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What is generalization?

“Generalization” is the replication of an association between a
genetic variant and a trait, discovered in one population, to

another population.

I Most genetic association studies were performed in populations
of European Ancestry (EA)

I These are often detected in very large GWAS (e.g. 100,000
individuals)
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Why perform generalization analysis?

There are multiple reasons.

I To know, whether associations that were discovered in one
populations exists in another.

I This may not always be true...
I To gain power by limiting the number of variants tested for

associations to those already previously reported.
I Because we need to perform replication analysis, but we do not

have access to an independent study with the same type of
population and/or the same trait.
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Generalization analysis

I An intuitive approach to generalization analysis:
I Take the list of SNP associations reported in a paper
I Test the same SNPs with the same trait in your data
I Report the significant associations.

I What should be the p-value threshold to report associations?

Wait for it. . .
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Generalization analysis

I We developed a generalization testing framework that
originated in the replication analysis literature.

I We combine test results (p-values) from both the discovery
study, and our study (the follow-up)

I and calculate an r -value.
I (for every SNP).

I These r -values take into account multiple testing (of both
studies),

I And are used like p-values.
I Since they are already adjusted for multiple testing, an

association is generalized if the r -value< 0.05.
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Generalization analysis
I The generalization framework also takes into account the

direction of associations.
I If the estimated association is negative in one study, and

positive in the other, the association will not generalize.

I Here, the cells in gray represent generalized associations.
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Generalization analysis - platelet count example
I Suppose that we ran a GWAS of platelet count in the

HCHS/SOL.
I The results are displayed in the Manhattan plot:

7 / 28



Generalization analysis - platelet count example

I The platelet GWAS discovered 5 new associations
I that were then replicated in independent studies.
I There was another association that did not replicate.
I And there were a few additional known associations that were

statistically significant.

I What about 55 other associations that were previously reported
in other papers, reporting GWAS in other populations?

I Generalization analysis!
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Generalization analysis - platelet count example

I The generalization R package have an example from the
HCHS/SOL platelet count paper.

I We first load this package. (Install it if you haven’t already!)

#library(devtools)
#install_github("tamartsi/generalize@Package_update",
# subdir = "generalize")
require(generalize)
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Generalization analysis - let’s do it!
I The generalization R package has an example data set.
I It has results reported by Geiger et al., 2011, and matched

association results from the HCHS/SOL.
I Generalization analysis is done for one study at a time.

# load the data set from the package
data("dat")
# look at the column names:
matrix(colnames(dat), ncol = 3)

## [,1] [,2] [,3]
## [1,] "rsID" "study1.beta" "study2.alleleB"
## [2,] "chromosome" "study1.se" "study2.beta"
## [3,] "position" "study1.pval" "study2.se"
## [4,] "study1.alleleA" "study1.n.test" "study2.pval"
## [5,] "study1.alleleB" "study2.alleleA" "Ref"
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Generalization analysis - let’s do it!
I The data.frame with the example provides all information we

need for generalization analysis.

head(dat)

## rsID chromosome position study1.alleleA study1.alleleB
## 1 rs2336384 1 12046062 G T
## 2 rs10914144 1 171949749 T C
## 3 rs1668871 1 205237136 C T
## 4 rs7550918 1 247675558 T C
## 5 rs3811444 1 248039450 C T
## 6 rs1260326 2 27730939 T C
## study1.beta study1.se study1.pval study1.n.test study2.alleleA
## 1 2.172 0.382 1.25e-08 2710000 G
## 2 3.417 0.487 2.22e-12 2710000 T
## 3 2.804 0.368 2.59e-14 2710000 T
## 4 3.133 0.471 2.91e-11 2710000 C
## 5 3.346 0.574 5.60e-09 2710000 C
## 6 2.334 0.381 9.12e-10 2710000 T
## study2.alleleB study2.beta study2.se study2.pval Ref
## 1 T 1.1164496 0.8084368 0.1672795709 Gieger,2011
## 2 C 1.9402873 0.9881444 0.0495803692 Gieger,2011
## 3 C 0.4107451 0.9386512 0.6616829698 Gieger,2011
## 4 T -0.9727501 0.8973005 0.2783270717 Gieger,2011
## 5 T 3.4528058 0.8908264 0.0001062059 Gieger,2011
## 6 C 2.5336998 0.8571613 0.0031173839 Gieger,2011
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Generalization analysis - let’s do it!

