixed Models, 
including the applications in animal/plant 
breeding, the model is defined as:  

1.  Probability distribution from the exponential 
family. 

2.  Linear predictor η = Xβ + Zu 
3.  Link function g such that E(Y|u) = µ = g-1(η) 
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GLMM in R 

GLMM can be implemented in R using the 
package lme4 
 
lme4, however, assumes independence 
between levels of random effects, and as 
such it is not suitable for many animal/
plant breeding applications 
 
pedigreemm is an R package that uses lme4 
with a Cholesky decomposition strategy to 
overcome this problem 

(Harville and Callanan 1989) 

pedigreemm 
An R package for fitting generalized linear mixed 
models in animal breeding 



13 

pedigreemm example 

1. Reference Population 

3. Genomic Selection 

2. Data Analysis 

4. Selected Animals 

Animals with genotypic and 
phenotypic information 

-  QC and data processing 
-  Prediction model: 

Young animals 
(selection candidates) 

Prediction of genetic merit 
using marker information 

Superior animals  
(higher gEBV), selected 

earlier with higher accuracy 

yi = µ + wijb j
j=1

p

∑ + ei

gEBVk = wkjb̂ j
j=1

p

∑

Genome-enhanced Selection 
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(Meuwissen et al., 2001) 

genetic effects 

ipip2i21i1i egx...gxgxµy +++++=

Marker genotypes 

ð ‘big p small n paradigm’  

ð Dimension reduction techniques (e.g. SVD and PLS), and 
stepwise strategies 

ð Alternatively: penalized regression, shrinkage estimation  

∑
=

=+++=
p

1j
jijpip2i21i1 ĝxĝx...ĝxĝxGEBVGenomic EBV: 

Genome-enhanced Selection 

Cross-validation 

Training set 
Testing set 

(Predictive Ability) 

➡  K-fold 

 

➡  Leave-one-out (“n-fold”) 

y =Xβ+ e

β̂: estimate of β
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GBLUP 

gj |σg
2 ~ N(0,σg

2 )egX1y ++µ= ∑
=

p

1j
jj , with: 

Regression with genetic effects with 
normal distribution with common variance 

b |σb
2 ~ N(0,Gσb

2 )y =1µ +b+ e , with: 

Equivalent Model 

G is the genomic relationship matrix (VanRaden 2008): 

G = 2 pj(1− pj)
j=1

p

∑
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'
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(X−M)(X−M)'

ssGBLUP 

•  Single-step GBLUP (Misztal et al. 2009) 
•  Single mixed model with all animals 

(genotyped and non-genotyped) included, 
with matrix A replaced by H: 

H−1 =A−1 +
0 0
0 G−1 −A22
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Preventive and Personalized Medicine 

Training population 

Prediction 
Model 

New 
patient 

Personalized 
treatment 


