Tamar Sofer

July 2017

"Generalization" is the replication of an association between a genetic variant and a trait, discovered in one population, to another population.

- Most genetic association studies were performed in populations of European Ancestry (EA)
- These are often detected in very large GWAS (e.g. 100,000 individuals)

Why perform generalization analysis?

There are multiple reasons.

- To know, whether associations that were discovered in one populations exists in another.
 - This may not always be true...
- To gain power by limiting the number of variants tested for associations to those already previously reported.
- Because we need to perform *replication* analysis, but we do not have access to an independent study with the same type of population and/or the same trait.

- An intuitive approach to generalization analysis:
 - Take the list of SNP associations reported in a paper
 - Test the same SNPs with the same trait in your data
 - Report the significant associations.
- ▶ What should be the *p*-value threshold to report associations?

Wait for it...

- We developed a generalization testing framework that originated in the replication analysis literature.
- We combine test results (*p*-values) from both the discovery study, and our study (the follow-up)
 - and calculate an r-value.
 - (for every SNP).
- These r-values take into account multiple testing (of both studies),
- And are used like p-values.
- Since they are already adjusted for multiple testing, an association is generalized if the *r*-value< 0.05.</p>

- The generalization framework also takes into account the direction of associations.
- If the estimated association is negative in one study, and positive in the other, the association will not generalize.

Here, the cells in gray represent generalized associations.

Generalization analysis - platelet count example

- Suppose that we ran a GWAS of platelet count in the HCHS/SOL.
- The results are displayed in the Manhattan plot:

Generalization analysis - platelet count example

The platelet GWAS discovered 5 new associations

- that were then replicated in independent studies.
- There was another association that did not replicate.
- And there were a few additional known associations that were statistically significant.
- What about 55 other associations that were previously reported in other papers, reporting GWAS in other populations?
 - Generalization analysis!

Generalization analysis - platelet count example

- The generalization R package have an example from the HCHS/SOL platelet count paper.
- We first load this package. (Install it if you haven't already!)

```
#library(devtools)
#install_github("tamartsi/generalize@Package_update",
# subdir = "generalize")
require(generalize)
```

- The generalization R package has an example data set.
- It has results reported by Geiger et al., 2011, and matched association results from the HCHS/SOL.
- Generalization analysis is done for one study at a time.

```
# load the data set from the package
data("dat")
# look at the column names:
matrix(colnames(dat), ncol = 3)
```

[,1] [,2] [,3]
[1,] "rsID" "study1.beta" "study2.alleleB"
[2,] "chromosome" "study1.se" "study2.beta"
[3,] "position" "study1.pval" "study2.se"
[4,] "study1.alleleA" "study1.n.test" "study2.pval"
[5,] "study1.alleleB" "study2.alleleA" "Ref"

The data.frame with the example provides all information we need for generalization analysis.

head(dat)

##		rsID	chromosome	position s	study1.alleleA	study1
##	1	rs2336384	1	12046062	G	
##	2	rs10914144	1	171949749	Т	
##	3	rs1668871	1	205237136	C	
##	4	rs7550918	1	247675558	Т	
##	5	rs3811444	1	248039450	C	
##	6	rs1260326	2	27730939	Т	
##		study1.beta	study1.se	study1.pval	study1.n.test	study
##	1	2.172	0.382	1.25e-08	3 2710000	
##	2	3.417	0.487	2.22e-12	2710000	
##	3	2.804	0.368	2.59e-14	2710000	
##	4	3.133	0.471	2.91e-11	. 2710000	
##	5	3.346	0.574	5.60e-09	2710000	11 / 28

dat.matched <- matchEffectAllele(dat\$rsID, study2.effect = dat\$study2.beta, study1.alleleA = dat\$study1.alleleA, study2.alleleA = dat\$study2.alleleA, study1.alleleB = dat\$study1.alleleB, study2.alleleB = dat\$study2.alleleB)

passed data entry checks, orienting the effects of study

head(dat.matched)

##		snpID	<pre>study2.effect</pre>	<pre>study1.alleleA</pre>	flip	strand.
##	1	rs2336384	1.1164496	G	FALSE	
##	2	rs10914144	1.9402873	Т	FALSE	
##	3	rs1668871	-0.4107451	C	TRUE	
##	4	rs7550918	0.9727501	Т	TRUE	
##	5	rs3811444	3.4528058	C	FALSE	
##	6	rs1260326	2.5336998	Т	FALSE	

##		rsID	chromosome	position	<pre>study1.beta</pre>	study1.se
##	1	rs2336384	1	12046062	2.172	0.382
##	2	rs10914144	1	171949749	3.417	0.487
##	3	rs1668871	1	205237136	2.804	0.368
##	4	rs7550918	1	247675558	3.133	0.471
##	5	rs3811444	1	248039450	3.346	0.574
##	6	rs1260326	2	27730939	2.334	0.381
##		study1.n.te	st study2.1	beta study2	2.se study2.	.pval
##	1	27100	00 1.1164	1496 0.8084	4368 0.167279	95709 Gieg
##	2	27100	00 1.9402	2873 0.9883	1444 0.049580)3692 Gieg
##	3	27100	00 -0.4107	7451 0.9380	6512 0.661682	29698 Giêg

Test for generalization:

Controlling FDRat the 0.05 level

Generating one-sided p-values guided by study1's direct:

Calcluating FDR r-values...

head(gen.res)

##		snpID	gen.rvals	generalized
##	1	rs2336384	0.2422669647	FALSE
##	2	rs10914144	0.0867656461	FALSE
##	3	rs1668871	1.000000000	FALSE
##	4	rs7550918	0.3542344549	FALSE
##	5	rs3811444	0.0005575808	TRUE
##	6	rs1260326	0.0093521516	TRUE

Create a figure:

Look look at our figure!