dat.matched <- matchEffectAllele(dat$rsID,
study2.effect = dat$study2.beta,
study1.alleleA = dat$study1.alleleA,
study2.alleleA = dat$study2.alleleA,
study1.alleleB = dat$study1.alleleB,
study2.alleleB = dat$study2.alleleB)

## passed data entry checks, orienting the effects of study2 to the correct effect allele. Assuming same strand.
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Generalization analysis - let’s do it!

head(dat.matched)

## snpID study2.effect study1.alleleA flip strand.ambiguous
## 1 rs2336384 1.1164496 G FALSE FALSE
## 2 rs10914144 1.9402873 T FALSE FALSE
## 3 rs1668871 -0.4107451 C TRUE FALSE
## 4 rs7550918 0.9727501 T TRUE FALSE
## 5 rs3811444 3.4528058 C FALSE FALSE
## 6 rs1260326 2.5336998 T FALSE FALSE
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Generalization analysis - let’s do it!
dat$study2.beta <- dat.matched$study2.effect
dat$alleleA <- dat$study1.alleleA
dat$alleleB <- dat$study1.alleleB
dat$study1.alleleA <- dat$study1.alleleB <-

dat$study2.alleleA <- dat$study2.alleleB <- NULL
head(dat)

## rsID chromosome position study1.beta study1.se study1.pval
## 1 rs2336384 1 12046062 2.172 0.382 1.25e-08
## 2 rs10914144 1 171949749 3.417 0.487 2.22e-12
## 3 rs1668871 1 205237136 2.804 0.368 2.59e-14
## 4 rs7550918 1 247675558 3.133 0.471 2.91e-11
## 5 rs3811444 1 248039450 3.346 0.574 5.60e-09
## 6 rs1260326 2 27730939 2.334 0.381 9.12e-10
## study1.n.test study2.beta study2.se study2.pval Ref alleleA
## 1 2710000 1.1164496 0.8084368 0.1672795709 Gieger,2011 G
## 2 2710000 1.9402873 0.9881444 0.0495803692 Gieger,2011 T
## 3 2710000 -0.4107451 0.9386512 0.6616829698 Gieger,2011 C
## 4 2710000 0.9727501 0.8973005 0.2783270717 Gieger,2011 T
## 5 2710000 3.4528058 0.8908264 0.0001062059 Gieger,2011 C
## 6 2710000 2.5336998 0.8571613 0.0031173839 Gieger,2011 T
## alleleB
## 1 T
## 2 C
## 3 T
## 4 C
## 5 T
## 6 C
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Generalization analysis - let’s do it!
I Test for generalization:

gen.res <- testGeneralization(dat$rsID, dat$study1.pval,
dat$study2.pval, dat$study1.n.test[1],
study1.effect = dat$study1.beta,

study2.effect = dat$study2.beta,
directional.control = TRUE,

control.measure = "FDR" )

## Controlling FDRat the 0.05 level

## Generating one-sided p-values guided by study1's directions of effects...

## Calcluating FDR r-values...

15 / 28



Generalization analysis - let’s do it!

head(gen.res)

## snpID gen.rvals generalized
## 1 rs2336384 0.2422669647 FALSE
## 2 rs10914144 0.0867656461 FALSE
## 3 rs1668871 1.0000000000 FALSE
## 4 rs7550918 0.3542344549 FALSE
## 5 rs3811444 0.0005575808 TRUE
## 6 rs1260326 0.0093521516 TRUE
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Generalization analysis - let’s do it!

I Create a figure:

require(ggplot2,quietly = TRUE)
require(gridExtra,quietly = TRUE)
require(RColorBrewer,quietly = TRUE)
figure.out <- paste0(getwd(),

"/Generalization_example.pdf")

prepareGenResFigure(dat$rsID, dat$study1.beta,
dat$study1.se, dat$study2.beta, dat$study2.se,
gen.res$generalized, gen.res$gen.rvals,
dat$study1.n.test[1],
output.file = figure.out,

study1.name = "Study1",
study2.name = "Study2")
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Generalization analysis - let’s do it!
I Look look at our figure!
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Generalization analysis - more considerations
I Coverage of the confidence intervals. . . depends on the

number of tests!
I e.g. (1 − α/10) × 100% for 10 tests in a study for

Bonferroni-type coverage.
I There are other options, controlling “False coverage rate”, more

complicated.
I Generalization of only “lead SNPs” compared to all SNPs with

p-value below some threshold.
I Lead SNP in EA GWAS may be correlated with the causal SNP

in EA, but not with Hispanics/Latinos!
I Non-generalization due to lack of power.