Generalization analysis - more considerations

- Coverage of the confidence intervals... depends on the number of tests!
 - e.g. $(1 \alpha/10) \times 100\%$ for 10 tests in a study for Bonferroni-type coverage.
 - There are other options, controlling "False coverage rate", more complicated.
- Generalization of only "lead SNPs" compared to all SNPs with p-value below some threshold.
 - Lead SNP in EA GWAS may be correlated with the causal SNP in EA, but not with Hispanics/Latinos!
- Non-generalization due to lack of power.
 - Summarize information across non-generalized associations, e.g.:
 - Test consistency of direction of associations between the discovery study and HCHS/SOL;
 - Test trait association with Genetic Risk Score (GRS) GRS can be generated as the sum of reported trait-increasing alleles. Test a GRS composed solely of SNP alleles of non-generalized associations.

- We ran a GWAS of Diabetes in the HCHS/SOL.
 - Reported in Qi et. al. (2017) "Genetics of Type 2 Diabetes in US Hispanic/Latino Individuals: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)", *Diabetes*.
- ► The GWAS identified two genome-wide significant associations (*p*-value< 5 × 10⁻⁸) in known regions.
 - There were 76 known independent associations at the time.
 - The power to detect these associations at the *p*-value< 5×10^{-8} was low.

Power based on disease prevalence 16%, and significance p-value threhold 5e-8

We approximated the power to detect the associations in generalization analysis using Bonferroni threshold.

Power based on disease prevalence 16%, and significance p-value threhold 0.05/76

The post-hoc power (left) was higher because actual effect sizes in the HCHS/SOL were higher than those reported in the (mainly) European ancestry discovery population.

▶ 14 of the associations generalized in generalization analysis.

Question: could other associations generalize if we had more power?

- To address this, we constructed a GRS by summing all non-generalized diabetes risk-alleles for all participants in the analysis.
- And tested the association of this GRS with diabetes.
- The resulting *p*-value= 6.12×10^{-14} .

Examples from our work - total cholesterol (TC)

- In the generalization manuscript we investigated approaches for generalization when entire GWAS is available
 - Compared to the case where only lead SNPs are available.
 - Reported in Sofer et. al. (2017), "A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL", *Genetic Epidemiology*.
- ► The GLGC consortium published a list of 74 lead SNPs, from 74 genomic regions, in Willer et al. (2013).

• European Ancestry (EA); \sim 190,000 individuals.

- In addition, the complete results from Willer et al.'s analysis are freely available online.
- In generalization analysis applied on these 74 SNPs 33 SNPs generalized.

Examples from our work - total cholesterol (TC)

- ► In generalization analysis applied on 4,106 SNPs SNPs with p-value< 5 × 10⁻⁸ in the Willer et al. GWAS 2,206 SNPs generalized.
 - These SNPs were from 42 distinct genomic regions.
 - ▶ 34 of the lead SNPs reported by Willer et al. generalized (only 33 of these generalized in the "usual" generalization analysis)
 - And also non-lead SNPs from 8 additional genomics regions.
- ▶ In generalization analysis applied on 5,399 SNPs SNPs with *p*-value $< 1 \times 10^{-6}$ in the Willer et al. GWAS 2,418 SNPs generalized.
 - ► These SNPs were from 43 distinct genomic regions.

Examples from our work - total cholesterol (TC)

The TC example demonstrates that

- Due to differences in LD structure, there are instances where the lead EA SNP is different than the lead SNP in HCHS/SOL.
 - Applying generalization testing on more SNPs (not just the lead SNPs) is useful.
- Considering SNPs with higher *p*-value than the commonly-used 5 × 10⁻⁸ can increase power.

Exercise

- I generated a data set based on generalization analysis that I have done for the diabetes GWAS manuscript in HCHS/SOL.
- The following exercise will take you through generalization analysis based on this data set.
- Use the command read.csv() to read the files dscvr_diabetes_res.csv and sol_diabetes_res.csv with
 - Association results published in a Mahajan et al. (2014) paper with results of diabetes GWAS in the DIAGRAM consortium (altered a bit).
 - Association results of a few more variants in the HCHS/SOL (also altered a bit).

More in the next slide...

Exercise

- 2. Use the function match() to subset the results from HCHS/SOL to those from Mahajan et al.
- 3. How would you know if variants have the same direction of association in the HCHS/SOL and in the DIAGRAM consortium?
- Use the function matchEffectAllele() to match the effect sizes in the HCHS/SOL to correspond the same effect allele as in the DIAGRAM.
- 5. Test which associations generalize to the HCHS/SOL.
 - ► Take the number of tested associations in the DIAGRAM to be 10⁶.
- 6. How many associations generalized?
- Compare the effect allele frequencies between the two studies using plot() command.