I Summarize information across non-generalized associations, e.g.:
I Test consistency of direction of associations between the

discovery study and HCHS/SOL;
I Test trait association with Genetic Risk Score (GRS) - GRS can

be generated as the sum of reported trait-increasing alleles.
Test a GRS composed solely of SNP alleles of non-generalized
associations.
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Examples from our work - diabetes

I We ran a GWAS of Diabetes in the HCHS/SOL.
I Reported in Qi et. al. (2017) “Genetics of Type 2 Diabetes in

US Hispanic/Latino Individuals: Results from the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL)”,
Diabetes.

I The GWAS identified two genome-wide significant associations
(p-value< 5 × 10−8) in known regions.

I There were 76 known independent associations at the time.
I The power to detect these associations at the

p-value< 5 × 10−8 was low.
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Examples from our work - diabetes
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Examples from our work - diabetes
I We approximated the power to detect the associations in

generalization analysis using Bonferroni threshold.
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I The post-hoc power (left) was higher because actual effect sizes in
the HCHS/SOL were higher than those reported in the (mainly)
European ancestry discovery population. 22 / 28



Examples from our work - diabetes

I 14 of the associations generalized in generalization analysis.

Question: could other associations generalize if we had more power?

I To address this, we constructed a GRS by summing all
non-generalized diabetes risk-alleles for all participants in the
analysis.

I And tested the association of this GRS with diabetes.
I The resulting p-value=6.12 × 10−14.
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Examples from our work - total cholesterol (TC)

I In the generalization manuscript we investigated approaches for
generalization when entire GWAS is available

I Compared to the case where only lead SNPs are available.
I Reported in Sofer et. al. (2017), “A powerful statistical

framework for generalization testing in GWAS, with application
to the HCHS/SOL”, Genetic Epidemiology.

I The GLGC consortium published a list of 74 lead SNPs, from
74 genomic regions, in Willer et al. (2013).

I European Ancestry (EA); ∼ 190, 000 individuals.

I In addition, the complete results from Willer et al.’s analysis are
freely available online.

I In generalization analysis applied on these 74 SNPs 33 SNPs
generalized.
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Examples from our work - total cholesterol (TC)

I In generalization analysis applied on 4,106 SNPs SNPs with
p-value< 5 × 10−8 in the Willer et al. GWAS 2,206 SNPs
generalized.

I These SNPs were from 42 distinct genomic regions.
I 34 of the lead SNPs reported by Willer et al. generalized (only

33 of these generalized in the “usual” generalization analysis)
I And also non-lead SNPs from 8 additional genomics regions.

I In generalization analysis applied on 5,399 SNPs SNPs with
p-value< 1 × 10−6 in the Willer et al. GWAS 2,418 SNPs
generalized.

I These SNPs were from 43 distinct genomic regions.
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Examples from our work - total cholesterol (TC)

The TC example demonstrates that

I Due to differences in LD structure, there are instances where
the lead EA SNP is different than the lead SNP in HCHS/SOL.

I Applying generalization testing on more SNPs (not just the lead
SNPs) is useful.

I Considering SNPs with higher p-value than the commonly-used
5 × 10−8 can increase power.
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Exercise

I I generated a data set based on generalization analysis that I
have done for the diabetes GWAS manuscript in HCHS/SOL.

I The following exercise will take you through generalization
analysis based on this data set.

1. Use the command read.csv() to read the files
dscvr_diabetes_res.csv and sol_diabetes_res.csv with

I Association results published in a Mahajan et al. (2014) paper
with results of diabetes GWAS in the DIAGRAM consortium
(altered a bit).

I Association results of a few more variants in the HCHS/SOL
(also altered a bit).

More in the next slide. . .
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Exercise

2. Use the function match() to subset the results from
HCHS/SOL to those from Mahajan et al.

3. How would you know if variants have the same direction of
association in the HCHS/SOL and in the DIAGRAM
consortium?

4. Use the function matchEffectAllele() to match the effect sizes
in the HCHS/SOL to correspond the same effect allele as in
the DIAGRAM.

5. Test which associations generalize to the HCHS/SOL.
I Take the number of tested associations in the DIAGRAM to be

106.

6. How many associations generalized?
7. Compare the effect allele frequencies between the two studies

using plot() command.
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